

D2.1 Report on Islands requirements engineering and Use Cases

definitions

AUTHORS:

Mónica Fernandes (EDP NEW)

H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-EC-ES-SCC EUROPEAN COMMISSION Innovation and Networks Executive Agency Grant agreement no. 957810

PROJECT CONTRACTUAL DETAILS

Project title	IntegrAted SolutioNs for the DecarbOnization and Smartification of Islands
Project acronym	IANOS
Grant agreement no.	957810
Project start date	01-10-2020
Project end date	30-09-2024
Duration	48 months
Project Coordinator	João Gonçalo Maciel (EDP) - JoaoGoncalo.Maciel@edp.com

DOCUMENT DETAILS

Deliverable no.	D2.1
Dissemination level	Public
Work package	WP2 - Requirements Engineering & Decarbonization Road- mapping
Task	T2.1 - Islands requirements engineering and use case definitions
Due date	30-06-2021
Actual submission date	30-06-2021
Lead beneficiary	EDP NEW

Version	Date	Beneficiary	Changes
0.1	26-05-2021	EDP NEW	First draft
0.2	31-05-2021	SUNAMP, BEON, AME, UNINOVA, BORA-BORA	Small changes to the respective products' specifications. Ameland and Bora-Bora description updated.
0.3	15-06-2021	CERTH, TNO	Comments on the document
0.4	23-06-2021	UBE, AME	Official Review
1	25-06-2021	EDP NEW	Final version

This publication reflects the author's view only and the European Commission is not

responsible for any use that may be made of the information it contains.

Executive Summary

This document presents IANOS' Deliverable D2.1 - *Report on Islands requirements engineering and Use Cases definitions* developed under task T2.1 - *Islands requirements engineering and use case definitions* of Work Package 2 - *Requirements Engineering & Decarbonization Roadmapping.*

This deliverable presents a detailed definition of the 9 Technical Use Cases of IANOS project along with the identification of the requirements for each technological solution that will be demonstrated in the pilot sites of Ameland and Terceira. The information provided reflects the current status of the project and therefore, might in some cases be subject of further updates that shall be reflected in the next versions of this deliverable to be submitted by month 19 and 26.

The methodology followed to define the Use Cases was the IEC 62559-2 standard, whose templates were used to describe in detail the Key Performance Indicators associated, the pre-requisites and assumptions considered, the actors involved, the relations and information exchanged between them, the scenarios that might occur and the functional, regulatory and safety requirements. Additionally, the Smart Grid Architecture Model (SGAM) was also used to facilitate the description of the different layers of interoperability of the Use Cases.

The first part of the deliverable describes demonstrator sites, where the current energy systems are characterized in detail. This part also comprises product specifications and installation requirements for each hardware solution that will be installed in Terceira and Ameland islands. Moreover, it is presented a characterization of the current energy system of the Fellow Islands (Lampedusa, Bora-Bora and Nisyros) where some of the use cases will be replicated.

Finally, the second part of the deliverable presents the 9 Technical Uses Cases which are defined in detail according to the standard IEC 62559 *Use case methodology.*

The results of this deliverable, mainly the definition of the Use Cases, will be used in some future tasks such as T2.4, T2.5, T4.1, T4.3, T4.4, T5.1, T5.2, T5.3, T.5.4, T6.1, T6.2, T6.3 and T.6.4.

Table of Contents

LIST	OF FIG	GURES	6
LIST	OF TA	BLES	8
ABBI	REVIA	ΓIONS AND ACRONYMS	9
1.	INTR	ODUCTION	
1.1	Pur	RPOSE AND SCOPE OF THE DELIVERABLE	10
1.2	Str	UCTURE OF THE DELIVERABLE	10
1.3	Rel	ATION TO OTHER DELIVERABLES	11
2 U	JSE CA	SES METHODOLOGY	
2.1	Use	CASES OVERVIEW	13
2.2	Sta	NDARDS USED	15
2	.2.1	SGAM	15
2	.2.2	IEC 62559-2	17
2.3	Par	RTICIPATION AND RESPONSIBILITIES	19
3 Т	ERCE	IRA DEMONSTRATOR	.22
3.1	Gen	IERAL CHARACTERIZATION	22
3.2	Siti	E ASSESSMENT AND EXISTING INFRASTRUCTURE	22
3	.2.1	Supply and Demand	22
3	.2.2	Electricity Grid	25
3.3	Equ	JIPMENT AND SYSTEM SPECIFICATION	28
3	.3.1	PV panels with microinverter	28
3	.3.2	Electrochemical batteries	28
3	.3.3	Heat Batteries	29
3	.3.4	Electric Water heaters	29
3	.3.5	V2G chargers	31
3	.3.6	Flywheel	31
3	.3.7	Smart Energy Router	32

	3.3.8	8	Hybrid Transformer	
	3.3.	9	FEID-PLUS	
	3.3.	10	HEMS	
	3.4	List	OF STAKEHOLDERS	
4	AM	ELA	ND DEMONSTRATOR	
	4.1	Gen	ERAL CHARACTERIZATION	
	4.2	Site	ASSESSMENT AND EXISTING INFRASTRUCTURE	
	4.2.	1	Supply and Demand	
	4.2.2	2	Electricity Grid	
	4.2.3	3	Natural Gas Grid	
	4.3	Equ	IPMENT AND SYSTEM SPECIFICATION	
	4.3.1	1	Residential solar panels	
	4.3.2	2	Solar farm	
	4.3.3	3	Micro-CHP	
	4.3.4	4	Private Methane Fuel Cells	
	4.3.5	5	Fuel Cell	
	4.3.0	6	Hybrid Heat Pumps	
	4.3.1	7	Biobased saline batteries	
	4.3.8	8	Hydrogen water taxis	
	4.3.	9	Tidal Kite	
	4.3.	10	Auto generative High-Pressure Digester	
	4.3.	11	Electrolyzer	
	4.4	List	OF STAKEHOLDERS	
5	FEL	LOV	V ISLANDS	
	5.1	Lam	PEDUSA	
	5.1.2	1	General characterization	
	5.1.2	2	Site assessment and existing infrastructure	
	5.	1.2.1	Supply and Demand	
	5.	1.2.2	Electricity Grid	

	5.2	Bor	ra-Bora	53
	5.2	2.1	General characterization	53
	5.2	2.2	Site assessment and existing infrastructure	53
	ļ	5.2.2.1	1 Supply and Demand	53
	ļ	5.2.2.2	2 Electricity Grid	55
	5.3	NISY	YROS	58
	5.3	3.1	General characterization	58
	5.3	3.2	Site assessment and existing infrastructure	59
6	US	SE CAS	SES DEFINITION	64
	6.1	Tra	ANSITION TRACK 1: USE CASES	64
	6.1	1.1	Use case 1: Community demand-side driven self-consumption maximization	64
	6.1	1.2	Use case 2: Community supply-side optimal dispatch and intra-day services provision	93
	6.1	1.3	Use case 3: Island-wide, any-scale storage utilization for fast response ancillary services1	13
	6.1	1.4	Use case 4: Demand Side Management and Smart Grid methods to support Power quality and	
	CO	ngesti	ion management services1	32
	6.2	Tra	ANSITION TRACK 2: USE CASES	64
	6.2	2.1	Use case 5: Decarbonization of transport and the role of electric mobility in stabilizing the	
	en	ergy s	system1	65
	6.2	2.2	Use case 6: Decarbonizing large industrial continuous loads through electrification and locally	1
	inc	duced	l generation1	90
	6.2	2.3	Use case 7: Circular economy, utilization of waste streams and gas grid decarbonization2	07
	6.2	2.4	Use case 8: Decarbonization of heating network2	27
	6.3	Tra	ANSITION TRACK 3: USE CASES	44
	6.3	3.1	Use case 9: Active Citizen and LEC Engagement into Decarbonization Transition2	44
7	CO	ONCLU	USIONS AND NEXT STEPS2	50
8	RE	EFERE	ENCES	51
9	AN	INEX	.1	51

List of Figures

Figure 1: Task 2.1 and the relation with other deliverables	12
Figure 2: Smart Grid Architecture Model (SGAM) dimensions: Domains, Zones and Interoperability	
Layers	15
Figure 3: Terceira's location	22
Figure 4: Energy mix in Terceira in 2020	23
Figure 5: Electricity consumption in Terceira in 2020	23
Figure 6: Peak and Off-Peak Demands in Terceira, in 2020	24
Figure 7: Load Demand Curves for different seasons in Terceira, in 2020	25
Figure 8: Terceira's eletricity grid	26
Figure 9: Ameland's location	40
Figure 10: Energy consumption per sector on Ameland (2012-2019)	41
Figure 11: Energy consumption on Ameland	42
Figure 12: Power over the mainland connector on Ameland (2017)	43
Figure 13: Ameland's MV electricity grid	43
Figure 14: Ameland's gas grid	44
Figure 15: Electricity generation mix in Lampedusa, in 2020	49
Figure 16: Typical Load Demand Curve for Lampedusa island	49
Figure 17: Energy consumption per sector in Lampedusa	50
Figure 18: Lampedusa's electricity grid	51
Figure 19: Lampedusa's generators	52
Figure 20: Nisyro's villages	59
Figure 21: Autonomous microgrid of Kos-Kalymnos-Nisyros-Tilos	60
Figure 22: Electrical energy demand for Tilos island	61
Figure 23: Nisyros island total electricity consumption (MWhe) time evolution	61
Figure 24: Electricity consumption of Nisyros per sector (2010-2019)	62

7

List of Tables

Table 1: Use Cases overview	. 14
Table 2: Partners' participations on the Use Cases	. 20
Table 3: Terceira's power plants	. 26
Table 4: Terceira's substations	. 27
Table 5: Energy Losses in Terceira's power system, in 2020	. 28
Table 6: Technical specifications of SUNAMP'S Heat Batteries	. 29
Table 7: Technical specifications of TERALOOP's flywheel	. 31
Table 8: Technical Specifications of UNINOVA'S Smart Energy Router	. 33
Table 9: VPS' HEMS for the Residential Sector. Maximum Limit Capacities for different assets	. 36
Table 10: List of stakeholders for the hardware solutions demonstrated in Terceira	. 38

8

Abbreviations and Acronyms

SG-CG	Smart Grid Coordination Group
CHP	Combined Heat and Power
DER	Distributed Energy Resources
DSO	Distribution System Operator
FEID	Fog-Enabled Intelligent Device
HEMS	Home Energy Management System
ICT	Information and Communication Technologies
IEC	International Electrotechnical Commission
KPI	Key Performance Indicators
LEC	Local Energy Communities
LH	Lighthouse
LV	Low Voltage
MV	Medium voltage
PV	Photovoltaic
RES	Renewable Energy Sources
SCADA	Supervisory Control and Data Acquisition
SGAM	Smart Grids Architecture Model
TSO	Transmission System Operator
TT	Transition Track
UC	Use Case
UML	Unified Modelling Language
V2G	Vehicle-to-Grid
iVPP	Intelligent Virtual Power Plant
WP	Work Package

9

1. Introduction

1.1 Purpose and Scope of the Deliverable

IANOS project aims to decarbonize the energy systems of the Lighthouse Islands (Ameland and Terceira) and explore the possibility of replication in the Fellow Islands (Bora-Bora, Lampedusa, Nisyros). For this purpose, the project will demonstrate, under real-life operational conditions, a group of both technological and nontechnological solutions adapted to harsh islandic conditions that are described in 9 Use Cases.

The Deliverable 2.1 - *Report on Islands requirements engineering and UCs definitions* developed under task T2.1 - *Islands requirements engineering and use case definitions* presents a characterization and identification of the Lighthouse Islands' requirements for each hardware solution that will be deployed in the demonstrator sites. Accordingly, this deliverable comprises a characterization of the current energy system of the islands (both Lighthouse and Fellow Islands) and a description of the product and technical specifications, as well as, installation requirements of the hardware solutions that will be demonstrated.

Moreover, the Deliverable 2.1 also presents a detailed definition of the 9 Use Cases of IANOS project where it is presented information concerning various scopes such as the possible scenarios along with the information exchanged between the different actors of the Use Case and the list of requirements.

1.2 Structure of the Deliverable

Deliverable D2.1 is structured as follows:

- Chapter 2: Use Cases Methodology is presented, comprising the overview of the Use Cases in respect to the transition tracks and demonstrator sites of the project, the standards used for the definition of the Use Cases and the participation of the partners in each Use Case.
- Chapter 3: Terceira Demonstrator is characterized. This chapter contains a general characterization of Terceira, followed by a characterization of the current energy system of the island. Additionally, this chapter comprises the

specifications and installation requirements for all the solutions that will be implemented in Terceira followed by the list of stakeholders where the solutions will be installed.

- Chapter 4: Ameland Demonstrator is characterized. This chapter contains a general characterization of Ameland, followed by a characterization of the current energy system of the island. Additionally, this chapter comprises the specifications and installation requirements for all the solutions that will be implemented in Ameland followed by the list of stakeholders where the solutions will be installed.
- Chapter 5: Fellow Islands characterization is presented where a general characterization of the island and the assessment of the current energy system are described for each Fellow Island.
- Chapter 6: Use Cases Definition is presented and is divided according to the 3 Transition Tracks of the project.
- Chapter 7: Conclusions and Next Steps.

1.3 Relation to other deliverables

Task 2.1 is strongly related with several tasks of IANOS project since it defines in detail the Use Cases implemented in the Lighthouse Islands and identifies the requirements to demonstrate all the solutions in the pilot sites. Therefore, the results and conclusions from this task will be used in the subsequent tasks, mainly in the ones related with Requirements Engineering & Decarbonization Roadmapping (WP2), IANOS Multi-Layer VPP Operational Framework (WP4) and Deployment, Use Cases Realization and Monitoring at LH (WP5,WP6).

In order to define specifications and descriptions of the hardware technological solutions that will be demonstrated in the pilot sites, some inputs from Task 1.2 were needed.

Furthermore, Task 2.1 provides inputs regarding information and communication protocols of hardware solutions and the list of stakeholders to Task 2.3 and receives the KPIs to address to each one of the Use Cases. Additionally, Task 2.1 provides inputs to Task 2.4 and Task 2.5 mainly related with the requirements identified. This

task is also connected to Task 4.1, 4.3 and 4.4 since the development of the ICT components of the iVPP platform will need the requirements and the detailed definition of the Use Cases. Finally, Task 2.1 will provide inputs for Task 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3 and 6.4 since these tasks will comprise Use Cases realization and deployment, as well as, inputs for Task 7.1 to perform the technical impact assessment as it is illustrated in Figure 1.

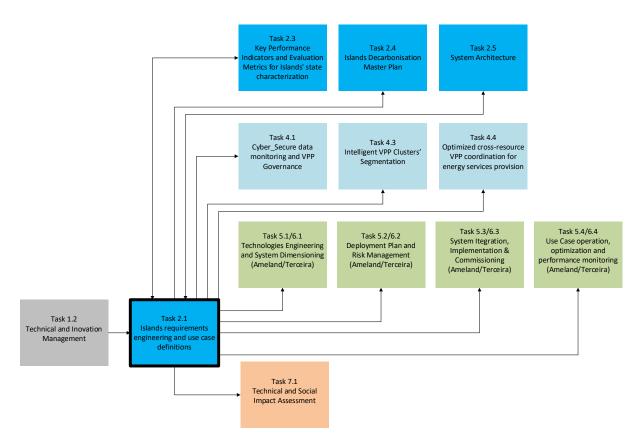


Figure 1: Task 2.1 and the relation with other deliverables

2 Use Cases Methodology 2.1 Use Cases Overview

Use Cases allow to identify, clarify and organize system requirements since they are made up of a set of possible sequences of interactions between different actors in a particular environment and related to a particular goal. The Use Cases that will be demonstrated in IANOS project are technical Use Cases which describe the functionality level of the system and therefore specify functions or services that the system provides to the user. Furthermore, these Use Cases intend to be generic about the technological implementation in order to ensure replicability.

Except Use Case 9, all Use Cases are connected with the intelligent Virtual Power Plant (iVPP) and basically describe the interaction between the different actors (iVPP platform included) in order to meet its aim.

The 9 Use Cases, that will be demonstrated in Terceira and Ameland pilots and replicated in the Fellow Islands, are clustered into 3 Energy Transition Tracks (TT) according to the challenges addressed and exploited opportunities. The Energy Transition Tracks are the following:

-TT#1 - Energy efficiency and grid support for extremely high RES penetration – which comprises UC1, UC2, UC3, UC4. This TT utilizes the iVPP logic to reduce energy curtailment and enabling a high RES penetration in the energy system.

-TT#2 - Decarbonization through electrification and support from non-emitting fuels – which comprises UC5, UC6, UC7, UC8. This TT demonstrates the potential of electrification as a mean to decarbonize relevant sectors along with non-emitting fuels utilization for cross-resource integration and circular economy.

-**TT#3: Empowered Local Energy Communities** – that includes only UC9 and aims to engage and involve citizens into the decarbonization transition of the islands.

Furthermore, the Use Cases of IANOS project will be demonstrated (D) in at least one of the Lighthouse Islands during the course of the project and replicated (R) in the Fellow Islands.

Table 1 presents an updated overview of the Use Cases of IANOS project regarding the Transition Track associated and their demonstrator and replication sites.

Table 1: Use Cases overview

Use	Use Case Name	Ameland	Terceira	Bora-Bora	Lampedus	Nisyros
Case					а	
Number						
	argy officiancy and grid	l augus art far a	wtromoly bigh		ation	
	ergy efficiency and gric	support for e	extremely high	I KES penetra	allon	
UC1	Community demand-side					
	driven self-consumption maximization	D	D	-	-	R
	maximization					
UC2	Community supply-side					
	optimal dispatch and intra-	D	D	-	R	-
	day services provision					
UC3	Island-wide, any-scale					
	storage utilization for fast	D	D	R	R	-
	response ancillary services					
UC4	Demand Side Management					
	and Smart Grid methods to	D	D		R	D
	support Power quality and congestion management	D	D	-	ĸ	R
	congestion management services					
#TT2· Do	carbonization through	electrification	and support f	rom non-emit	ting fuels	
		ciccumcation				
UC5	Decarbonization of					
	transport and the role of electric mobility in	D	D	R	R	R
	stabilizing the energy	D	D	IX.		IX.
	system					
UC6	Decarbonizing large					
	industrial continuous loads	D				R
	through electrification and	D	-	-	-	ĸ
	locally induced generation					
UC7	Circular economy,					
	utilization of waste streams	D	-	R	R	R
	and gas grid					
	decarbonization					
UC8	Decarbonization of heating network	D	-	R	-	R
#TT2. Em	powered Local Energy	Communitie	9			
		Communitie	5			
UC9	Active Citizen and LEC			р	D	П
	Engagement into Decarbonization Transition	D	D	R	R	R
	Decarbonization Transition					

D: Demonstration / R: Replication

2.2 Standards used

In order to guarantee harmonisations and replicability of the use cases, standardized methodologies were used such as the Smart Grid Architecture Model (SGAM) and the IEC 62559-2 standard.

2.2.1 SGAM

The Smart Grid Architecture Model (SGAM) is a unified standard for smart grid usecases and architecture design defined by the CEN-CENELEC-ETSI Smart Grid Coordination Group (SG-CG) [1]. This model enables to provide a global and clear view of smart grid projects by mapping the different actors and devices considering 3 dimensions. The first dimension describes the domains which range from generation through transmission and distribution to end-consumers. The second dimension corresponds to the zones of operation from the processes through field, station and operation to enterprise and market zones. Finally, the third dimension describes the interoperability layers that range from the component layer to the business layer.

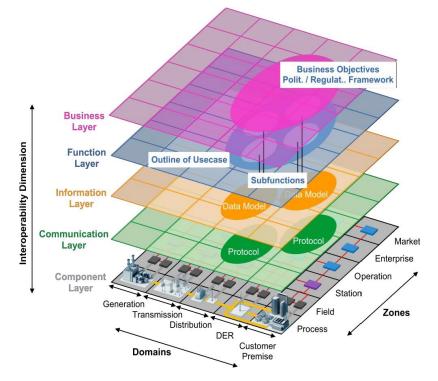


Figure 2: Smart Grid Architecture Model (SGAM) dimensions: Domains, Zones and Interoperability Layers

As it is shown in Figure 2, according to the SGAM, there are 5 interoperability layers:

- The Business Layer which represents the business view of the smart grid model.
 The business layer can be used to map different stakeholders within the zones and domains and also to map their roles and responsibilities.
- The Function Layer which comprises functions and services independent from actors and physical implementations in applications, systems and components. These functions reveal the functionalities of the Use Case.
- The Information Layer which contains the information exchanged between the actors involved in the Use Case. This layer comprises information objects and the underlying canonical data models.
- The Communication Layer which describes protocols and mechanisms for the interoperable exchange of information between components.
- The Component Layer represents the physical distribution of all the components (e.g. system actors, applications, power system equipment, smart meters, etc).
 For each interoperability layer, there is a 2-Dimensional plane characterized by Domains and Zones.

Domains cover the complete electrical energy conversion chain:

- The Generation includes generation of electrical energy in bulk quantities (fossil, nuclear, hydropower plants, offshore wind farms, large-scale solar power plants), normally connected to the transmission system.
- The Transmission includes all the infrastructure responsible for transporting electricity over long distances.
- The Distribution represents the infrastructure responsible for distributing electricity to the customers.
- The Distributed Energy Resources (DER) include any distributed technologies of small-scale power generation (from 3 kW to 10.000 kW) directly connected to the distribution grid.
- The Customer Premises host consumers but also prosumers which apart from consuming electricity are also able to generate electricity through solar PV panels, micro turbines, electric vehicles storage, etc. The premises can be industrial, commercial and home facilities such as airports, shopping centres and homes.

Finally, **Zones** represent the hierarchical levels of power system management:

- The Process includes all the physical, chemical or spatial transformations of energy and the equipment directly involved such as generators, transformers, cables, sensors, etc.
- The Field includes all the equipment to protect, control and monitor the power system such as protection relays, intelligent electronic devices, etc.
- The Station which represents the aggregation of field zones such as local SCADA systems, data concentration, etc
- The Operation which hosts power system control operation in the respective domain such as distribution management system, energy management system, etc
- The Enterprise which includes commercial and organizational processes, services and infrastructures for enterprises such as asset management, logistics, work force management, customer relation management, etc
- The Market which reflects the market operations possible along the energy conversion path such as energy trading or retail market.

In Chapter 6 - *Use Cases Definition*, each Use Case is defined according to the IEC 62559-2 standard and in Section 1.4 (Narrative of the Use Case – Complete Description) of this template is presented a characterization of the SGAM layers that are applicable to the Use Case. For each interoperability layer, actors are mapped into Domains and Zones. All Use Cases, except UC 9, have the Function and Information Layer characterized. Only UC1, UC4 and UC5 present the Communication Layer due to the absence of information regarding communication and information protocols from its actors. Moreover, since IANOS' Use Cases are technical Use Cases, the Business and Component Layer are not characterized.

2.2.2 IEC 62559-2

The Use Cases are described according to the IEC 62559-2 standards, thereby the standard IEC 62559 *Use case methodology* (Annex I) is the template used for the description of the 9 Use Cases of IANOS project.

This template contains 7 Sections:

• Section 1: Description of the Use Case

1.1 Name of the Use Case: Use Case identification, transition track and name1.2 Version Management: History of updates, contributions and comments fromproject partners to the use case definition

1.3 **Scope and Objectives of Use Case**: Boundaries and the listed objectives 1.4 **Narrative of Use Case**: Short and complete description of the use case. The complete description describes what occurs when, why, with what expectation, and under what conditions. In this section, it is included the characterization of SGAM layers that are applicable to the Use Case. Additionally, it is presented a table that describes the information and communication protocols for the hardware technological solutions that will be implemented within the scope of the Use Case along with the respective demonstrator sites where they will be demonstrated

1.5 **Key Performance Indicators (KPI):** KPIs from the D2.3 - *IANOS KPIs and evaluation metrics*. Due to the technical nature of the Use Cases, only part of the KPIs were chosen (e.g KPIs in economic domain were not considered). The KPI identification number corresponds to the number defined in D2.3. KPI's are linked to the objectives defined in section 1.3

1.6 Use Case Conditions: Assumptions and Pre-requisites for each use case

1.7 Further Information for classification / mapping

Relation to other use cases: IANOS' Use Cases are strongly related with each other, mainly the ones that belong to the same Transition Track.

Level of depth: All Use Cases, except UC9 which is a high-level use case, are specialized use cases since they use specific technological solutions/implementations

Prioritisation: All Use Cases have a high priority since all have the same level of importance for the project

Generic, regional or national relation: All Use Cases are generic because they will be demonstrated in more than one country

Nature of the use case: All Use Cases have a technical nature, except UC9 which has a social nature

Further Keyword for classification: List of keywords related to the Use Case

1.8 **General Remarks:** Any other important details related to the Use Case that were not referred in other sections.

• Section 2: Diagrams

UML Use Case diagrams where objectives and actors are presented; activity diagrams where different tasks of the use case are described; and sequence diagrams where the information exchanged between actors is presented

- Section 3: Technical Details
 - 3.1 Actors: List of actors involved in the use case

3.2 **References**: Any documents or standards that are important for the Use Case

• Section 4: Step by step analysis of use case

4.1 **Overview of scenarios:** A scenario describes a situation that might occur in the Use Case. A short description, the responsible actor, the triggering event, the pre-conditions and post-conditions are presented.

4.2 **Steps – Scenarios:** For each scenario the succession of events described. The information flows presented in the sequence diagrams correspond to the steps of the scenario

• Section 5: Information Exchanged

Describes the information exchanged between actors in specific scenarios

• Section 6: Requirements

Describes the necessary requirements (functional, data privacy, cybersecurity, etc) for the implementation of the Use Cases

Section 7: Common Terms and Definitions
 Glossary

2.3 Participation and responsibilities

Each Use Case has the contribution of different partners of the project:

- Technological Providers (T): Partners which provide technological hardware solutions to be demonstrated in the Lighthouse Islands.
- Local Partners (L): Partners located in the LH (e.g. municipalities).
- Lighthouse island system's integrators (LH): Partners that cope with LH integration and operation and performance monitoring. Additionally, partners that are involved in the development of the iVPP platform.
- People Engagement Partners (P): Partners which are responsible for citizens or stakeholder's engagement in LH islands.

• Replication Activities Partners (R): Partners that will support Fellow Islands in the replication of the Use Cases.

Table 2 presents the participants for each Use Case as well as the characterization of the type of contribution to the Use Case according to the groups of partners described above:

Partners	UC1	UC2	UC3	UC4	UC5	UC6	UC7	UC8	UC9
EDP NEW	LH T	LH	LH	LH	LH				LH
Uninova	ТР			ТР					Р
Efacec Energia				Т					
EDA	L LH	L LH	L LH	L LH	L LH				L LH
Efacec Electic Mobility					T LH				
Governo Regional dos Açores	L	L	L	L	L				L
Virtual Power Solutions	LH T	LH T	LH T	LH T	LH T				
Teraloop			Т						
Sunamp	Т								
BeOn	Т								
Municipality of Ameland	L	L	L	L	L	L	L	L	L
New Energy Coalition							Р		Р
TNO	LH	LH	LH	LH	LH	LH	LH	LH	
Alliander	L	L	L	L	L	L	L	L	
Amelander Energie Coöperatie	Р			Р					Р
SuWoTec	Т			Т					
Hanze University									Р
Neroa	LH	LH	LH	LH	LH	LH	LH	LH	
Repowered B.V.	LH	LH	LH	LH	LH	LH	LH	LH	
SeaQurrent Holding B.V.						т			
Bareau BV							т		
GasTerra B.V.							Т		
Municipality of Lampedusa and Linosa			L	L	L		L		L
CNR-IIA			R	R	R		R		R
Commune de Bora-Bora		L	L		L		L	L	L
Akuo Energy		R	R		R		R	R	R
Municipality of Nisyros	L			L	L	L	L	L	L
CERTH	LH	LH	LH	LH	LH	LH	LH	LH	
CPERI	LH	LH	LH	LH	LH	LH	LH	LH	
ETRA	LH	LH	LH	LH	LH	LH	LH	LH	LH

Table 2: Partners' participations on the Use Cases

Engineering-Ingegneria Informatica SpA	LH R	R	R	R	R	R	R	R	R
RINA			R	R	R		R		R
EREF									Р
UBITECH	LH	LH	LH	LH	LH	LH	LH	LH	

T: Hardware Technology Provider L: Local Partners LH: Lighthouses' System Integration

P: People Engagement Partners R: Replication Activities Partners

The responsible for the implementation of each Use Case will be defined in the following months.

3 Terceira Demonstrator 3.1 General characterization

Terceira is the third largest island in the Azores archipelago, with an area of 402.2 km². Terceira is a volcanic island located in the middle of the north Atlantic Ocean 1,600 km West of Portugal and its population is 55,300 inhabitants. Its economy is mostly based on the raising of livestock, production of dairy-based products and, recently, tourism. Between 2010-2018 the tourism in Terceira has grown 230%, reaching in 2018 137920 tourists. Angra do Heroísmo, the historical capital of the archipelago and part of Terceira, is classified as UNESCO World Heritage Site. Terceira has a subtropical climate with mild annual oscillations. Given its volcanic origin, geothermal surfaces allow the use of geothermal resources for power generation.

Figure 3: Terceira's location

3.2 Site assessment and existing infrastructure

Terceira's current energy system state is described addressing the current energy supply and demand as well as a detailed description of the electricity grid of the island.

3.2.1 Supply and Demand

In 2020, 184,6 GWh of electricity were generated in Terceira, where approximately 38% were from renewable energy sources as it is shown in Figure 4. The fuel oil is still the dominant energy source in the island.

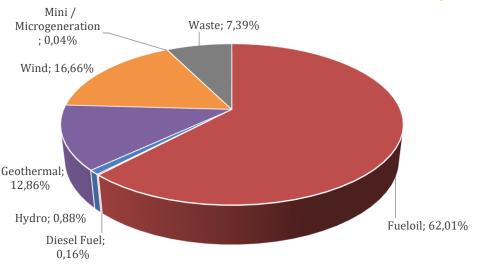


Figure 4: Energy mix in Terceira in 2020

Regarding the electricity consumption in 2020, 170,7 GWh were consumed in the island: 101,1 from Low Voltage and 69,6 GWh from Medium Voltage. Accordingly to Figure 5, the Residential Sector is the one who represents the most significant consumption.

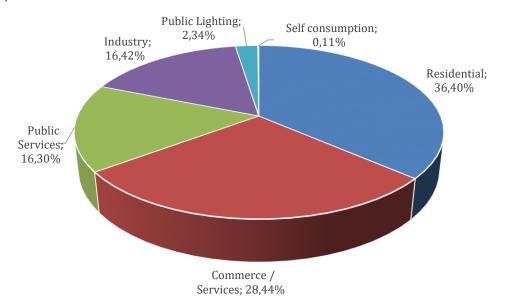


Figure 5: Electricity consumption in Terceira in 2020

As illustrated in Figure 6, the annual peak demand in 2020 was in 29 December at 7:30 PM. while the annual off-peak demand was in 7 May at 04:45 PM.

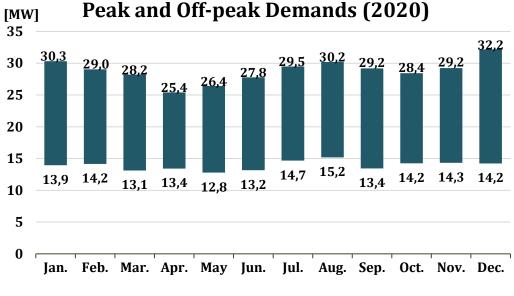


Figure 6: Peak and Off-Peak Demands in Terceira, in 2020

The typical load demand curve obviously varies according to the seasons of the year as it can be observed in Figure 7. Accordingly, the highest rise in consumption happens in the morning, certainly driven by the beginning of activity from commercial and residential sectors. The peak consumption depends on the season: while in Winter and Autumn is around 08:00 PM, in Spring and Summer is in the morning at 10:00 AM and 12.00 AM, respectively.

Figure 7: Load Demand Curves for different seasons in Terceira, in 2020

3.2.2 Electricity Grid

The electric system of Terceira is composed of 8 power plants and 6 substations. It has a MV transmission line at 30 kV, MV distribution lines at 15 kV and LV distribution lines at 0.4 kV as displayed in Figure 8. The distribution grid has a total of 1490 km of network extension: 1092 aerial cables and 398 underground cables. 358 km correspond to 15 kV lines, 0.74 correspond to 30 kV while 1131 km are LV lines. On the other hand, the transmission grid has only 79 km of extension: 67 aerial and 12 underground cables.

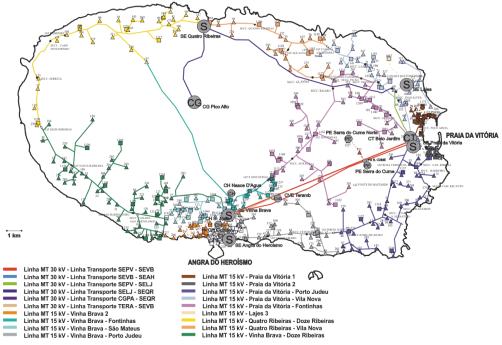


Figure 8: Terceira's electricity grid

Table 3 presents the 8 power plants of Terceira. The island has 79,5 MW of capacity installed with a diverse portfolio of power plants: thermal, hydro, wind, waste and geothermal. Hydropower plants are the oldest with more than 60 years and the geothermal power plant the newest, which is in operation only since 2017. The plant which generates more electricity is undoubtedly Belo Jardim power plant, followed by the geothermal plant Pico Alto and wind park Serra do Cume.

Name	In operation since (*)	Type of production	G Voltage level [kV]	enerator Units	Groups Installed Capacity [kW]	Electricity Production [MWh]
Belo Jardim	1983	Diesel Fuel	6,6	3	9 116	255,2
		Fueloil	6	6	49 000	120 029,8
Cidade	1955	Hydro	0,4	1	264	376,7
Nasce d'Água	1955	Hydro	0,4	1	720	852,1
São João de Deus	1955	Hydro	0,4	1	448	400,2
Serra do Cume	2008	Wind	0,4	10	9 000	23 192,5

Table 3: Terceira's p	ower plants
-----------------------	-------------

Serra do Cume						
Norte	2012	Wind	0,4	4	3 600	7 555,8
TERAMB	2016	Waste	6	1	2 720	13 651,1
Pico Alto	2017	Geothermal	11	1	4 675	23 741,7
			-	28	79 543	190 055,2

* Date referring to the start of operation of the system and not including subsequent refurbishments or expansions.

The electricity grid is composed of 6 substations: 1 for the Belo Jardim power plant and other 5 in the MV transmission line at 30 kV. Table 4 presents information regarding the 6 substations of Terceira.

Table 4: Terceira's substations

Name	Abbreviation	In operation	Transformation	Installed Capacity
Name	Abbreviation	since (*)	Ratio	[MVA]
Belo Jardim	SEBJ	1983	30/15 kV	10,00
Praia da Vitória	SEPV	2016	30/15 kV	20,00
Vinha Brava	SEVB	1990	30/15 kV	20,00
Angra do Heroísmo	SEAH	2003	30/15 kV	10,00
Quatro Ribeiras	SEQR	2010	30/15 kV	10,00
Lajes	SELJ	2004	30/6,9 kV	12,50
			30/15 kV	1,00
			Total	83,50

* Date referring to the start of operation of the system and not including subsequent refurbishments or expansions.

Concerning energy losses, analysing the year 2020, Table 5 illustrates that there were around 13,9 GWh of energy losses corresponding to 7,52% of grid losses. Isolated systems, like Terceira Island, are subject to frequency and voltage fluctuations caused by power deviations of independent generation (wind, waste and geothermal generation) and load demand. The autonomous and decentralized frequency and voltage control system is done by each diesel generators connected to the grid in Belo Jardim Power Station, with conventional droop control methods implemented on individual speed and voltage regulators and based on droop characteristic.

Table 5: Energy Loss	es in Terceira's po	ower system, in 2020
----------------------	---------------------	----------------------

Energy [kWh]	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total
Production	46 137 524	42 770 054	47 801 179	47 900 405	184 609 162
Consumption	43 022 677	39 993 438	44 081 395	43 622 254	170 719 763
Grid Losses	3 114 847	2 776 616	3 719 783	4 278 152	13 889 399
	6,75%	6,49%	7,78%	8,93%	7,52%

3.3 Equipment and system specification

In Terceira, several hardware solutions will be installed in certain stakeholders. In this subchapter, a description of the technical and product specifications and the installation requirements of the hardware solutions is presented.

3.3.1 PV panels with microinverter

Product Specifications

Nominal power for each installation will be 1500W (5x300W) Dimensions: 10m² (around 2m² per panel) Max voltage: 49V DC, 230V AC

Installation Requirements

Requires 10m² for the installation.

3.3.2 Electrochemical batteries

Sixteen distributed electrochemical batteries will be installed in customer premises in Terceira. These batteries will be standard batteries, with no innovation feature associated. Therefore, it is not necessary to identify the specifications and installation requirements.

3.3.3 Heat Batteries

Twenty-four heat batteries developed by SUNAMP (UniQ eHW 3 +iPV) will enable to produce domestic hot water heating by using grid electricity and surplus PV energy. These batteries allow to maximize the thermal power by immersing a powerful heat exchanger into the Phase Change Material used as storage medium.

Product Specifications

Technical Specifications	UniQ eHW 3 +iPV
Width x Height x Depth (mm)	575 x 429 x 365
Gross Weight (kg)	72
Net Weight (kg)	70
Heat storage capacity (kWh)	3.5
Water Content (L)	2.3
Equivalent Hot Water Cylinder Size (L)	71
V40, Volume of Hot water available at 40°C (L)	85
Standby heat loss rate (kWh / 24h (W))	0.48 / (20)
Energy efficiency rating class	С
Recommended maximum HW flow rate (L/Min)	6
Minimum mains supply pressure at inlet of Heat Battery (Bar)	1.5
Maximum working pressure (MPa / (Bar))	1.0 (10)
Hot water outlet temperature at design flow rate (°C)	45-55
Connected load at ~ 230 V, 50Hz (W)	2,800
Power supply / Standby consumption (W)	1 PH ~ 230 V / 7
Electrical efficiency (nelecwh) (%)	81.4
Annual electricity consumption (AEC) (kWh/annum)	542
Tapping cycle	S

Table 6: Technical specifications of SUNAMP'S Heat Batteries

Installation Requirements

- The Heat Battery is suitable for indoor use only;
- Due to the weight of the Heat Battery, ensure the floor is level, sound and capable of supporting its weight;
- Allow for space of 150mm around the Heat Battery (i.e. to view LED lights), and space of 450mm above it (i.e. to remove the lid if necessary).

3.3.4 Electric Water heaters

The solution developed by UNINOVA allows the non-intrusive characterization and use of energy flexibility provided by (existing) electric water heaters. It comprises a set of sensors coupled and installed in a non-intrusive manner (there is no need to change

or modify a classical water heater) to individual water heaters. Sensors collect information from the water heater. Collected information is then passed through a microcontroller and communicated wirelessly to UNINOVA's servers and through them to the iVPP. The iVPP will provide high level instructions on the grid's flexibility requirements; these instructions will be translated to specific actions on the cloud, at UNINOVA's servers, and communicated wirelessly to the on-site microcontroller which will in turn control individual water heaters.

In more detail, the system is composed of:

- A set of sensors to acquire temperature and power data, which are installed on existing electric water heaters with minimum impact on consumers' equipment and comfort (non-intrusive approach);
- A microcontroller with Wi-Fi communication capabilities to collect and send data, while also receiving the control signals that define the state of the heating element (on or off);
- An actuator that enables the supply of power to the heating element;
- A remote-control system where the energy flexibility characterization and control strategy are computed, which also ensures communication with the iVPP.

There will be five electric water heaters deployed in Terceira in the context of IANOS.

Product specifications

This solution is to be applied to 1.5 kW power electric water heaters (230 V), with a maximum capacity of 150 I. A cubic space with 30X30X30 (in cm) is needed at the water heater electric socket. Additionally, a cubic space with 20X20X20 (in cm) is needed at the water heater's hot water output. These cubic spaces should be available to IANOS personnel. Moreover, local Wi-Fi connection is required.

Installation Requirements

In order to install the components for the non-intrusive characterization and use of energy flexibility provided by Electric Water Heaters, as referred in the previous point, a cubic space with 30X30X30 (in cm) is needed at the water heater electric socket. Additionally, a cubic space with 20X20X20 (in cm) is needed at the water heater heater's hot water output. These cubic spaces must be accessible at all times.

3.3.5 V2G chargers

Two V2G chargers developed by EFACEC MOBILITY will be installed in Terceira. V2G chargers are smart chargers that apart from providing energy to electric vehicles also have the capability of providing control algorithms for ancillary services and grid support.

Product specifications

Rated power: 10 kVA Grid connection: triphasic + neutral, 400 V+-10 % / 50 Hz.

Installation Requirements

The V2G chargers are wall mounted equipment. The dimensions (WxHxD) of the wall box are 650x650x250 mm (excluding the cable connection). A free space around the equipment should be considered for user access and to manipulate the charging cable. Moreover, the equipment is rated as IP44. The place of installation may need additional protection/filtering conditions, if necessary. Additionally, there should not be a direct exposure the sunlight.

3.3.6 Flywheel

The Flywheel developed by Teraloop will allow to provide fast frequency regulation support and power quality, meeting the demands of unpredictable charge/discharge conditions and presenting an inertial load for the iVPP.

Product specifications

Technical Specifications	Flywheel
Max Power Rating (kW)	100
Max Energy Rating (kWh)	3
Max Energy Storage (kJ)	10800
Efficiency (%)	95
Flywheel Type	Hubless Rotor, Magnetic Bearings, Vacuum

Table 7: Technical specifications of TERALOOP's flywheel

Operating Rotational Speed (RPM)	6000-18000			
Flywheel Runtime (sec) [Load]	3600 [3kW], 512 [25kW], 216 [50kW], 162 [75kW], 108			
	[100kW]			
Flywheel Recharge Time (sec@100kW)	130			
Self Discharge (h)	1			
DC Link Voltage (VDC)	400-750			
Duty cycling (min)	4 (minimum full cycle, discharge and recharge time			
	combined)			
Operating temperature (°C)	-25 to 40			
Cabinet Dimensions (mm)	2 x 1000 (width), 800 (depth), 2000 (height)			
Ingress protection (IEC 60509:1989)	IP61 (flywheel with vacuum cover), IP48 (cabinets)			
Grid Operating Voltage (VLL)	380/400/415 VAC 3-phase, 4-wire plus ground			
Frequency (Hz)	50/60			
Power Factor	0.99 at rated load and nominal voltage			
Phases	3			
Surge Withstand	Meets IEEE 587/ANSI C62.41			
Weight (kg)	750 (flywheel only), 1200 (20kW AC), 2200 (100kW AC)			
Audible Noise (dBA)	<75 (at 1 meter)			
Operating Temperature (°C)	0 to 40 (cabinet)			
Storage Temperature (°C)	-25 to 70 (flywheel)			
Humidity (%)	5 to 95 (non-condensing)			
Emissions and Immunity	EN 62040-2			
Connectivity	System to grid or flywheel to DC link			

Installation Requirements

• Concrete bed/floor with four M33 size thread rods for machine attachment. Rods anchored to the concrete foundation. Foundation has to be able to sustain a mass of 1500kg;

- Dry environment with good ventilation;
- Flywheel space requirement: 2x2x2 m (including vacuum and cooling system);
- Power electronics space requirement: 2x1x2 m;
- Flywheel and power electronics to be installed in the same facility;
- Main requirement: 400Vac 3x250A main fuse for 100 kW machine;
- Additional 230Vac 3x16A and 16A sockets required for the auxiliary systems;

3.3.7 Smart Energy Router

The Smart Energy Router developed by UNINOVA is a power electronics device that manages the energy transfer from/to different sources (distribution grid, RES-based

distributed generators), loads and electricity storage systems. In IANOS project, the Smart Energy Router will be located at building level (behind the meter). The Energy Router collects data from various energy assets, like PVs (generation profile) and batteries (charge state) and will receive higher level instructions from the iVPP to control individual assets accordingly. It thus acts as an intermediary between the iVPP and individual assets at building level.

There will be 2 smart energy routers deployed in Terceira in the context of IANOS.

Product specifications

Technical Data	Energy Router 5.0
Input PV System (DC)	
Max. PV array power	5,000 Wp
Input voltage range	300 V to 800 V
MPP voltage range	350 V to 750 V
Rated input voltage	550 V
Max. input current input A / input B	7.5 A / 7.5 A
Max. DC short-circuit current input A / input B	12.5 A / 12.5 A
Number of independent MPP inputs	2
Input/output Grid (AC)	
Rated power (at 230 V, 50 Hz)	5,000 W
Max. apparent AC power	5,000 VA
Power factor range	0.7 lag to 0.7 lead
Nominal AC voltage	3-NPE 400 V / 230 V
Rated grid frequency / rated grid voltage	50 Hz / 230 V
Max. input/output current	3 x 7.5 A
Max. input/output overcurrent protection	12 A
Total harmonic distortion	5 %
Phases	3
General data	
Dimensions (W x H x D)	300 mm x 500 mm x 200 mm
Operating temperature	0 °C to 60 °C
Topology / cooling method	Transformerless / convection
Maximum Switching frequency	50 kHz

Table 8: Technical Specifications of UNINOVA'S Smart Energy Router

Installation Requirements

- Two Smart Energy Routers will be installed at residential or services buildings with three phase power supply;
- All equipment will be installed behind-the-meter;
- PV generation must be available on-site and Smart Energy Routers will substitute the existing power inverters;
- An indoor cubic space with 1x1x1 (in meters) is required for the installation. This space should be available to IANOS personnel but not for the buildings' users;
- Local Wi-Fi connection is required;

3.3.8 Hybrid Transformer

The hybrid transformer developed by EFACEC ENERGIA incorporates two technologies, electrical and electronic, operating simultaneously. These combined technologies will allow the stepless, phase by phase, voltage regulations at the LV side with power factor control and monitoring.

Product specifications

Rated power: 400kVA Rated voltage: 15.000 V \pm 2 x 2,5%/420 V/242 V \pm 12%.

Installation Requirements

- It will be necessary space for the installation of the distribution transformer (approximately 1510 mm x 1380 mm x 900 mm, designing still in process) and for the cabinet that will contain the control and voltage regulation component (designing still in process);
- Cellular signal for communication between the hybrid transformer and EFACEC platform;
- Industrial low voltage supply for auxiliary systems (e.g. 400Vac 3~).

3.3.9 FEID-PLUS

The FEID-Plus developed by CERTH is a fog-enabled computing device equipped with special functions to control I/O, phase width modulation and analog signals. It employs enough processing capacity for applying distributed computing such as information capturing and storing, algorithms execution and control over the installation. Additionally, it also has the capacity to interface with several field elements for instance controllable building loads, storage and EV charging stations through appropriate protocols.

Product specifications:

Power management

FEID-PLUS is equipped with a dual step-down current-mode DC-DC converter (PAM2306) for the purposes of the power management and it converts the 5V input voltage to two outputs of 3.3V and 1.8V.

Processing

The main processing module for the FEID-PLUS is the Raspberry Pi Compute Module 3+ (CM3+). The module is equipped with a BCM2837B0 processor, 1Gbyte LPDDR2 RAM and eMMC Flash and supporting power circuitry.

Operating characteristics of FEID-PLUS

- FEID-PLUS power consumption measured @ 5V DC
- Boot 0.25A
- Idle 0.45A/network connection
- Full 1.2A
- FEID-PLUS max voltage 5.5V
- FEID-PLUS
- Max current 1.5V

Dimensions

- FEID-PLUS PCB dimensions: 87 x 68 x 35mm
- FEID-PLUS enclosure dimensions: 96 x 72 x 50 (4 DIN positions)
- 1x Pluggable terminal blocks 2P: 5mm
- 1x Pluggable terminal blocks 6P: 5mm
- 1x Pluggable terminal blocks 7P: 3.5mm

• 1x 5V 2.4A power supply (1 DIN position): 90 x 17.5 x 54 mm

<u>PSU</u>

- Max supply voltage of PSU: 264V AC/370V DC
- Max power supply of PSU: 12W

Installation requirements:

- Indoor installation, since the FEID-PLUS does not have the necessary protection from weather and therefore it is not suitable for outdoor areas;
- Power supply 5 VDC;
- Ethernet (connection to the local network for the configuration of the device);

3.3.10 HEMS

The HEMS developed by VPS will allow to remotely monitor, manage and control the technological solutions that will be installed within the customer premises.

The system is composed by the hardware (Smart Meters, Sensors and Actuators), Data Management (Communication, Data Processing and other modules) and User Interfaces.

Product specifications:

The VPS HEMS platform has the capacity to remotely control the loads with the characteristics referred on the following table. Much more devices can be and will be integrated (some during the IANOS project implementation), however Table 9 shows the generic values for the most common energy assets.

Asset Type	Maximum Limit Capacity		
	Monitor / Device	Manage / Device	
Loads (sockets) – using Wi-Fi Plug	16A 3kW	16A 3kW	
Loads (generic) – using DIN-rail Zigbee devices installed on distribution boards	From 16A to 32A	From 16A to 32A	
Loads (generic) – using devices (meters and I/O + Contactors) installed on distribution boards	Direct measurement: 100A AC (1 Phase); 65A AC (3 Phase)	Control: 25A (1 Phase); 25A to 63A (3 Phase), others on request	

Loads (smart appliances) – using Wi-Fi integration	Depend on appliance, typical: 2 kW	Depend on appliance, typical: 2 kW	
Loads (HVAC) – using devices (meters and I/O) installed on distribution boards	Direct measurement: 100A AC (1 Phase); 65A AC (3 Phase)	Control: using digital output signal. 16A 3kW	
Loads (water heater)	16A 3kW		
Generation (solar PV) - using integration with inverter	Dependent on individual inverter rated capacity: (from 1.5 kW to 50 kW). Capacity can be increased by grouping inverters.		
Storage (batteries) - using integration with inverter	Dependent on individual inverter rated capacity: (from 0.8 kVA to 10 kVA). Capacity can be increased by grouping inverters.		

Installation Requirements

The HEMS platform will be installed on a cloud-based platform. It will communicate with the equipment's through a central local unit (Gateway) that can be connected to an ethernet cable, to WiFi or GPRS/3G/LTE.

Concerning the hardware equipment installation requirements, these depend on the type of flexible loads to be monitored and controlled, and also on the manufacturers. Nevertheless, some examples that may be installed in Terceira pilot are presented:

• The VPS Gateway is much smaller than a common household internet router. It must be connected to a common household plug and to the internet through an ethernet cable. Other Gateways are available, namely using WiFi or GPRS/3G/LTE, that must be connected in the din rail of the mains switch board. This operation must be performed by a qualified electrician;

• VPS Smart Plugs have no special requirements in terms of installation procedures, it is a plug and play device that will automatically pair with the Gateway;

• VPS Smart Meters will need to be installed by a qualified electrician on the switch board and will also automatically pair with the Gateway.

Regarding other hardware components, namely the inverters and PV systems from BEON, the PCM heat batteries from SUNAMP, the water heaters from UNINOVA and the Battery Energy Storage Systems will have to follow the manufacturers installation procedure. In terms of other required installation procedures, namely the need to install other communication transmitter hardware, more details will be acquired during the development phase of the integration of these equipment's in collaboration with the manufacturers. Only at that phase it will be known exactly what hardware will be further needed to be installed. Usually, for most of the equipment that already have some form of wired or wireless communication, there will be no need to install additional hardware

if VPS has access to an API or management/control platform of the manufacturer. In other occasions, usually a bridge or transmitter can be easily installed, to communicate directly with the equipment, allowing their integration with the VPS HEMS. These devices can for instance be battery powered and communicate with the hub using the Zigbee Home Automation protocol.

3.4 List of stakeholders

As it is displayed in Table 10, the majority of the technological solutions described in the previous subchapter will be installed in Terra Chã social neighbourhood. This neighbourhood has 250 houses and is located in Angra do Heroísmo county in an area of 10km². Terra Chã perfectly fits in IANOS project since it has enough population to engage and involve in Terceira's energy transition.

The flywheel will be installed in the dairy factory Pronicol, also located in Angra do Heroísmo. Pronicol usually has some consecutive power failures that force the factory to stop producing the dairy products which have a great economic impact. Thereby, the flywheel will play an important role by being able to regulate the voltage and providing flexibility to the system.

Due to the fact that EDA is both the DSO and TSO, it is the obvious stakeholder for the hybrid transformer. The V2G chargers will be installed in one of EDA's powerplants since they already have 2 EVs.

The stakeholders of smart energy routers and FEID-PLUS are still being defined.

	Number of units	Stakeholder		
PV Panels with	40	Terra Chã		
microinverters				
Electrochemical Batteries	16	Terra Chã		
Heat Batteries	24	Terra Chã		
Electric Water Heaters	5	Terra Chã		
V2G chargers	2	EDA (Pico Alto geothermal		
		power plant)		
Flywheel	1	Pronicol		
Smart Energy Router	2	To be defined		

Table 10: List of stakeholders for the hardware solutions demonstrated in Terceira

		· · · · · · · · · · · · · · · · · · ·
Hybrid Transformer	1	EDA (distribution grid in Terra
		Chã)
FEID-PLUS	1	To be defined
HEMS	40	Terra Chã

4 Ameland Demonstrator 4.1 General characterization

Ameland is one of the 5 inhabited Waddeneilanden (Wadden sea islands). The islands' total size is 58,83 km² and consists mostly of sand dunes. It is the third major island of the West Frisians. Ameland is connected to the mainland electrical grid and to the mainland natural gas grid. There are four villages in Ameland: Hollum, Ballum, Nes and Buren with a total population of 3.673.

Figure 9: Ameland's location

Ameland has its own Energy Community: Amelander Energie Coöperatie (AEC) which delivers clean energy to its customers. Currently, AEC has 286 members and 993 customers being the main organization to participate in Renewable Energy projects as well as in Energy Savings projects.

The larger part of Ameland consists of nature with an immerse variety of landscapes. Because of this variety there's an abundance of plants, but also many animals like over 60 different species of birds.

4.2 Site assessment and existing infrastructure

Ameland's current energy system state is described addressing the current energy supply and demand as well as a detailed description of the electricity and natural gas grid of the island.

4.2.1 Supply and Demand

The total energy usage in Ameland is approximately 490 TJ per year, excluding the NAM-platform. The NAM-platform now uses the gas it produces for gas compression which amounts up to 410 TJ/year. In 2022 the compressor will be replaced by an electrical compressor which increases the energy flow to the island with approximately 180 TJ/year.

The energy consumption fluctuates significantly every year and has been increasing in the past years. Figure 10 shows the energy usage per sector where it can be observed that the building environment sector (in green) has always been the largest consumer, while the transport sector (in orange) has been increasing over the years. Industry, energy, waste and water (in red), agriculture and fishing (in dark blue) and Heat (in blue) have been stable over the years and have a relatively low consumption in the island.

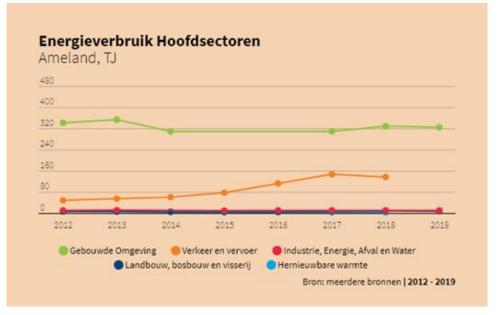


Figure 10: Energy consumption per sector in Ameland (2012-2019)

According to Figure 11, the majority of the energy usen in Ameland comes from the connections with the mainland, nevertheless the solar farm and the solar panels in customer premises also generate 10 TJ per year.

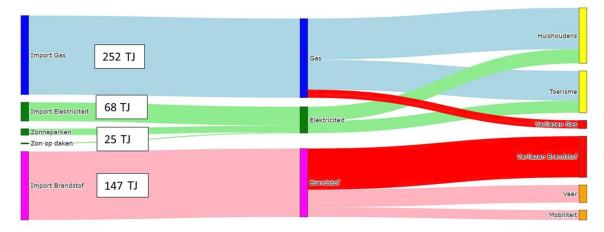


Figure 11: Energy consumption in Ameland

In most regions in the Netherlands, there is a decrease in natural gas and electricity usage in the summer, however due to the large number of tourists visiting Ameland each year, this decrease is significantly smaller in Ameland.

In Figure 12, the power over the mainland connector is shown. Peak demand is around 6 MW (from the mainland to the island), peak production (from island to mainland) is around 2,5 MW.

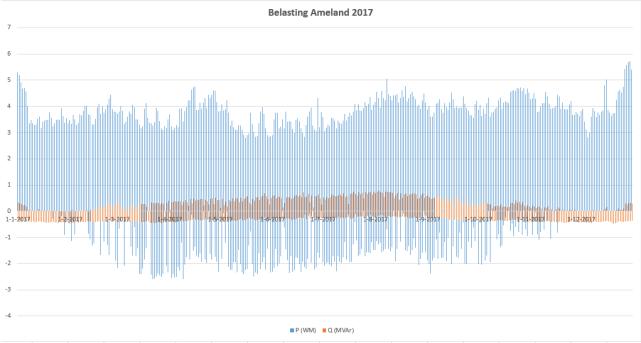


Figure 12: Power over the mainland connector in Ameland (2017)

4.2.2 Electricity Grid

In Figure 13, the midvoltage grid of Ameland is shown. The 4 parallel lines in the lower righthand corner depict the connection to the mainland. At present, there are 2 cables, during the year 2021, 2 extra cables (the blue ones) will be installed.

Figure 13: Ameland's MV electricity grid

4.2.3 Natural Gas Grid

The Natural Gas Grid of Ameland consists of an 8 bar, 3 bar and 200 millibar grid. The gas is transported from the mainland gas grid by Stedin.

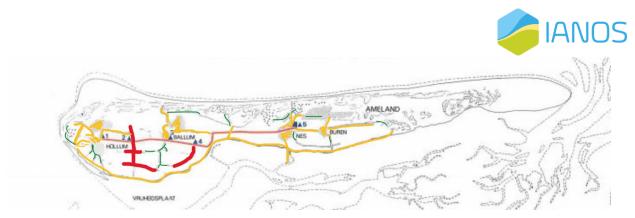


Figure 14: Ameland's gas grid

4.3 Equipment and system specification

In Ameland, several hardware solutions are already in operation although few solutions will still be installed. In this subchapter, a description of the technical and product specifications and the installation requirements of all the hardware solutions is presented.

The next version of the document will contain more information regarding these hardware solutions.

4.3.1 Residential solar panels

There are several consumers which have solar panels installed on their roofs. However, it is not known which panels or inverters are installed.

4.3.2 Solar farm

In February 2016, the 6 MWp solar park started operation. In the last 5 years this solar park produced 6600 MWh per year on an average basis. This Park has 3 owners: the municipality of Ameland, Eneco and the Amelander Energy Cooperative. This was the first ground based solar park in the Netherlands. There are 23000 REC 260PE solar panels installed together with 165 ABB TRIO 27.6 TL OUTD inverters. The electricity is transformed to 10KV by three transformers. The electricity runs from the solar park in Ballum to the distribution in Nes by a 6 km cable and distributed to the households in Ameland.

Another Solar Park is planned in the Ballumerbocht the specifiactions of this park will be defined in 2021.

4.3.3 Micro-CHP

Three houses equipped with a battery pack (3.5kWh), solar panels (1kWe) and micro-CHP (5.5kWth) will be located at multiple locations in Ameland.

4.3.4 Private Methane Fuel Cells

Thirty-five privately owned Methane Fuel Cells (2 kW_e) fed by the methane district grid on 35 individual homes are already in operation and funded by the National Project Slimme Stroom Ameland.

4.3.5 Fuel Cell

On the largest recreational park of the island, a 500 kWe Fuel Cell will be installed. This Fuel Cell will work as an innovative CHP where the heat produced by the Fuel Cell will be fed into an already existing local heat net. Along with the 500 kWe Fuel Cell, the parc also has 2*75kWe CHPs

4.3.6 Hybrid Heat Pumps

One hundred and thirty-five hybrid heat pumps are already installed in residential houses in Ameland. These hybrid heat pumps are fitted with a 20kWth boiler and a 1.1 kWe/5 kWth heat pump. The units can switch between natural gas and electricity independently depending on weather conditions. These hybrid heat pumps are prepared to run on biogas as well.

4.3.7 Biobased saline batteries

SuWoTec will install a 120kWh (50kW charging capacity) biobased battery close to a new construction with 13 houses in the city of Nes.

4.3.8 Hydrogen water taxis

The hydrogen water taxis which are planned to be developed during the IANOS project haven't been designed yet. At this moment there is no information on these taxis.

4.3.9 Tidal Kite

The TidalKite development, installation, testing and operation will be executed in a separate project. The IANOS scope focuses on integrating the TidalKite into the Ameland grid and in the central dispatcher. The SeaQurrent TidalKite technology is developed to harness energy from tidal flows. It consists of an underwater kite that makes it possible to cover a larger energy harvesting area, perpendicular to the flow. The TidalKite test setup near Ameland consists of a monopile mooring that anchors the TidalKite system and a grid connection cable connected to the Ameland electricity grid as operated by Liander.

The grid connection will be realised by means of an HDD (horizontally directed drilling) under the sea dike to place a tube in which the electricity cable can be placed. The offshore cable will be dug in.

The total TidalKite system is approximately 100m long.

A standard TidalKite has a capacity of 500kW and it is connected to the grid via a

10kV power cable.

4.3.10 Auto generative High-Pressure Digester

The AHPD is planned to start to be built in the end of 2021. Prerequisites for this digester are that all financial and contractual parts are ready before ordering materials for the digester.

Product Specifications

The digester will produce 110.000 Nm3 of methane per year, from 300 tons of dry substance where 90% is methane.

Installation Requirements

The municipality of Ameland will provide a terrain on which the digester will be built. During the project, connections with the electricity grid and gas grid will be ordered. For the input of 150 tons/year sludge, a pipeline between the water treatment plant which sits on the terrain next to the digester and the digester will be build.

After the digester is realized, the municipality will commence a project in order to collect the waste of the catering industry, some 50 tons/year, as a second input to the digester.

4.3.11 Electrolyzer

The electrolyzer will be bought via a European tender. At this moment there is no information on its installation requirements and product specifications.

4.4 List of stakeholders

At this moment the Municipality of Ameland, as well as, Amelander Energie Coöperatie and its customers are the main stakeholders for the new technologies.

5 Fellow Islands 5.1 Lampedusa

5.1.1 General characterization

The islands of Lampedusa and Linosa, archipelago of the Pelagie Islands, located between Sicily and North Africa about 113 km from Tunisia and 205 km from Sicily, are administered by the City of Lampedusa and Linosa. From the last census, the islands are inhabited by 5,725 residents. Since 2003, the City of Lampedusa and Linosa manages the Marine Protected Area "Pelagie". Lampedusa covers a surface of about 20.2 km2 and a coastline of about 26 km.

5.1.2 Site assessment and existing infrastructure

5.1.2.1 Supply and Demand

Energy consumption on the island is strongly influenced by its socio-economic system. The weather and climate conditions, the resident population, the fluctuating tourist population, the working activities and the use of the territory itself are the main factors that influence the hourly demand curve. The local power plant is significantly oversized to have enough backup power in the case of failure. The energy demand varies considerably during the year, due to arrivals in the touristic season. The small size of the power system increases the cost of fuel transportation and the operative and maintenance costs. With the liberalization of the Italian energy sector in 2009, an incentive UC4 (now collapsed inside the incentive Arim) was introduced in the electricity bills to cover the higher costs for the electricity production in small islands. In this way, whoever lives in small islands purchases electricity at the same price as the mainland.

In 2020, the 24 installed photovoltaic systems fed 229.953 kWh (11.5%) into the island's grid out of a total of 26.398.415 kWh of distributed electricity generated by the diesel thermoelectric power plant, as it is shown in Figure 15. The renewable energy sources are extremely underdeveloped in this territory, as the environmental constraints hamper its use, like wind or photovoltaic panels (except the installation in an integrated solution with buildings). The fossil fuel is regularly transported by boat

from Sicily, so prolonged adverse weather conditions represent an important risk for the energy supply of the island.

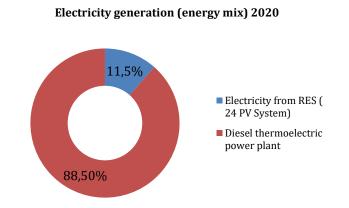


Figure 15: Electricity generation mix in Lampedusa, in 2020

The total electricity demand for the entire year is 32,871 MWh; the lowest peak is 2,012 MW and occurs on March 8 at 4:00 a.m; the maximum peak is 8,864 MW and occurs on August 14 at 9:00 pm. As expected, the minimum peak is when neither heating nor cooling is needed and the tourist season has not yet begun. Differently the maximum peak is in the evening of August in which the island has the greatest number of tourists and the demand for air conditioning is at its peak. Between the winter period and the summer period the monthly value doubles, thus it is possible to affirm that the electric energy in summer is 4 times higher compared to the spring period.

The typical load demand curve is shown in Figure 16:

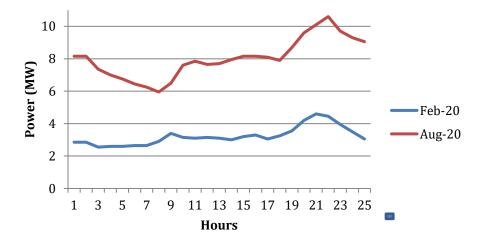


Figure 16: Typical Load Demand Curve for Lampedusa island

Regarding energy consumption, in Figure 17, it can be observed the consumption per sector. The greatest weight corresponds to the residential load, which accounts for 29% of the total load, followed by hotels, which, if added to that of residences intended for tourist accommodation, affects about 15% of the total load.

Energy Consumers	Electricity Demand (MWh)	%
Public lighting	855	3%
Residents	9438	29%
Non-resident	1403	4%
Tourist establishments	3302	10%
Tertiary activities	3084	9%
Tertiary activities such as bars, pizzerias	1506	F 0(
and restaurants	1596	5%
Industries	1975	6%
Municipal users	322	1%
Water plant and sewage plant	366	1%
Desalination plant	3509	11%
Hospital	313	1%
Airport	1865	6%
Military areas and barracks	2453	7%
Self-consumption power plant	2389	7%

Figure 17: Energy consumption per sector in Lampedusa

5.1.2.2 Electricity Grid

The power system of Lampedusa is isolated from the main national grid. The local Medium Voltage network is composed of 69 nodes, 39 kiosk and 13 pole-mounted (10 kV/400 V) substations as shown in Figure 18.

The electricity grid is composed of 5 main medium-voltage lines through which are distributed about 60 electrical conversion substation/cabins from medium to low voltage, which supply low voltage electricity to public and private users. The medium voltage network is realized with a ramified structure that allows, in case of accidental blackout, to isolate the fault avoiding current interruption of the current on the whole island.

Map 1 Medium voltage power grid

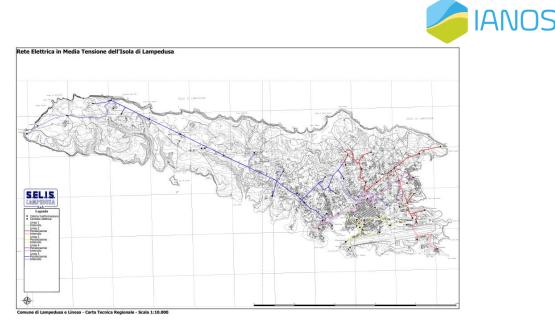


Figure 18: Lampedusa's electricity grid

The distribution chain of electrical energy on the island is produced by the alternators at 50 Hz. At a voltage between 400 V and 5.000 V, energy is transformed and introduced in the net at 10.000 V, medium voltage, and so transported to the distribution substation/cabins where it is transformed to the national voltages of 220 V and 380 V, low voltage, and finally supplied to the users.

The current electrical network of the island of Lampedusa is designed so that the flow of energy moves in a unidirectional way, from the production place to the consumption one and, in this context the final user is only and exclusively a passive load. The implementation of new large-scale electricity production plants requires the modification of the electrical network of the island for the transition from passive to active. Moreover, since the locations

identified for the installation are located in areas currently not reached by the medium voltage distribution network, for their connection it will be necessary to provide the realization of special underground cables connected to the power plant.

The supply of energy, since there is no direct connection with the mainland, is provided through a diesel thermoelectric power plant managed by the company S.EL.IS. Lampedusa s.p.a. The company has a power plant located close to the town centre, in the district of Pisana and consists of 8 generators coupled to equal number of diesel engines of a total power of 22.5 MVA. The generators work with different scheduling according to the hourly electrical load and the engines work alternating between the

primary energy production system and the storage system. The operational behaviour of the power plant engines are managed in a way that as soon as a motor runs for 10 minutes at 80% of its nominal power, a second motor is switched on and the power is distributed according to distribution algorithms of the management system adopted by the company SELIS SpA. It is worth to consider that the fuel (diesel) needed for the regular operation of the plant is brought to the island by tankers from the mainland; since the plant is not located near the port, the fuel is then transported by road to the Port. Obviously, this solution is not sustainable from an environmental point of view, because of the emission of CO2 and pollutants due to the diesel combustion in the local power plant. At present, the installed generators group are the following:

GR.	MOTORI	ALTERNATORI	POTENZA KW
1	MAN 18V28/32S - Matr. 40157 02 52	AVK - 750 g/1' - 11000 V DIG 156 N/8 - Matr. 8425109 B101	4100
2	MAN G8V 30/45ATL - Matr. 413746	GARBE LAHMEYER - 500 g/1' - 5000 V Smh 12/140-52 Matr. 4101415012 003	1328
3	WARTSILA NOHAB 6R25 - Matr. 3674	GARBE LAHMEYER - 1000 g/1' - 5000 V PA 1004115-80/6 R 9602 201	1470
4	WARTSILA NOHAB 16V25 - Matr. 3607	LEROY SOMER - 750 g/1' - 5000 V LSA 56L8/8P Matr. 159143/1	2800
5	MAN 9L 25/30 - Matr. 1040253	RELIANCE ELECTRIC - 1000 g/1' - 5000 V SDGB 6302-6 Matr. 185092 RR	1893
6	MAN 12V 32/36 - Matr. 1055000 (collaudo 4412 KW; targa 4440 kW)	UNELEC - 750 g/1' - 5000 V PA 160 G 95-65-8P Matr. 154/191/1	2998
7	WARTSILA NSD 16V25 - Matr. 4322	LEROY SOMER - 750 g/1' - 5000 V LSA 56 UL9/8P Matr. 166869/1	2935
8	WARTSILA 12V32 - Matr. 22360	ABB - 750 g/1' - 11000 V AMG 0900LR08 D SE - Matr. 4575070	5040

S.EL.I.S.	LAMPEDUSA	S.p.A.

Figure 19: Lampedusa's generators

All generators sets are equipped with a modern SCR - "Selective Catalytic Reduction" - type catalyst system for the reduction of pollutants /exhaust gases in particular NOx. In Lampedusa, there is no gas grid. The heating of the houses is electric as for the hot water heating. Gas cylinders are used for the kitchens, transported by ship from mainland Porto Empedocle.

All electric generators are equipped with both primary and secondary frequency control. The primary frequency/active power control keeps the frequency/active power stable according to a droop percentage, while the secondary frequency/active power system intervenes to keep the frequency within predetermined parameters, and if necessary to correct the load distribution. The secondary frequency system distributes the active power in proportion to the rated power. For voltage regulation there is both a primary and secondary voltage/reactive power control. The primary voltage

regulation/breakdown is done by voltage regulators working in droop, while the secondary one distributes the reactive power in proportion to the generator size. Concerning energy losses in the grid, in 2020 there were 15.69% of energy losses in the island.

In terms of network congestion, no episodes were reported in the previous years.

5.2 Bora-Bora

5.2.1 General characterization

Bora Bora is a small island located in the South Pacific Ocean in the Society's Archipelago in French Polynesia (270 km northwest of Tahiti, Oceania). This archipelago contains 14 islands and is divided into two groups, the Windward Islands (207,333 inhabitants) and the Leeward Islands (35,393 inhabitants), where Bora Bora is located. Bora Bora had a population of 10,605 in 2017 and covers 29 km2, plus some 10 km2 of islets adjacent to the coral reef, forming a lagoon. Bora Bora has a relatively temperate climate. Bora Bora is the most visited island after Tahiti (125,000 visitors/y). The island also contains a dormant volcano.

5.2.2 Site assessment and existing infrastructure

5.2.2.1 Supply and Demand

The total electricity produced in 2020 was 35,6 GWh, where 33,7 GWh was correspondent to thermal electricity. Most of the electricity production still comes from fossil fuels (94.6%). The small part that is generated from renewable energy sources is due to PV panels.

There are 3198 clients on the island being the low voltage for social use the sector that consumes the most, as it can be observed in Table 11.

Table 11: Electricity consumers in Bora-Bora island

Number of clients	Low Voltage social use	Low Voltage Home	Low Voltage industries	Low Voltage EP	Medium Voltage	TOTAL
2020	1,811	975	347	34	31	3,198

The annual peak demands use to be around 6 or 7 MW.

Figure 20 and 21 show the typical demand curves for weekdays and weekends, respectively.

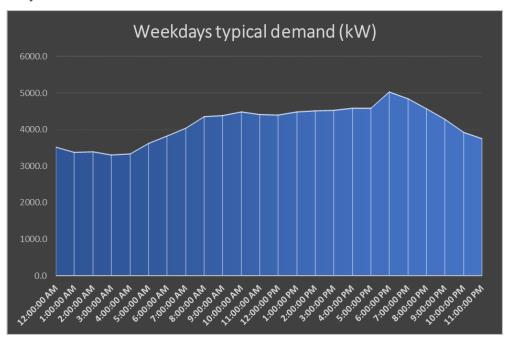


Figure 20: Typical demand curve for weekdays in Bora-Bora island

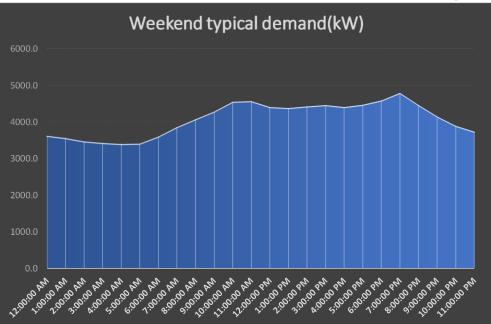


Figure 21: Typical demand curve for weekends in Bora-Bora island

5.2.2.2 Electricity Grid

Figure 22 illustrates the map of the power grid lines of Bora-Bora island.

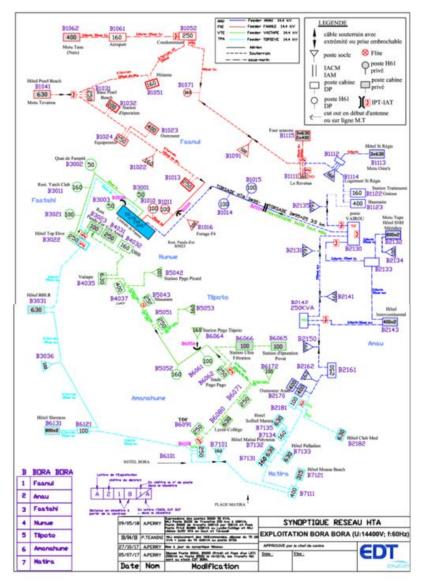


Figure 22: Bora-Bora's power grid

Table 12 displays the characterization of the distribution grid of Bora-Bora which has a total of 160 km. There is no transmission grid on the island.

Length of networks (km)				Voltage	Frequency	
	Aerial	Buried	Sub-marine	Total		
HT	8.0	44.1	18.5	70.7	14 400 V	
LT	26.0	64.1	0.0	90.1	220 - 380 V	60 Hz

I	Total	34.0	108.2	18.5	160.7	T
	TOLAT	34.0	100.2	10.5	100.7	

Concerning power plants, the island has 8 generators with different nominal powers and installed in different years as displayed in Table 13.

Table 13: Diesel Generators of Bora-Bora

Diesel generators	Name	Brand	Nominal power (kW)	Continuous service power (kW)	Year of install
G1	G051	CUMMINS KTA50	1,000	640	1996
G3	G106	WARTSILA W200 V12	2,000	1,800	2001
G4	G224	WARTSILA W9L32	3,880	3,880	2011
G6	G074	WARTSILA 6R32	2,150	2,000	1998
G7	G110	WARTSILA W200	2,000	1,800	2002
G10	G064	WARTSILA 8R32	2,850	2,850	1997
G12	G094	WARTSILA W200	2,000	1,800	2000
G13	G225	WARTSILA W9L32	3,880	3,880	2011

The power grid of Bora-Bora has energy losses around 3% as shown in Table 14. Voltage and frequency fluctuation are usually controlled with diesel production and spinning reserve.

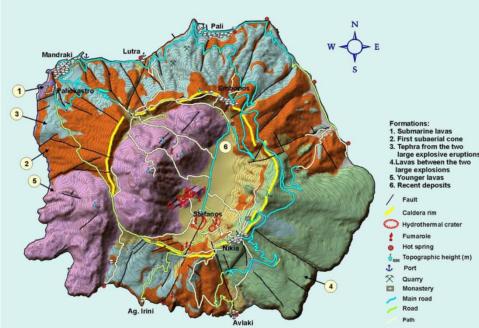
Table 14: Energy losses in	n Bora-Bora's island
----------------------------	----------------------

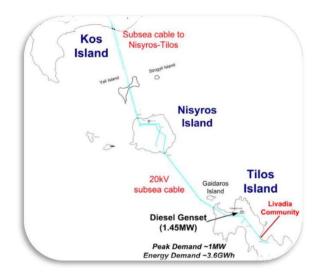
Production	Gross genset productio n (GWh)	AUX consumptio n (%)	Max (kW)	Consumptio n (m ³)	Productio n yield	Network yield
2017	45.556	2.98	7,33 0	11,591	97.0%	97.2%
2018	44.758	2.62	7,68 0	11,408	97.4%	95.4%
2019	46.146	2.08	6,95 0	11,870	97.9%	96.6%
2020	34.678	2.73	6,86 0	9,098	97.3%	97.0%

5.3 Nisyros

5.3.1 General characterization

Nisyros Island is composed of 4 villages: Mandraki (The biggest village), Nikeia, Emporeios and Paloi as described in Figure 23. These villages are connected with specific electric cables and, in the villages there are some stations for interconnection and distribution of the energy inside the villages and between them.




Figure 23: Nisyro's villages

5.3.2 Site assessment and existing infrastructure

Nisyros island belongs to the island complex of Dodecanese and covers its electricity needs as part of the "Kos-Kalymnos" autonomous microgrid as shown in Figure 24. Two oil-based APS (the first one operating in Kos island with rated power 102 MW and the second operating in Kalymnos island with rated power 18 MW) feed the autonomous microgrid and provide electrical energy to Nisyros through two Medium Voltage (MV) subsea cables that are terminated at the north part of the island (near the Mandraki village), through the Yali islet. Thereby, the electrical energy is fed through the power distribution overhead lines to other parts of the island, while from the south part of the island (near the Avlaki region), two independent MV subsea cables are feeding electricity to the south part of the specific microgrid (Tilos island).

Figure 24: Autonomous microgrid of Kos-Kalymnos-Nisyros-Tilos.

The extensive and complex configuration of the "Kos-Kalymnos" autonomous microgrid has substantial repercussions on the quality of the electricity fed to Nisyros island, with frequent black-outs occurring mainly at the microgrid's south part (which is comprised of Nisyros and Tilos), as also voltage and frequency stability issues.

Unfortunately, there does not exist a dedicated energy meter installed at the entry point of electricity at Nisyros island. As a result, a general overview of the island's total electrical energy needs is not directly available.

Based on previous years' historical data, Nisyros peak power demand is estimated at 1.2 MW. In addition, the desalination units, comprising a main component of the load demand, operate on a constant water provision policy and, as a consequence, have constant power requirements and therefore do not affect the peak power demand. In order to visualize the aforementioned, Figure 25 presents the load demand measurements carried out for Tilos island during the time period 2015 - 2018. Thus, the load demand for Nisyros island will have an analogous profile, with its peak being multiplied by a factor of 1.5 or 1.7.

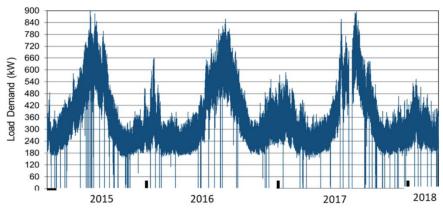


Figure 25: Electrical energy demand for Tilos island

Based on the available official data for the energy consumption of Nisyros island during the past decade (Figure 26), a significant fluctuation is noted, which is smoothed out the last three years (2017 - 2019). More precisely, the load demand was 4,000 MWh_e/year for 2010, while it surpasses 6,200 MWh_e/year for 2019, presenting a constantly increasing tendency.

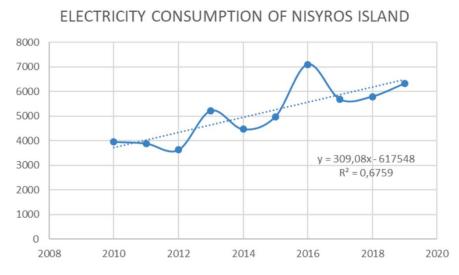


Figure 26: Nisyros island total electricity consumption (MWhe) time evolution

Figure 27 describes the electricity consumption of Nisyros island for the different sectors. Accordingly, the main constituents of the electrical energy consumption are the domestic and the commercial sectors. The desalination units play a crucial role on

the island's energy demand, as the electrical consumption was increased approximately by 1,000 MWh_a when the first unit begun to operate at 2013 and doubled at 2016, when the second unit was integrated. Following, a variation exists depending on the operational status of the two units. The third unit begun its operation at 2019 to replace the problematic first unit. Moreover, the lighting contribution is more than halved during the past decade and along with the public buildings and the public entities represent a small percentage of 6 - 7% of the island's total annual energy requirements.

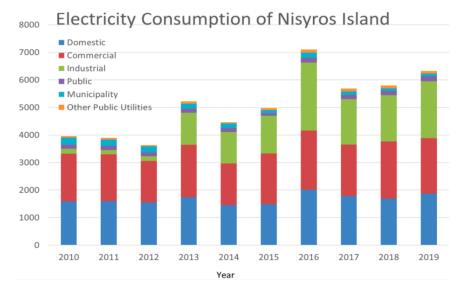


Figure 27: Electricity consumption of Nisyros per sector (2010-2019)

Finally, it can be stated that the electrical energy demand of Nisyros island presents the typical seasonal profile of all Greek islands located in the Aegean Archipelagos, with a peak power demand occurring during the summer (approximately during mid-August) and being equal to 1.5 MW. The greatest percentage of the electrical energy demand is due to the Mandraki region and is around 6,000 MWh_e, presenting a constantly increasing tendency, which is expected to be terminated the following years due to the pandemic impact on the economy. The whole electrical energy consumption is covered by the (double) subsea connection with the "Kos- Kalymnos" autonomous microgrid, that is characterized by the dominant presence of diesel oil-based power

stations (at a percentage of 85%) and the pertinent environmental and macroeconomic issues.

Consequently, any intervention for energy saving and rational use scopes as also the installation of RES-based and environmentally friendly power stations will enhance the energy security of the local habitants and alleviate from both the direct and indirect environmental impacts as also from the macro-economic charges on the Greek economy. Finally, in such a case, economic benefit could also be attained.

The island does not have any power plants or substations for production of electricity.

6 Use Cases Definition 6.1 Transition Track 1: Use Cases

Transition Track 1 comprises all the Use Cases that utilize high renewable energy penetration to provide energy services to the power system. The main aims of these Use Cases focus on reducing energy curtailment and on providing stability to the grid by avoiding challenges such as congestion and voltage variations. For this purpose, self-consumption maximization (UC1), use of flexibility from generation side (UC2) and provision of fast (UC3) and slow grid services (UC4) are demonstrated in four Use Cases.

6.1.1 Use case 1: Community demand-side driven self-consumption

maximization

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and grid support	Community demand-side driven self-
	for extremely high RES penetration	consumption maximization

1.2 Version management

	Version Management				
Version No.	Date	Name ofChangesAuthor(s)			
1	04.02.2021	Mónica Fernandes (EDP NEW)	First draft version		
2	05.02.2021	Nikolaos Nikolopoulos (CERTH), Dionisios Stefanitsis (CERTH) Nikolopoulos (CERTH)			
3	10.02.2021	Carlos Patrão (VPS)	Comments on Use Case conditions, Actors, References, Scenarios, Information Exchanged		
4	23.02.2021	Rui Lopes (UNINOVA)	Comments on Use Case conditions, Diagrams		
5	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version.		

			Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios	
6	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements	
7	21.04.2021	Denisa Ziu (ENGINEERING)	Scenario 2 – Self-consumption maximization through P2P energy trading based on DLT; Pure P2P approach	
8	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback	
9	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version	

1.3 Scope and objectives of use case

Scope and Objectives of Use Case					
Scope	The scope of this Use Case is the optimization of behind-the-meter assets at residential consumer premises to maximize self-consumption from RES and thereby reducing energy curtailment. The ability of monitoring and control loads, PV generation and storage can allow consumers to explore the potential of self-consumption and electricity cost minimization. This Use Case is demonstrated in Local Energy Communities (if LEC already exist in the island) and the optimization of the assets will be performed in a local and a neighbourhood-level.				
Objective(s)	 This Use Case orients at optimizing and controlling the energy consumption in the local and neighbourhood level to achieve the following objectives: 1. Maximize self-consumption from renewable energy sources to allow the users (Terceira) or community (Ameland) level better exploit their assets, to avoid future grid transport costs to the mainland and to alleviate the grid in periods of excess of renewable generation 2. Reduce energy curtailment by achieving a maximum renewable penetration possible 3. Avoid grid challenges such as congestion and voltage variations 				

1.4 Narrative of use case

Narrative of Use Case
Short description
This Use Case occurs in a Local Energy Community (LEC) and focuses on controlling and
optimizing energy assets with the main purpose of matching the energy generation from PV
panels and small wind turbines and storage with the consumption of end-user or community level

assets including i) electrochemical and heat batteries, ii) electric water heaters, iii) heat pumps, iv) micro-CHP and v) electric charging stations through an intelligent virtual power plant (iVPP). The iVPP computes the optimization of behind-the-meter assets based on several information-sources provided by localized energy management systems (Home Energy Management Systems and Fog-Enabled Intelligent devices). Thereby, the iVPP is capable of controlling storage and demand-side assets by, for instance, shifting demand for periods of renewable generation surplus.

Additionally, this use case comprises the details regarding peer-to-peer energy trading schemes.

Complete description

The present Use Case describes the methods to control and optimize the consumption of the behind-the-meter assets in a Local Energy Community (LEC) through an intelligent virtual power plant (iVPP).

The controlled and optimized assets will be: i) electrochemical and heat batteries, ii) electric water heaters, iii) heat pumps, iv) micro-CHP, v) V2G charging stations, vi) EVs, vii) smart home appliances and smart plugs, viii) fuel cells, ix) hybrid heat pumps and x) biobased saline batteries.

This optimization will be local and in the neighbourhood level with the goal of maximizing renewable energy sources (RES) self-consumption from PV panels and small wind turbines. The local optimization will consist of controlling the building loads and storage systems while the neighbourhood level optimization, either locally (in the case of Terceira) or centrally (in the case of Ameland), will allow to take advantage of load heterogeneity and enable to supply the generation surplus from certain buildings to buildings with higher energy demand at a specific time period.

The iVPP will be able to perform the global control and energy dispatch while considering the comfort requirements of the energy users. For this purpose, the iVPP will be interfaced with localized energy management systems such as residential Home Management Systems (HMS) and Fog-Enabled Intelligent Devices (FEID-plus) in residential and other local Building Management Systems (BMS) in tertiary buildings.

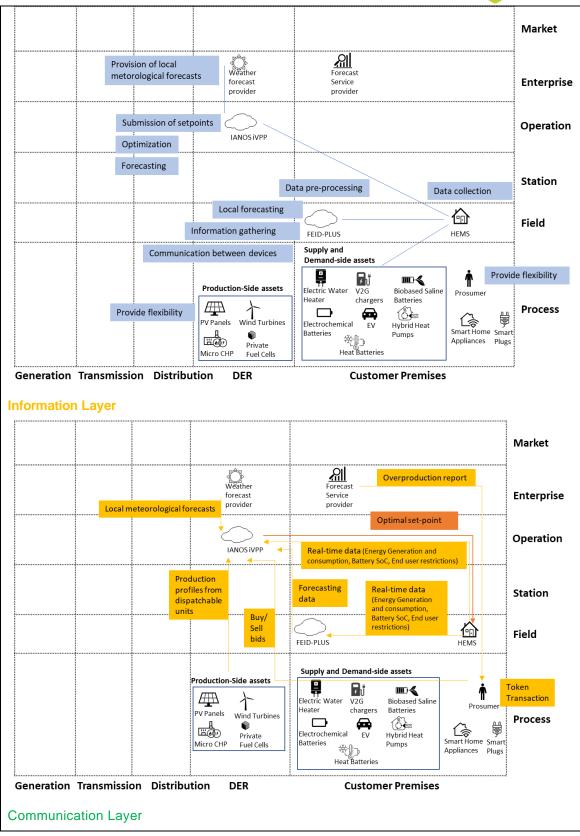
The localized energy management systems will provide real-time data to the iVPP such as energy consumption, energy generation, batteries' state of charge, temperature and others. These data will be obtained through smart sensors, smart plugs, field-level interfaces or other well-known sources such as weather forecast websites.

Thereby, the iVPP will shift demand to periods where there is excess of renewable energy through the development of control algorithms. These algorithms will be based on several data such as: i) forecasted PV generation, ii) non-controllable and critical load which operation cannot be altered significantly and iii) controllable loads, such as electric water heaters or heat pumps, with flexibility margins depending on comfort restrictions and operation settings imposed by the users.

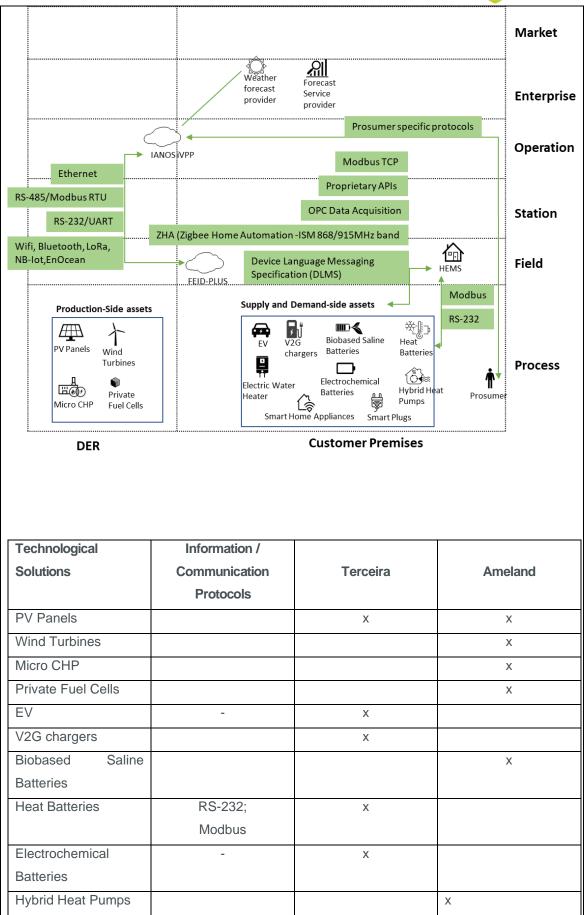
This optimization process will also contemplate any type of distributed storage such as batteries along with novel Phase Change Material thermal storage, fuel cells and electric charging stations, always with the aim of achieving the maximum economic and environmental benefit for the end-user. For this purpose, an external forecast provider will supply production forecasts based on local meteorological forecasts while the iVPP, through its forecasting engine, aggregation & classification and centralized dispatcher modules, will utilize the following data: i) energy consumption forecasts based on historical load consumption and real-time measurements, ii) historical generation data, iii) artificial intelligence-based clustering of assets and iii) dispatching of evaluated flexibility strategies to optimize self-consumption on the community which will depend on the profile of the assets athand and the future time-slots' energy prices.

Moreover, this use case also describes the peer-to-peer energy transactive framework, which aims at promoting self-consumption. This trading allows users to exchange flexible energy products with other prosumers and assets thereby contributing to maximize the penetration of renewables and avoid future grid transport costs.

This part of the Use Case is still subject to discussions on Work Package 4, therefore it might have some changes and more details in the next versions of this deliverable.


In this case, prosumers sell the excess energy in a P2P market. The market will leverage on selfenforcing smart contracts to manage, in a programmatic manner, the P2P energy-trading between prosumers.

Direct energy transactions in the community will be facilitated through the Distributed Ledger Technologies (DLT)-transactive logic implemented into the iVPP intelligence. The iVPP will realize the energy flexibility tokenization, through the implemented DLT-based energy credits' application mechanism through Smart Contracts.


SGAM LAYERS: Function Layer

Smart Plugs	-	Х	
Smart Home	-	X	
Appliances		^	
Electric Water	The protocol used		
	The protocol used	Х	
Heaters	can be adjusted		
	according to the		
	needs and		
	specifications of the		
	iVPP as long as it is		
	supported by a Wi-Fi		
	connection at the		
	installation site.		
HEMS	•DLMS – (Device	Х	
	Language Messaging		
	Specification) a		
	protocol that is		
	emerging as the		
	worldwide standard of		
	choice among smart		
	meter designers for		
	interoperability		
	among all metering		
	systems, including all		
	energy types		
	(electricity, gas, heat		
	and water);		
	•Modbus TCP -		
	Modbus version over		
	TCP/IP;		
	•Proprietary APIs –		
	proprietary APIs.		
FEID-PLUS	Wired communication	Х	Х
	protocols:Ethernet,		
	RS-232/UART, RS-		
	485/Modbus RTU		
	Wireless		
	communication		
	protocols: WiFi,		

	IANOS
Bluetooth, LoRa, NB- lot, EnOcean	

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.3	Degree of energetic	Ratio of locally produced energy from RES and	1
	self-supply by RES	the final energy consumption over a period of	
		time (e.g. Month, year)	
1.4	Energy Savings	Calculates the reduction of the energy	1
		consumption to reach the same services (e.g.	
		Comfort levels) after the interventions, taking	
		into consideration the energy consumption	
		from the reference period.	
1.5	RES Generation	Calculates the energy production from	2
		renewable energy sources.	
1.6	Reduced energy	KPI calculates the reduction of energy	2
	curtailment of RES	curtailment due to technical/operational	
	and DER	problems	
1.8	Peak Load Reduction	Calculates the peak load reduction before the	3
		IANOS implementation (baseline) and after its	
		interventions (DSM programs and storage	
		system management)	
1.10	Storage capacity of	Compares the storage capacity with the total	1,2,3
	the island's energy	energy consumption of the island	
	grid per total island		
	energy consumption		
1.12	Kwp photovoltaic	Measures the installed capacity of photovoltaic	1
	installed per 100	interpolated to 100 inhabitants. To be	
	inhabitants	assessed per sector (residential, tertiary,	
		industrial and public)	
2.1	Reduced fossil fuel	Measures the amount of fossil fuels which is	1,2
	consumption	now not consumed because of IANOS	
		demonstrated solutions (e.g. Electrification of	
		transport, RES penetration)	

2.2	Reduced Greenhouse	Measures the reduction of greenhouse gas	1,2
	Gas Emissions	emissions	
2.4	Air quality index (Air	Measures air quality according to the	1,2
	pollution)	concentration of major air pollutants	
3.11	Energy Poverty	Assesses the change in percentage points of	1,3
		(gross) household income spent on energy	
		bills since the beginning until the end of the	
		project	
4.1	Increased system	Indication of the ability of the system to	1,2,3
	flexibility for energy	respond to supply and demand in real time, as	
	players	a measure of the demand side participation in	
		energy markets and in energy efficiency	
		intervention since the beginning until the end	
		of the project	
4.4	Increased hosting	Gives a statement about the additional loads	1,2,3
	capacity for RES,	and RES that can be installed in the system,	
	electric vehicles and	when innovative solutions and energy	
	other new loads	management techniques are applied (e.g. VPP	
		platform). The calculation is realized by	
		comparing the network capacity before and	
		after IANOS implementation	
4.5	Increased Reliability	Measures the relative improvement in the	3
		number of interruptions	
4.7	Integrated Building	Measures the percentage area of public	3
	Management	buildings using integrated ICT systems to	
	Systems in Public	automate building management	
	Buildings		
4.8	Number of sensors	Measures the number of sensors and devices	3
	integrated/devices	that are connected to the ivpp platform and to	
	connected	the IEPT toolkit	
5.1	People Reached	Percentage of people in the target group that	1
		have been reached and/or are activated by the	
		project	
7.1	Social Compatibility	Refers to the extent to which the project's	1
		solution fits with people's 'frame of mind' and	
		does not negatively challenge people's values or	
		the ways they are used to do things	
7.2	Technical	Examines the extent to which the smart grid	1
	compatibility	solutions fit with the current existing	
		technological standards/infrastructures	
L			<u> </u>

7.3	Ease of use for end	Provides an indication of the complexity of the	1
	users of the solution	implemented solution within the IANOS project	
		for the end-users	

1.6 Use case conditions

	Use case conditions					
Assum	ptions					
•	Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP, such as PV panels, electrochemical and heat batteries, electric water heaters, V2G charging stations for EVs, smart home appliances, smart plugs, small wind turbines, fuel cells, heat pumps, hybrid heat pumps and biobased saline batteries. Smart meters and smart plugs are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time. Some charging stations have V2G technology.					
Prerequ	lisites					
•	Availability of real time data from localized energy management systems. Availability of forecasting data to the iVPP: Solar Irradiation, Wind Potential, loads (heating, cooling, DHW, electricity) consumption profiles, including historical data. Definition of end-user levels of comfort. Definition of end-user critical loads					

- Definition of end-user critical loads.
- All available energy assets can be integrated on the iVPP platform.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

UC2: Community supply-side optimal dispatch and intra-day services provision

UC3: Island-wide, any-scale storage utilization for fast response ancillary services

UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion management services

UC5: Decarbonization of transport and the role of electric mobility in stabilizing the energy system

UC9: Active Citizen and LEC Engagement into Decarbonization Transition

Level of depth

Specialized use case

Prioritisation

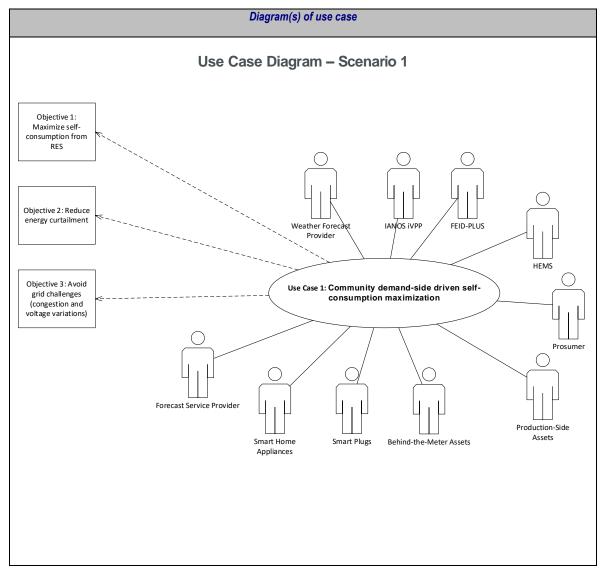
High level of priority

Generic, regional or national relation

Generic

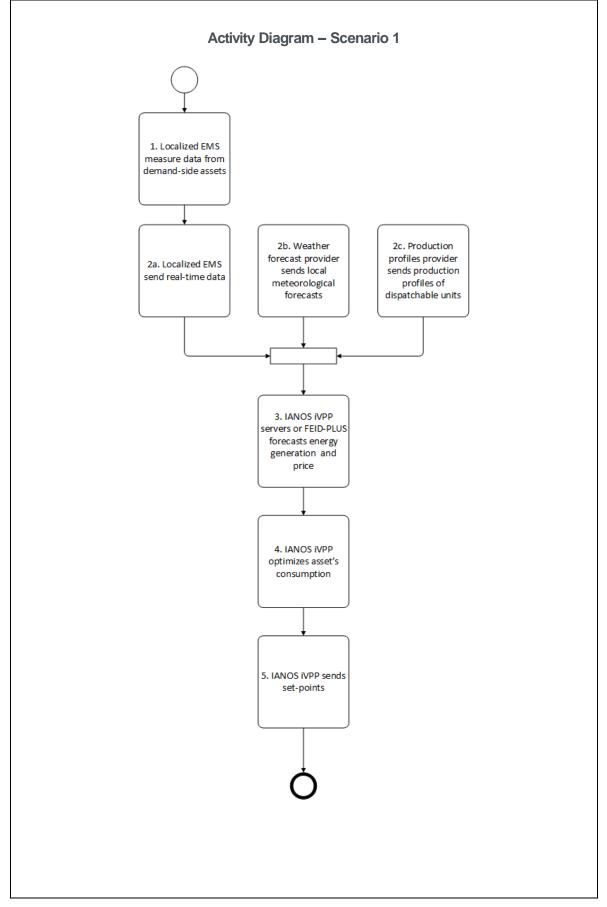
Nature of the use case

Technical use case

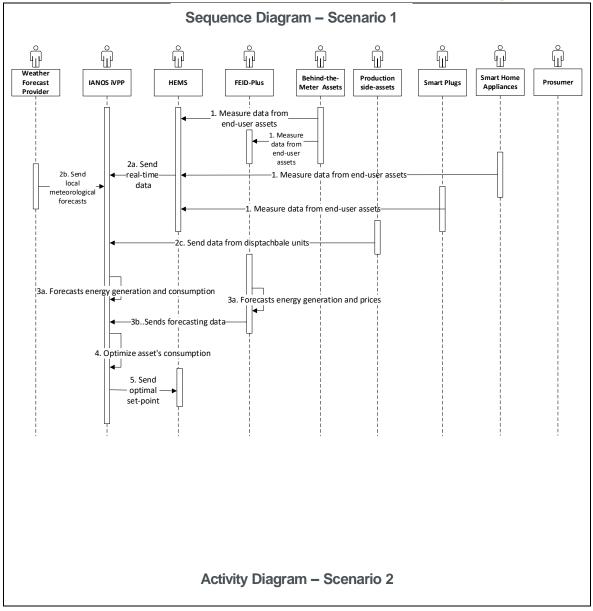

Further keywords for classification

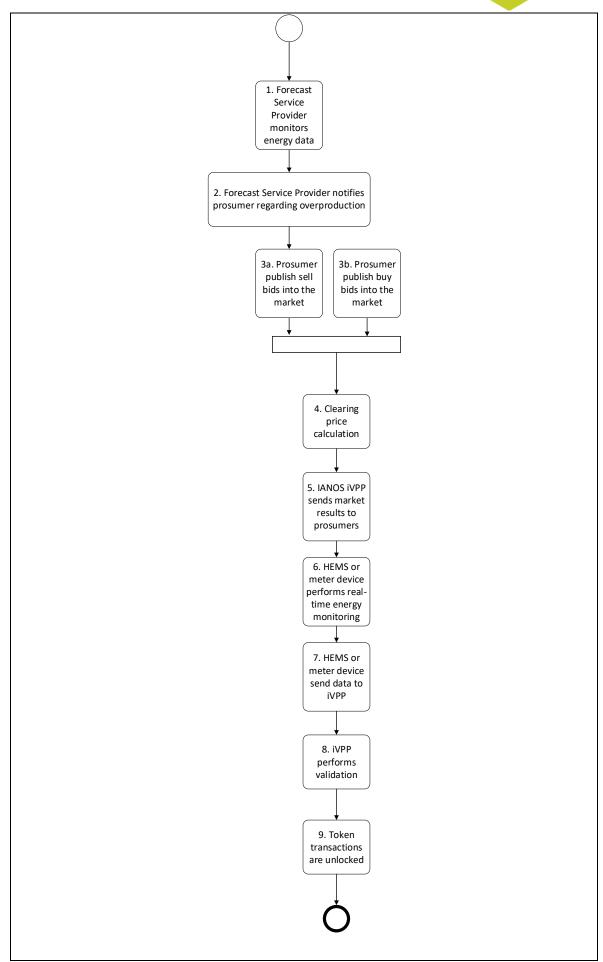
Self-consumption, prosumers, Peer-to-peer, consumption optimization, supply and demand-side assets, iVPP, LEC

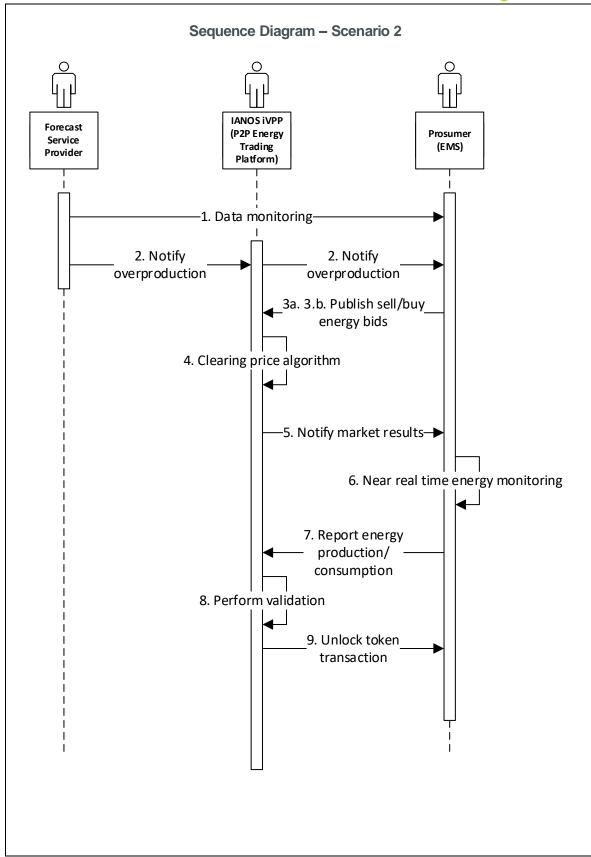
1.8 General Remarks


General Re	emarks

2 Diagrams of use case







3 Technical details

3.1 Actors

п

Actors						
Actor Name	Actor Type	Actor Description				
		The IANOS iVPP sets up a virtual network o				
		decentralized renewable energy resources, both				
		non-dispatchable such as wind, solar, tidal				
		resources and dispatchable ones such as				
		geothermal and green gas CHP plants. Moreover,				
		the iVPP comprises Energy Storage Systems				
		(ESS), integrated as a single unit, providing				
		flexibility services and fostering island renewable				
		energy self-consumption.				
IANOS iVPP	System	The optimal, autonomous, real-time iVPP operation				
		will be driven by multi-level decision making				
		intelligence, complemented by predictive algorithms				
		for smart integration of grid assets into active				
		network management based on relevant energy				
		profiles. For this purpose, the iVPP is composed of				
		6 different modules: aggregation & classification,				
		forecasting engine, centralized dispatcher,				
		distributed ledger-based energy transactions, virtual				
		energy console and secured enterprise service bus.				
		Device that performs resource-intensive				
		functionalities such as computation,				
Fog Enabled Intelligent		communication, storage, and analytics locally ne				
Device Plus (FEID-	Device	to the end-user assets instead of forwarding data to				
Plus)		cloud-based servers to be processed.				
		The FEID-Plus is a fog-enabled computing device				
		equipped with special functions to control I/O, phase				

		width modulation and analog signals. It employs			
		enough processing capacity for applying distributed			
		computing such as information capturing and			
		storing, algorithms execution and control over the			
		installation. Additionally, it also has the capacity to			
		interface with several field elements for instance			
		controllable building loads, storage and EV charging			
		stations through appropriate protocols.			
		Energy management system used for real time			
		monitoring of energy consumption/generation,			
	System	controlling domestic devices and electric circuits,			
		accessing smart meter data and real time energy			
Home Energy		consumptions. HEMS is responsible for gathering			
Management System		flexibilities within the customer premises and			
(HEMS)		providing them to the iVPP platform.			
		Briefly, the system is composed by the hardware			
		(Smart Meters, Sensors and Actuators), Data			
		Management (Communication, Data Processing			
		and other modules) and User Interfaces (UI).			
		Devices which are interconnected through the			
Smart home	Device	internet, allowing the user to control functions			
appliances	Device	remotely using a mobile or other networked			
		device			
		Plugs which can be controlled remotely through a			
Smart Plugs	Device	mobile and allow to control and automate small			
		appliances and home devices.			
Production-Side		Residential PV panels and assets from community			
Assets	System	owned areas such as small wind turbines, fuel			
700010		cells and micro-CHP systems.			
L	I				

Behind-the-Meter	Device	Private end-user's energy assets such as electrochemical and heat batteries, electric water heaters, electric vehicles, smart home appliances					
Assets	Device	and smart plugs. Additionally, it also comprises assets from community owned areas, for instance					
		hybrid heat pumps and biobased saline batteries.					
Prosumer	Role	End-user of electricity, gas, water or heat that car also generate energy using a Distributed Energy Resource.					
Weather Forecast Provider	Role	Provides generation, consumption and weather related operational risks, for a given location and a specific time horizon for non-dispatchable generation assets.					
Forecast Service Provider	Role	Monitors energy data from prosumers an provides an overproduction report based forecast performed for prosumer's ener consumption and production.					

3.2 References

	References								
No.	No. References Reference Status		Impact on use case	Originator /	Link				
	Туре				organisation				
1	Regulatio	Decreto-	Publishe	Approves the legal	Portuguese	https://data.dr			
	n	Lei n.º	d	regime applicable to	Government	e.pt/eli/dec-			
		162/201		self-consumption of		lei/162/2019/			
		9 renewak		renewable energy,		10/25/p/dre			
			partially transposing						
				Directive 2018/2001					

4 Step by step analysis of use case

4.1 Overview of scenarios

Scena	Scenario conditions								
No.	Scenario name	Scenario description	Primary	Triggering	Pre-	Post-			
			actor	event	condition	condition			

4	0.11			Data	O	
1	Self-	The iVPP receives	IANOS	Data	Generation	Energy
	consumption	several real-time data	iVPP	gathering	/Consumpti	assets
	maximization	coming from localized			on of	optimization
	through	energy management			supply and	for supply
	optimization	nization systems and the			demand-	and
	of behind-	weather forecast			side energy	demand
	the-meter	provider. Along with			assets is	match
	assets	its internal data, the			not	maximizatio
		iVPP performs			optimized	n of self-
		optimization of			or	consumptio
		behind-the-meter			controlled.	n.
		assets' consumption				
		in order to maximize				
		self-consumption.				
	Lastly, the					
		sends the setpoints to				
		the localized				
		management				
		systems.				
2	Self-	An overproduction	IANOS	Over	The excess	The excess
	consumption	occurs due to excess	iVPP	Productio	of energy	of energy
	maximization	production from		n	generated	generated
	through P2P	renewables.		identificati	from	from
	energy	Prosumers sell the		on	renewables	renewables
	trading	excess energy in a			is fed back	is traded
	based on	P2P market. The			into the	locally
	DLT	market will leverage			grid.	providing
		on self-enforcing				efficiency in
		smart contracts to				the grid and
		manage, in a				token-

		IANOS
programmatic		based
manner, the P2	2P	compensati
energy-trading		on
between prosumers		among
		prosumers.

4.2 Steps – Scenarios

Scena	Scenario									
Scenario name:		No. 1 - Self-consumption maximization through optimization of behind-the-meter assets								
Step	Event	Name of Description of process/ act		Service	Information	Information	Information			
No.		process/			producer	receiver (actor)	Exchanged			
		activity			(actor)		(IDs)			
1	Behind-the-	Measure real-	Localized energy	GET	Supply and	HEMS, FEID-	1,2,3,4			
	meter assets'	time data	management systems such		demand-	Plus				
	data	from supply	as FEID Plus and HEMS		Side Assets					
	collection and demand- (also interfacing with smart									
		side assets	appliances and smart							
			meters) collect real time data							
from		from behind-the-meter								
			assets through smart							
			sensors, smart plugs, smart							
	meters and field-level									
			interfaces							
2a	Submission	Sends real-	HEMS or other localized	CREATE	HEMS	IANOS iVPP	1,2,3,4			
	of data	time data	energy management							

[1						1
			systems send real time data				
			to the iVPP				
2b	Submission	Sends local	Forecast Provider sends	CREATE	Weather	IANOS iVPP	5
	of local	meteorologic	local meteorological		Forecast		
	weather	al forecasts	forecasts		Provider		
	forecasts						
2c	Submission	Send data	Dispatchable units such as	GET	Production-	IANOS iVPP	6
	of data from	from	micro-CHP and fuel cells		Side Assets		
	dispatchable	dispatchable	send production profiles to				
	units	units	the iVPP				
3a	Data	Forecasts	iVPP servers or the FEID-	CREATE	IANOS iVPP,	IANOS iVPP	7,8
	forecasting	energy	PLUS forecast energy		FEID-PLUS		
		generation	generation and price				
		and prices					
3b	Submission	Sends	FEID-PLUS sends	GET	FEID-PLUS	IANOS iVPP	
	of forecasting	forecasting	forecasting data to the iVPP				
	data	data					
4	Optimization	Optimizes	iVPP optimizes the	EXECUTE	IANOS iVPP	IANOS iVPP	-
	of asset's	asset's	consumption of all the				

	consumption	consumption	demand-side assets in order				
	-						
			4				
			to minimize energy				
			curtailment, maximize self-				
			consumption and meeting				
			end-user consumption needs				
5	Submission	Sends	iVPP sends the optimal	CREATE	IANOS iVPP	HEMS	9
5	Submission	Genus	ivi senus tre optimal	UNLAIL		TILINIS	3
	of optimal	setpoint	setpoint to the HEMS or other				
	•	•					
			1				
	setpoints		localized management				
			systems				
			393101113				

	Scenario						
Scena	rio name:	No. 2 - Self-consum	ption maximization through P2	P energy trading	y based on DLT		
Step	Event	Name of process/	Description of process/	Service	Information	Information	Information
No.		activity	activity		producer	receiver (actor)	Exchanged
					(actor)		(IDs)
1	Data	Data monitoring	Forecast Service	EXECUTE	Forecast	Prosumer	-
	monitoring		Provider monitors		Service		
			energy data from		Provider		
			prosumers				

Forecosting	Notify	Foregoat is calculated		Forecost		10
Forecasting	Noury	Forecast is calculated.	REPORT	Forecast	IANOS IVPP,	10
and	overproduction	Overproduction is		Service	Prosumer	
				_		
overproductio		detected and reported to		Provider		
n detection		prosumers				
Submission	Publish sell bids	Prosumers decide to sell	POST	Prosumer	IANOS iVPP	11
of sell bids in	into the market	their excess of energy				
the P2P		production submitting				
market		sell bids into the P2P				
		market				
Submission	Publish buy bids	Prosumers want to buy	POST	Prosumer	IANOS iVPP	12
<i>.</i>						
of buy bids in	into the market	energy submitting sell				
the P2P		bids into the P2P market				
market						
Clearing price	A market clearing	For clearing price	CREATE	IANOS iVPP	IANOS iVPP	-
algorithm	prico mochanism	colculation the operation				
aigonunn	price mechanism	calculation, the energy				
	fixes, at the end of	supply offers are sorted				
	the market	in according order and				
		in ascending order and				
	session, the price	the energy demand bids				
	of the energy at					
	or the energy at					
	overproductio n detection Submission of sell bids in the P2P market Submission of buy bids in the P2P market	and overproduction overproductio n detection Publish sell bids of sell bids in into the market the P2P market P2P Submission Publish buy bids of buy bids in into the market the P2P Glearing price A market clearing algorithm price mechanism fixes, at the end of the market	andoverproductionoverproductionOverproductionisoverproductiondetected and reported ton detectionprosumersSubmissionPublish sell bidsProsumers decide to sellof sell bids ininto the markettheir excess of energytheP2Pproduction submittingmarketsell bids into the marketsell bids into the P2PMarketPublish buy bidsProsumers want to buyof buy bids ininto the marketenergy submitting selltheP2Pinto the marketbids into the P2P marketClearing priceA market clearingFor clearing pricealgorithmprice mechanismcalculation, the energyfixes, at the end ofsupply offers are sortedthemarketin ascending order andsession, the pricethe energy demand bids	and overproductiooverproductionOverproductionis detected and reported to prosumersSubmissionPublish sell bidsProsumers decide to sellPOSTof sell bids in theinto the markettheir excess of energy production submitting sell bids into the P2P marketPOSTSubmissionPublish buy bidsProsumers want to buy bids into the P2P marketPOSTSubmissionPublish buy bidsProsumers want to buy bids into the P2P marketPOSTClearing priceA market clearing price mechanismFor clearing price calculation, the energy fixes, at the end of supply offers are sorted the marketCREATEIn the marketin ascending order and session, the pricesupply offers are sorted the energy demand bidsCREATE	and overproductionoverproductionOverproductionis detected and reported to prosumersService ProviderSubmissionPublish sell bidsProsumersPOSTProsumerSubmissionPublish sell bidsProsumers decide to sell productionPOSTProsumerof sell bids in theP2Pproductionsubmitting sell bids into the marketPostProsumerSubmissionPublish buy bids into the marketProsumers want to buy bids into the P2P marketPOSTProsumerSubmissionPublish buy bids into the marketProsumers want to buy bids into the P2P marketPOSTProsumerGlearing price algorithmA market clearing price mechanismFor clearing price calculation, the energy supply offers are sorted the marketCREATEIANOS iVPPIdentification into the marketin ascending order and session, the pricesupply offers are sorted the energy demand bidsCREATEIANOS iVPP	and overproduction overproduction n detectionoverproduction detected and reported to prosumersService ProviderProsumerSubmission of sell bids in into the marketPublish sell bids their excess of energy production submitting sell bids into the P2P marketPOSTProsumerIANOS iVPPSubmission of sell bids in into the marketProsumers decide to sell production submitting sell bids into the P2P marketPOSTProsumerIANOS iVPPSubmission of buy bids the respective production fue productionPosumers want to buy bids into the P2P marketPOSTProsumerIANOS iVPPClearing price algorithmA market clearing price mechanismFor clearing price calculation, the energy supply offers are sorted the energy demand bidsCREATEIANOS iVPPIANOS iVPP

-			the state of the s				
		which quantity	in descending order.				
		supplied is equal	The intersection point				
		to quantity	between the two curves				
		demanded	gives the market-				
			clearing price				
5	Submission	Notify market	The platform sends	REPORT	IANOS iVPP	Prosumer	13
	of market	results	market results to				
	results		prosumers				
6	Near real-	Near real-time	HEMS or meter device	EXECUTE	Prosumer	Prosumer	-
	time	monitoring	performs a real-time				
	monitoring		energy monitoring				
7	Submission	Report energy	The platform is able to	GET	Prosumer	IANOS iVPP	1, 2
	real time data	production/consu	access consumption				
		mption data	and production data				
8	Validation	Perform validation	iVPP performs validation	EXECUTE	IANOS iVPP	IANOS iVPP	-
9	Settlement	Unlock token	The system unlocks the	EXECUTE	Prosumer	Prosumer	14
		transactions	tokens transactions				
			between prosumers at				
			delivery session end				

		time		

5 Information exchanged

Information	Name of information	Description of information exchanged
exchanged (ID)		
1	Energy Consumption Data	Customer's energy consumption real-time data
		of the several supply and demand-side assets
2	Energy Generation Data	Amount of energy generated (MWh) by the
		energy supply assets such as PV panels, wind
		turbines, Fuel Cells and micro-CHP systems
3	Battery real-time data	State of charge and temperature of BESS
4	End-User comfort restrictions	Restrictions imposed by the user to increase
	and operation settings	the comfort regarding assets like heat pumps
		and water heaters
5	Local meteorological forecasts	Expected irradiances and wind speeds for
		specific locations
6	Production profiles	Production profiles from dispatchable units
7	Forecasted Energy	Customer's forecasted energy consumption
	Consumption Data	data of the several demand-side assets
8	Forecasted Energy Generation	Forecasted energy supply data
	Data	from production-side assets such as PV
		panels, wind turbines, Fuel Cells, micro-CHP
9	Optimal Setpoints	Optimal power dispatch computed by the iVPP
		for the supply and demand-side assets. It
		corresponds to the amount of power for each
		asset and the corresponding time when it
		should be dispatched
10	Overproduction Report	Overproduction report based on forecast
		performed for prosumer's energy consumption
		and production
11	Sell Bid	Sell energy bid from prosumer
12	Buy Bid	Buy energy bid from prosumer

13	Market Results	Market-clearing price
14	Token Transaction	Token Transaction

6 Requirements

Requirements		
Categories ID	Category name for requirements	Category description
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
F-UI	User interface requirements	Requirements related
		with the iVPP user interface
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-FUN1	Day-ahead load and/or	iVPP can predict the load and/or
	generation forecast	generation of its assets for the
		following day
R-FUN2	Intraday load and/or generation forecast	iVPP can predict the load and/or
		generation of its assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the
		prosumers' flexibility
R-FUN4	Settlements of intra-VPP energy	Energy transactions are settled through
	transactions	Smart Contracts
R-FUN5	Energy transactions recording	Data for Intra-VPP energy transactions
		are recorded on the blockchain
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use of KPIs

R-UI2	Reporting	iVPP can produce reports on system performance
		periornariee
		upon iVPP Operator request
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability
R-COM2	Integration of energy assets	Communication and integrations
		between all energy assets and IVPP
		platform

7 Common Terms and Definitions

Common Terms and Definitions			
Term	Definition		
BESS	Battery Energy Storage System		
BMS	Building Management Systems		
CHP	Combined Heat and Power		
DER	Distributed Energy Resources		
DHW	Domestic Hot Water		
DLT	Distributed Ledger Technology		
ESS	Energy Storage System		
EV	Electric Vehicle		
FEID	Fog-Enabled Intelligent Device		
GPDR	General Data Protection Regulation		
HEMS	Home Energy Management System		
ICT	Information and Communications Technology		
IEPT	IANOS Energy Planning and Transition Suite		
iVPP	Intelligent Virtual Power Plant		
LEC	Local Energy Communities		
P2P	Peer to Peer		

PCM	Phase Change Material
RES	Renewable Energy Sources
SGAM	Smart Grid Architecture Model
SoC	State of Charge
UI	User Interface
V2G	Vehicle-to-grid

6.1.2 Use case 2: Community supply-side optimal dispatch and intra-day

services provision

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and grid	Community supply-side optimal dispatch and
	support for extremely high RES	intra-day services provision
	penetration	

1.2 Version management

	Version Management					
Version No.	Date	Name of Author(s)	Changes			
1	04.02.2021	EDP NEW	First draft			
2	05.02.2021	Nikolaos Nikolopoulos (CERTH), Dionisios Stefanitsis (CERTH)	Comments and inputs on related UCs narrative of use case, Diagrams, Actors Scenarios, Information Exchanged. Suggestion of inclusion of information regarding protocols fo communication/information data exchange according to SGAM architecture			
3	09.02.2021	Carlos Patrão (VPS)	Comments and inputs on narrative of use case, use case conditions, references and information exchanged			
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios			

5	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
6	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
7	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version

1.3 Scope and objectives of use case

Scope and Objectives of Use Case				
Scope	This Use Case utilizes the flexibility from utility-scale supply side-assets to minimize energy curtailment in periods of high renewable generation. For this purpose, it also considers various storage systems such as electrolyzers and large-scale BESS to store the energy produced from dispatchable units and use it in periods of high demand.			
Objective(s)	The main goals of this use case are the following: 1.Provide flexibility on the generation-side 2.Reduce energy curtailment 3.Avoid grid challenges			

1.4 Narrative of use case

Narrative of Use Case

Short description

The present Use Case focuses on using the flexibility on the generation side, for utility-scale assets, to minimize energy curtailment in periods of renewable energy surplus. For this purpose, the intelligent Virtual Power Plant (iVPP) plans and executes the optimal day ahead dispatch and delivers intra-day services to the grid.

Accordingly, the iVPP considers three different types of utility-scale assets for this optimization: i) dispatchable assets, ii) non-dispatchable assets and iii) large-scale storage systems including both BESS and systems producing alternative fuels (electrolyzers), which support the decarbonization of islands with multi-purpose end uses.

The iVPP computes the optimal dispatch set-point through provided information and deliver it to the dispatchable assets and large-scale storage systems in order to assure the stability of the power system.

Complete description

This use case explores the potential of minimizing the energy curtailment in periods of excess of renewable energy generation by using the available flexibility on the generation side of utility-scale assets. In order to achieve this goal, the iVPP computes the optimal dispatch set-

point, which aims at performing the day-ahead optimal dispatch, while providing intra-day balancing services to the power system. For this purpose, the iVPP, through its iVPP's Utility-Scale Assets Scheduler, considers three categories of utility-scale assets:

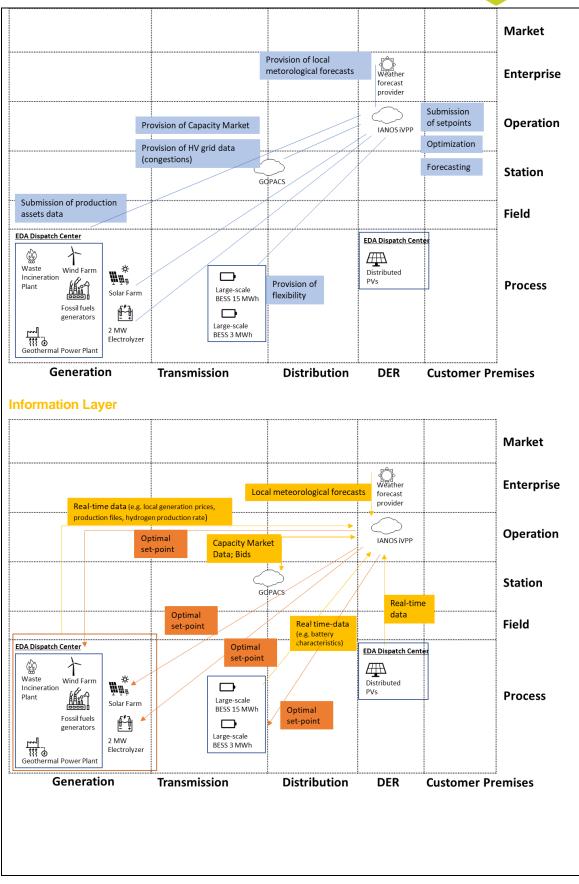
- Dispatchable assets such as diesel engines, waste incinerators, geothermal power generators of utility-scale and any other utility-scale flexibility assets available.
- ii) Non-dispatchable assets as wind and solar PV generators.

iii) Large-scale BESS and Power to Fuel (H2) storage systems such as electrolyzers. The calculation of the optimal dispatch is based on several information provided by the different assets. In the case of Terceira, the Dispatch Center of EDA sends the hard-technical constraints such as batteries' State of Charge, non-variable geothermal production and information regarding the waste incineration plant to the iVPP. While in Ameland, this information is obtained directly from the solar farm since the iVPP is directly connected to it.

The iVPP is provided with total energy consumption forecasts on the islands, which is based on EDA's and Alliander's historical load consumption and real-time measurements; and available flexibility forecast of the dispatchable sources. Specifically for Ameland, the iVPP will be connected with the Grid Operation Platforms for Congestion Solutions interface (GOPACS) to exchange data with the Dutch TSO through the local DSO in order to mitigate grid congestion issues offering local energy producers revenues according to their available flexibility. Thereby, the GOPACS provides a capacity market on which the iVPP can trade.

The dispatchable and non-dispatchable assets supply its local energy generation prices to the iVPP.

An external forecast provider is required to provide local energy production forecasts, based on local meteorological forecasts and historical generation data.


With all these data provided to the iVPP along with its internal data, the iVPP computes the optimal power dispatch in order to assure the large-scale BESS and other storage systems have enough remaining capacity to maximize penetration of RES, to avoid energy curtailment by utilizing flexibility provided by the dispatchable assets and to procure intra-day services to the grid. Accordingly, the iVPP sends the set-points for the large-scale BESS, other storage systems and dispatchable assets.

SGAM LAYERS:

Function Layer

Technological	Information /		
Solutions	Communication	Terceira	Ameland
	Protocols		
Wind Farm	-	Х	
Fossil Fuel	-	х	
Generators		*	
Geothermal Power	-	x	
Plant		x	
Electrolyzer	-		x
Solar Farm	-		x
BESS 15 MWh	-	Х	
BESS 3 MWh	-		x
GOPACS	-		x

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.3	Degree of energetic	Ratio of locally produced energy from RES and	2
	self-supply by RES	the final energy consumption over a period of	
		time (e.g. Month, year)	
1.4	Energy Savings	Calculates the reduction of the energy	1,2,3
		consumption to reach the same services (e.g.	
		Comfort levels) after the interventions, taking	
		into consideration the energy consumption	
		from the reference period	
1.5	RES Generation	Calculates the energy production from renewable energy sources.	2
1.6	Reduced energy	KPI calculates the reduction of energy	2
	curtailment of RES	curtailment due to technical/operational	
	and DER	problems	
1.7	Unbalance of the 3-	Examines the quality of the power supplied by	3
	phase	measuring the supply voltage gap between the	
		three phases which should be 120 deg	
1.10	Storage capacity of	Compares the storage capacity with the total	1
	the island's energy	energy consumption of the island	

	and a second of the later of		
	grid per total island		
	energy consumption		
1.12	Kwp photovoltaic installed per 100 inhabitants	Measures the installed capacity of photovoltaic interpolated to 100 inhabitants. To be assessed per sector (residential, tertiary, industrial and public)	1,3
2.1	Reduced fossil fuel consumption	Measures the amount of fossil fuels which is now not consumed because of IANOS demonstrated solutions (e.g. Electrification of transport, RES penetration)	2,3
3.8	Average Electricity Price for Companies and Consumers	The average minimum cost at which electricity must be sold in order to balance costs and profits	1,3
4.1	Increased system flexibility for energy players	Indication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project	1,3
4.4	Increased hosting capacity for RES, electric vehicles and other new loads	Gives a statement about the additional loads and RES that can be installed in the system when innovative solutions and energy management techniques are applied (e.g. VPP platform). The calculation is realized by comparing the network capacity before and after IANOS implementation	1
4.5	Increased Reliability	Measures the relative improvement in the number of interruptions	3
7.1	Social Compatibility	Refers to the extent to which the project's solution fits with people's 'frame of mind' and does not negatively challenge people's values or the ways they are used to do things	1,2,3
7.2	Technical compatibility	Examines the extent to which the smart grid solutions fit with the current existing technological standards/infrastructures	1,2,3
7.3	Ease of use for end users of the solution	Provides an indication of the complexity of the implemented solution within the IANOS project for the end-users	1,2,3

1.6 Use case conditions

Use case conditions

Assumptions

- In Ameland the Grid Operation Platforms for Congestion Solutions interface (GOPACS,) will be integrated with the iVPP decision making logic. GOPACS is a unique initiative in Europe and has resulted from active collaboration between the Dutch TSO and the DSOs. This platform is consistent with key European directives to mitigate grid congestion, while offering large and small market parties an easy way to generate revenues with their available flexibility and contribute to solving congestion situations
- Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP
- Bidirectional smart meters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time

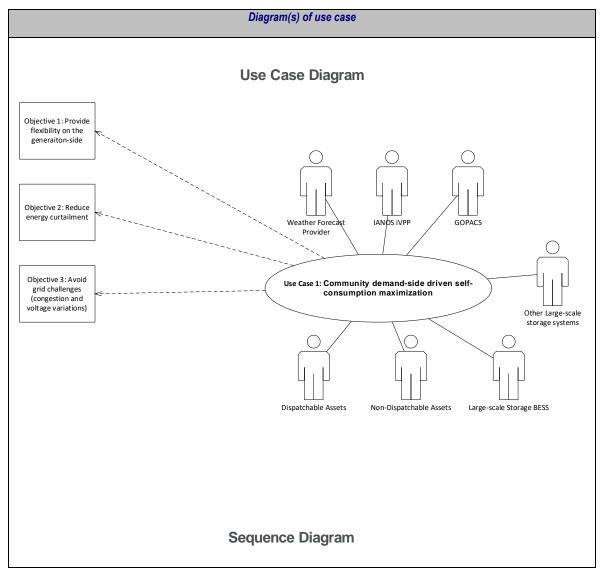
Prerequisites

- A direct connection to the control systems of both battery energy storage and dispatchable and non-dispatchable assets in Terceira
- Stablish connection from the iVPP to the EDA's Dispatch Center (Terceira)
- Direct Connection between iVPP and solar farm (Ameland)
- A (physical) hosting environment on which the iVPP can be established.

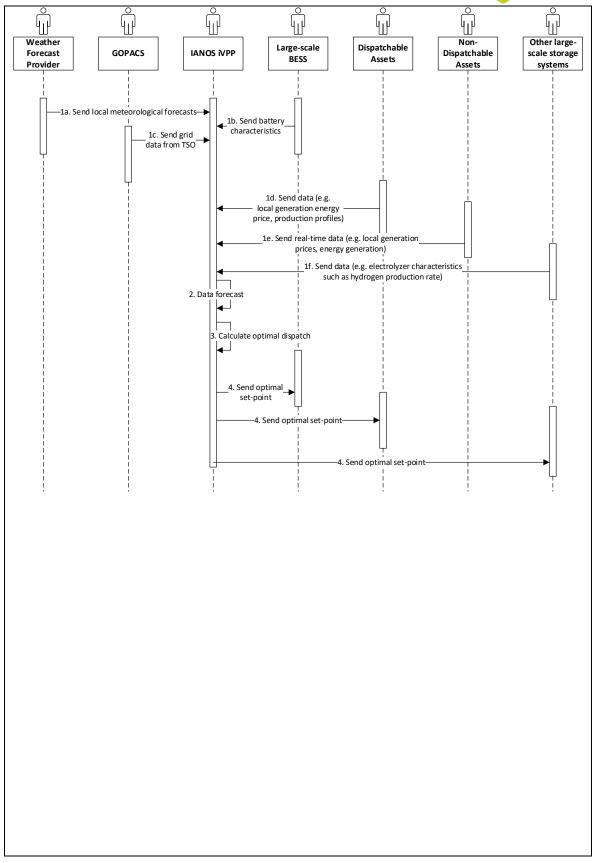
1.7 Further Information to the use case for classification/mapping

Classification Information
Relation to other use cases
UC1: Community demand-side driven self-consumption maximization
UC3: Island-wide, any-scale storage utilization for fast response ancillary services
UC4: DSM and smart grid methods to support power quality optimisation and congestion management services
UC7: Circular economy, the utilization of waste streams and connection to the local gas grid
Level of depth
Specialized use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case
Technical use case
Further keywords for classification
Large-scale storage VPP ontimization ontimal day-ahead dispatch intraday balancing services

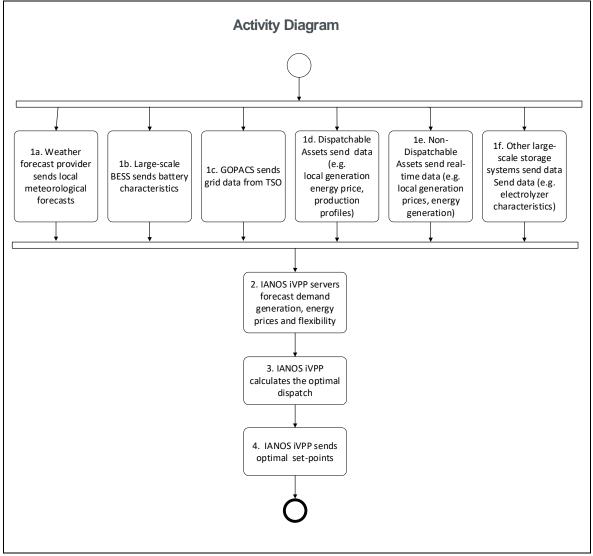
Large-scale storage, VPP, optimization, optimal day-ahead dispatch, intraday balancing services, supply-side, VPP utility scale assets scheduler, flexibility, minimize curtailment



1.8 General Remarks


General Remarks	

2 Diagrams of use case



3 Technical details

3.1 Actors

Actors				
Actor Name	Actor Type	Actor Description		
		Provides generation, consumption and weather-		
Weather Forecast Provider	Role	related operational risks for a given location and a specific time horizon.		
IANOS iVPP	System	The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and green gas CHP plants. Moreover, the iVPP comprises Energy Storage Systems (ESS), integrated as a single unit, providing flexibility services and fostering island renewable energy self-consumption. The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making intelligence, complemented by predictive algorithms for smart integration of grid assets into active network management based on relevant energy profiles. For this purpose, the iVPP is composed of 6 different modules: aggregation & classification, forecasting engine, centralized dispatcher, distributed ledger-based energy transactions, virtual energy console and secured enterprise service bus.		
Large-scale BESS	System	Large-scale battery technology system (10.5MWh in Terceira and 3 MWh in Ameland) which stores		
	I	I		

		energy to be used later. It is connected to		
		distribution/transmission networks.		
		Other large-scale storage systems such as		
Other Large-scale		large-scale systems producing alternative fuels		
storage systems	System	(electrolyzers). In Ameland, a 2MW electrolyzer is		
		connected with the 3 MWh BESS using DC grid.		
		Power generation assets (geothermal power plant,		
Dise state all a second	C. asta as	waste incineration plant, fossil fuels generators),		
Dispatchable assets	System	which power can be dispatched on demand at the		
		request of grid operators when needed.		
Non-Dispatchable	System	Power generation assets (Wind and Solar Farm)		
assets		which power cannot be controlled by grid operators		
		Grid Operation Platforms for Congestion Solutions		
	System	interface (GOPACS) is an unique initiative in Europe		
		and has resulted from active collaboration between		
		the Dutch TSO and the DSOs. This platform is		
GOPACS		consistent with key European directives to mitigate		
		grid congestion, while offering large and small		
		market parties an easy way to generate revenues		
		with their available flexibility and contribute to		
		solving congestion situations.		

3.2 References

	References						
No	References	Reference	Status	Impact on use	Originator /	Link	
•	Туре			case	organisation		
	Regulatio	Decreto-	Publishe	Approves	Portuguese	https://data.dre.pt/eli/dec	
	n	Lei n.º	d	the legal	Governmen	-lei/162/2019/10/25/p/dre	
		162/201		regime	t		
		9		applicable to			

		self-			
		consumpt	io		
		n	of		
		renewable	Э		
		energy,			
		partially			
		transposir	ng		
		Directive			
		2018/200	1		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions						
No.	Scenario Scenario		Primary	Triggering	Pre-condition	Post-condition	
	name	description	actor	event			
1	Supply-	Performing the	iVPP	Periodically	Power	Optimal day-	
	side	optimal day-			system	ahead dispatch	
	optimal	ahead energy			requires	calculated.	
	dispatch	dispatch and			balancing	Power system	
		provision of			services	stable	
		intra-day					
		services to the					
		grid in order to					
		minimize					
		energy					
		curtailment and					
		integrate the					
		maximum RES					
		by using the					
		available					

	flexibility on the		
	nexionity on the		
	generation side		
	0		

4.2 Steps – Scenarios

	Scenario								
Scena	rio name:	No. 1 - Supply-side optimal dispatch							
Step	Event	Name of process/	Description of process/	Service	Information	Information	Information		
No.		activity	activity		producer	receiver (actor)	Exchanged		
					(actor)		(IDs)		
1a	Submission of	Send local	Forecast Provider sends	CREATE	Weather	IANOS iVPP	1		
	local weather	meteorological	local meteorological		Forecast				
	forecasts	forecasts	forecasts		provider				
1b	Submission of	Send battery	BESS sends battery	GET	Large-scale	IANOS iVPP	2,3		
	battery	characteristics	characteristics to the iVPP		BESS				
	characteristics								
1c	Submission of	Send grid data	GOPACS exchange high	REPORT	GOPACS	IANOS iVPP	4		
	grid data from	from TSO	voltage grid data related to						
	TSO		expected congestions with						
			iVPP						
1d	Submission of	Send data	Dispatchable assets send	GET	Dispatchable	IANOS iVPP	5, 6,7,8		
	dispatchable		hard technical constraints		Assets				
	assets data		and local generation energy						

			prices to the iVPP				
1e	Submission of	Send data	Non-Dispatchable assets	GET	Non-	IANOS iVPP	8,9
	non-		send hard technical		Dispatchable		
	dispatchable		constraints and local		Assets		
	assets data		generation energy prices to				
			the iVPP				
1f	Submission of	Send data	Other large-scale storage	GET	Other large-	IANOS iVPP	10
	other large-		systems send real-time		scale		
	scale storage		data to the iVPP		storage		
	systems data				system		
2	Data forecast	Forecasts	iVPP servers or the FEID-	EXECUTE	IANOS	IANOS iVPP	11,12,13
			PLUS forecasts demand		iVPP, FEID-		
			generation, price and		PLUS		
			flexibility				
3	Optimal	Calculate the	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-
	Dispatch	optimal dispatch	dispatch which aims to be				
	Calculation		the optimal day-ahead				
			energy dispatch and to				
			provide intra-day balancing				

			services to the grid in order				
			to minimize energy				
			curtailment by using the				
			available flexibility on the				
			generation side				
4	Submission of	Send set-points	iVPP sends the optimal	CREATE	IANOS iVPP	Dispatchable	14,15,16
	optimal set-		setpoint to the generation			Assets, Large	
	points		and large-scale storage			Scale BESS,	
			assets			Other large-	
						scale storage	
						systems	
					1		

5 Information exchanged

Information Name of information Description of information exchanged exchanged (ID) Local meteorological Expected irradiances and wind speeds for spe 1 Local meteorological Expected irradiances and wind speeds for spe forecasts locations 2 Battery real time- data SoC, temperature, etc 3 BESS hard technical kin and max SoC; Min and max charging and discharger power, 4 HV grid data	ging
1 Local meteorological forecasts Expected irradiances and wind speeds for spectral locations 2 Battery real time-data SoC, temperature, etc 3 BESS hard technical constraints Min and max SoC; Min and max charging and discharge power, 4 HV grid data High voltage grid real-time data related with congestion	ging
forecasts locations 2 Battery real time- data SoC, temperature, etc 3 BESS hard technical constraints Min and max SoC; Min and max charging and discharge power, 4 HV grid data High voltage grid real-time data related with congestion	ging
2 Battery real time- data SoC, temperature, etc 3 BESS hard technical constraints Min and max SoC; Min and max charging and discharge power, 4 HV grid data High voltage grid real-time data related with congestion	
data 3 BESS hard technical Min and max SoC; Min and max charging and discharge constraints power, 4 HV grid data High voltage grid real-time data related with congestion	
3 BESS hard technical Min and max SoC; Min and max charging and discharge power, 4 HV grid data High voltage grid real-time data related with congestion	
4 HV grid data High voltage grid real-time data related with congestion	
4 HV grid data High voltage grid real-time data related with congestion	ons;
	ons;
Bids	
5 Production profiles Production profiles from dispatchable units	
6 Dispatchable assets Amount of energy (MWh) being dispatched in real-tim	е
real-time data	
7 Dispatchable assets Maximum and minimum charging and discharging pow	ver
hard technical	
constraints	
8 Local Generation Price of energy generated in a specific location (€/MW	/h)
Energy Prices	
9 Non-Dispatchable Amount of energy (MWh) generated by non-dispatcha	able
assets data generator assets at real-time	
10 Electrolyzer Hydrogen production rate, pressure, temperature, etc	
characteristics	
11 Forecasted Energy Forecasted energy supply data from production-	side
Generation Data assets such as PV panels, wind turbines, Fuel C	ells,
micro-CHP	
12 Forecasted Energy Forecasted energy prices from the production assets	
Prices	

13	Forecasted	Forecasted flexibility from the several storage assets
15	TUIEcasteu	Torecasted heribility from the several storage assets
	Flexibility Data	
	T ICAIDIIITY Data	
14	Optimal Set-points	Optimal power dispatch computed by the iVPP for
	optimur oot pointo	optimal power alepaten compated by the term for
	for dispatchable	generation dispatchable assets. It is the amount of power
	assets	that should be generated and supplied to the grid from the
		dispatchable assets
15	Optimal Set-points	Optimal power dispatch computed by the iVPP for large-
	(DE00	
	for BESS	scale BESS. It is the amount of power that should be
		provided to the grid for balancing services or stored for
		later use
16	Optimal Set-points	Optimal power dispatch computed by the iVPP for other
	for other large-scale	large-scale storage assets such as electrolyzers. It is the
	ioi otilei laige-scale	ange scale storage assets such as electrolyzers. It is the
	storage systems	amount of power that should be stored to produce
		alternetive fuels (bydrogen) thereafter
		alternative fuels (hydrogen) thereafter.

6 Requirements

	Requirements	
Categories ID	Category name for requirements	Category description
R-SEC.	Security Requirement	Requirements related to the safety issues
R-UI	User Interface Requirement	Requirementsrelatedwith the iVPP user interface
R-FUN	Functional Requirement	Requirements that capture the intended behaviour of the system
R-COM	Communication Requirement	Requirementsrelatedwith communication aspects
Requirement R-ID	Requirement name	Requirement description

R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-UI1	Graphical visualization of iVPP	iVPP operation can be visually
	operation	inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance
		upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-FUN4	Dispatch prioritization	iVPP can select the most appropriate
		asset(s) to deliver the
		requested service
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability
R-COM2	Integration of energy assets	Communication and integrations
		between all energy assets and IVPP
		platform

7 Common Terms and Definitions

	Common Terms and Definitions
Term	Definition
BESS	Battery Energy Storage Systems
CHP	Combined Heat and Power
DSO	Distribution System Operator
GOPACS	Grid Operation Platforms for Congestion Solutions
GPDR	General Data Protection Regulation
iVPP	Intelligent Virtual Power Plant
RES	Renewable Energy Sources
SGAM	Smart Grid Architecture Model
SoC	State of Charge
TSO	Transmission System Operator
UC	Use Case
UI	User Interface

6.1.3 Use case 3: Island-wide, any-scale storage utilization for fast

response ancillary services

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and	Island-wide, any-scale storage utilization for fast
	grid support for	response ancillary services
	extremely high RES	
	penetration	

1.2 Version management

Version Management			
Version No.	Date	Name of Author(s)	Changes

1	04.02.2021	EDP NEW	First draft
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on Narrative of Use Case, Diagrams, Information Exchanged.
		(GERTH)	Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture
3	09.02.2021	Carlos Patrão (VPS)	Comments and inputs on Related Use Cases, Use Case conditions, References
4	19.02.2021	Philippe Pépin (Teraloop)	Add flywheel requirements, and data exchanged
5	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios
6	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
7	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
8	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	This Use Case demonstrates the provision of fast ancillary services to the grid,
	when grid reliability and safety is compromised, through storage systems of any-
Scono	scale.
Scope	These storage systems help balancing the power system by either storing energy
	for later use when there are high levels of energy generation or by providing
	energy to the grid in periods of high energy demand.
	This Use Case orients at providing fast ancillary services to the grid when
	required to achieve the following objectives:
Objective(s)	1. Improve power quality and continuity of power supply
	2. Reduce energy curtailment
	3. Avoid grid challenges such as congestion and voltage variations

1.4 Narrative of use case

Narrative of Use Case

Short description

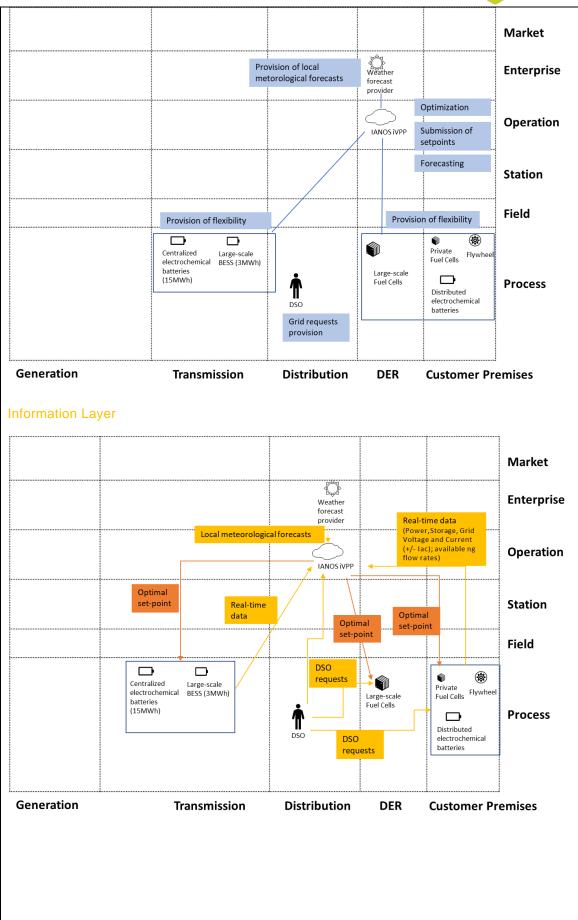
This use case focus on providing fast balancing services to the grid by capacitating the power system with storage technologies, including small and large-scale BESS, but also very fast responsive assets such as flywheels and other means of very flexible production units as those of Fuel Cells, fully dispatchable. Storage technologies allow to store energy in periods of renewable energy surplus that will be used afterwards to assist the grid by contributing to frequency and voltage control.

The intelligent Virtual Power Plant (iVPP) is responsible for coordinating the energy fluxes between the grid and the storage assets.

Complete description

The present use case describes how the iVPP manages the provision of fast ancillary services to the grid when required through various storage assets of any-scale. These storage technologies have capabilities of frequency and voltage control allowing to improve the quality and stability of the power system. The storage technologies that will be used are centralized and distributed electrochemical batteries, flywheels and fuel cells.

The iVPP aggregates the various storage systems to provide fast balancing services to the grid such as FFR (Firm Frequency Response) and voltage deviations. On the other hand, the iVPP needs to continually ensure that there is a pre-defined capacity reserved for these services, which can vary according to the status and situation forecast of the power system in a short window of time such as one day. Accordingly, the iVPP will be provided with data from the grid in order to be able to calculate the set-point for the storage assets which will supply energy to the grid when required.


Apart from the global optimization performed by the VPP, a local optimization will also be executed through locally implemented actuators placed in the storage assets which will trigger the actual service when required.

SGAM LAYERS:

Function Layer

echnological olutions	Information / Communication Protocols	Terceira	Ameland
ivate Fuel Cells	-		Х
arge-scale Fuel ell	-		х
ESS (3MWh)	-		Х
lywheel	Data collection will be achieved through a TCP/IP as a hardware layer, provided by an outsorced vendor (e.g. Siemens), enhanced with multiple possible software protocols. However, the exact definition will be done in the course of IANOS."	x	
lectrochemical atteries	-	Х	
ESS (15MWh)	-	Х	

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned use
			case objectives
1.6	Reduced energy curtailment	KPI calculates the reduction of energy	1,2,3
	of RES and DER	curtailment due to technical/operational	
		problems	
1.7	Unbalance of the 3-phase	Examines the quality of the power	1,3
		supplied by measuring the supply voltage	
		gap between the three phases which	
		should be 120 deg.	
1.8	Peak Load Reduction	Calculates the peak load reduction before	3
		the IANOS implementation (baseline) and	
		after its interventions (DSM programs and	
		storage system management)	
1.10	Storage capacity of the	Compares the storage capacity with the	1,3
	island's energy grid per total	total energy consumption of the island	
	island energy consumption		

4.5	Increased Reliability	Measures the relative improvement in the number of interruptions	1,3
7.1	Social Compatibility	Refers to the extent to which the project's solution fits with people's 'frame of mind' and does not negatively challenge people's values or the ways they are used to do things	1,2,3
7.2	Technical compatibility	Examines the extent to which the smart grid solutions fit with the current existing technological standards/infrastructures	1,2,3
7.3	Ease of use for end users of the solution	Provides an indication of the complexity of the implemented solution within the IANOS project for the end-users	1,2,3

1.6 Use case conditions

	Use case conditions						
Assump	tions						
	Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP Bidirectional smart meters capable of monitor network voltage parameters according to the EN 50160 standard are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time						
Prerequ	isites						
•	Establish connection between the iVPP and storage assets (global optimization) Establish connection between grid and storage assets (local optimization) A (physical) hosting environment on which the iVPP can be established.						

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases
UC1: Community demand-side driven self-consumption maximization
UC2: Community supply-side optimal dispatch and intra-day services provision
UC4: Demand Side Management and Smart Grid methods to support power quality and
congestion management services
Level of depth
Specialized use case
Prioritisation
High level of priority

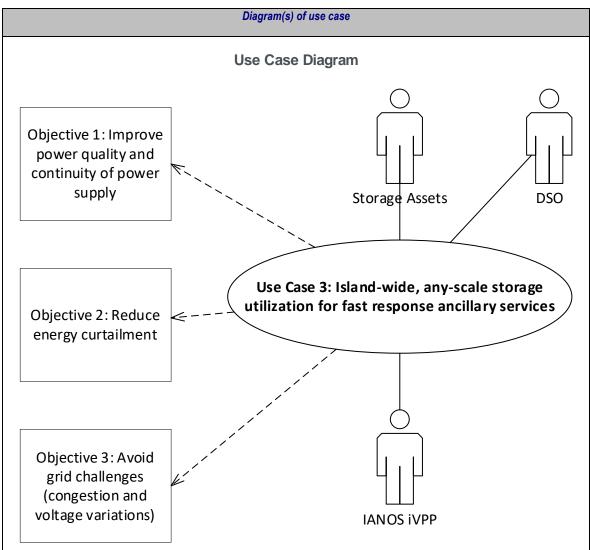
Generic, regional or national relation

Generic

Nature of the use case

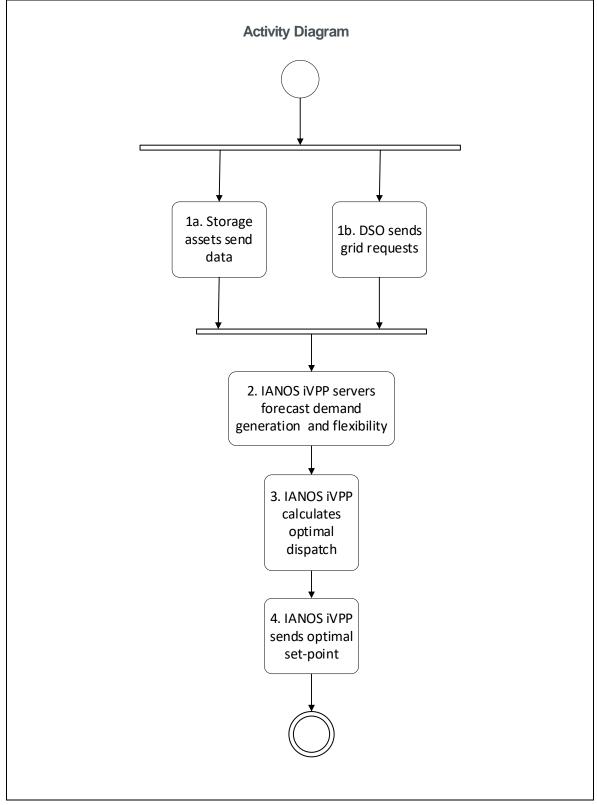
Technical use case

Further keywords for classification

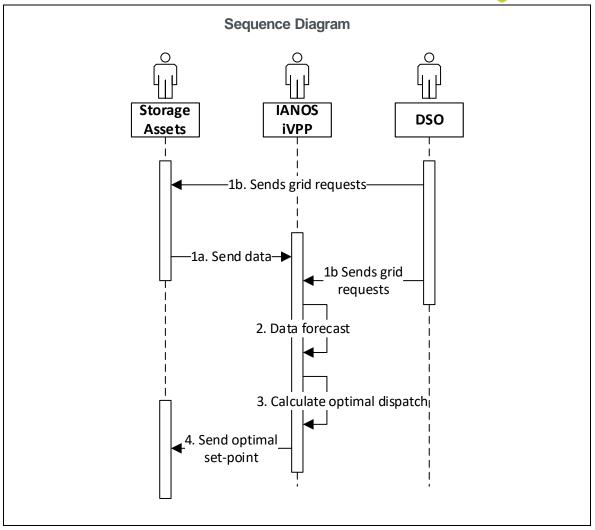

Storage, balancing services, flywheels, batteries, fast ancillary services, CH4 fuel cells,

distributed storage

1.8 General Remarks


General Remarks

2 Diagrams of use case



3 Technical details

3.1 Actors

	Actors				
Actor Name	Actor Type	Actor Description			
		Assets of any-scale that can store energy for later use			
		such as flywheels, distributed and centralized			
Storage assets	System	electrochemical batteries. Other means of very			
	0)000	flexible production units such as Fuel Cells are also			
		included. These assets are aggregated and			
		controlled by the IANOS iVPP.			
		The IANOS iVPP sets up a virtual network of			
		decentralized renewable energy resources, both non-			
		dispatchable such as wind, solar, tidal resources and			
		dispatchable ones such as geothermal and green gas			
		CHP plants. Moreover, the iVPP comprises Energy			
		Storage Systems (ESS), integrated as a single unit,			
		providing flexibility services and fostering island			
		renewable energy self-consumption.			
IANOS iVPP	System	The optimal, autonomous, real-time iVPP operation			
	Oystem	will be driven by multi-level decision making			
		intelligence, complemented by predictive algorithms			
		for smart integration of grid assets into active network			
		management based on relevant energy profiles. For			
		this purpose, the iVPP is composed of 6 different			
		modules: aggregation & classification, forecasting			
		engine, centralized dispatcher, distributed ledger-			
		based energy transactions, virtual energy console			
		and secured enterprise service bus.			
DSO	Role	Distribution System Operator			

3.2 References

	References					
No.	References	Reference	Status	Impact on use case	Originator /	Link
	Туре				organisation	
	European	EN	Revised,	Definition of the	CENELEC	https://www.cen
	Standard	50160	1 July	voltage		<u>elec.eu/dyn/ww</u>
			2010	characteristics of		<u>w/f?p=104:110:9</u>
				electricity supplied		<u>5953837106010</u>
				by public electricity		1::::FSP_ORG_I
				networks		D,FSP_LANG_I
						D,FSP_PROJE
						<u>CT:1258595,25,</u>
						<u>51993</u>
	Regulatio	Decreto-	Published	Approves the legal	Portuguese	https://data.dre.p
	n	Lei n.º		regime applicable	Governme	t/eli/dec-
		162/201		to self-consumption	nt	lei/162/2019/10/
		9		of renewable		25/p/dre
				energy, partially		
				transposing		
				Directive		
				2018/2001		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions						
No.	Scenario name Scenario		Scenario name Scenario Primary Trigger		Pre-condition	Post-condition	
		description	actor	ng event			
1	Provision of	iVPP computes	IANOS	Periodi	Power	Distributed	
	fast ancillary	the optimal set-	iVPP	cally	system	storage systems	

point for	requires	allow the
distributed	balancing	provision of fast
storage	services.	ancillary services
of technologies that	No power	to the grid
provide fast	fluxes from	
ancillary services	decentralized	
to the grid	storage	
	systems	
•	distributed storage of technologies that provide fast ancillary services	distributedbalancingstorageservices.oftechnologies thatNo powerprovidefastfluxesancillary servicesdecentralizedto the gridstorage

4.2 Steps – Scenarios

	Scenario						
Scena	cenario name : No. 1 - Provision of fast ancillary services through storage systems of any-scale						
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information
No.		process/			producer	receiver	Exchanged (IDs)
		activity			(actor)	(actor)	
1a	Submission	Sends data	Storage assets send data to		Storage	IANOS	1,2,3,4,5,6
	of storage		the iVPP	GET	assets	iVPP	
	assets data						
1b	Submission	Sends grid	DSO sends grid requests to	GET	DSO	IANOS	7
	of grid	requests	the iVPP and locally			iVPP,	
	requests		implemented actuators			Storage	
			present in the storage			Assets	
			assets				
2	Data	Forecasts	iVPP servers forecast	EXECUTE	IANOS iVPP	IANOS	8,9
	forecasting		demand generation and			iVPP	
			flexibility				
3	Computation	Computes	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS	-
	of optimal	optimal	dispatch for the storage			iVPP	

	-						
	dispatch	dispatch	assets in order to assure the				
			provision of fast balancing				
			services to the grid.				
			Moreover, the optimization				
			performed by the iVPP also				
			considers that must exist a				
			pre-defined capacity				
			reserved for the balancing				
			services				
4	Submission	Sends se	t- iVPP sends the optimal	CREATE	IANOS iVPP	Storage	10
	of optimal	points	setpoint to the storage			Assets	
	set-points		assets				

5 Information exchanged

Information Name of information Description of information exchanged 1 Flywheel hard technical constraints Minimum and maximum power rating (kW), energy capacity (kWh or kJ), efficiency (%), self-discharge time (h), operating temperature (°C), dimensions (m), weight (kg), noise (dBA), connectivity, maximum rotational speed (rpm) 2 Fuel Cells hard technical constraints Minimum and maximum natural gas and hydrogen flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy 9 Forecasted Energy 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the amount of power sent to the grid from the storage		Informa	tion exchanged
1 Flywheel hard technical constraints Minimum and maximum power rating (kW), energy capacity (kWh or kJ), efficiency (%), self-discharge time (h), operating temperature (°C), dimensions (m), weight (kg), noise (dBA), connectivity, maximum rotational speed (rpm) 2 Fuel Cells hard technical constraints Minimum and maximum natural gas and hydrogen flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Forecasted energy supply data from production-side assets such Fuel Cells 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	Information	Name of information	Description of information exchanged
constraints capacity (kWh or kJ), efficiency (%), self-discharge time (h), operating temperature (°C), dimensions (m), weight (kg), noise (dBA), connectivity, maximum rotational speed (rpm) 2 Fuel Cells hard technical constraints Minimum and maximum natural gas and hydrogen flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Forecasted energy supply data from production-side assets such Fuel Cells 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets or the grid that will be stored in the storage assets or the	exchanged (ID)		
1 And Additional States 1 Image: Additional States 1 Image: Additional States 2 Fuel Cells hard technical constraints 1 States 2 Fuel Cells hard technical constraints 1 States 3 BESS hard technical constraints 4 Flywheel real-time data 7 States 8 Forecasted Energy Grid Requests 7 Grid Requests 8 Forecasted Energy Grid Requests 9 Forecasted Flexibility Data 9 Forecasted Flexibility Data 10 Optimal Setpoints	1	Flywheel hard technical	Minimum and maximum power rating (kW), energy
(m), weight (kg), noise (dBA), connectivity, maximum rotational speed (rpm) 2 Fuel Cells hard technical constraints Minimum and maximum natural gas and hydrogen flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Grid requests Forecasted Flexibility Data 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the		constraints	capacity (kWh or kJ), efficiency (%), self-discharge
2 Fuel Cells hard technical constraints Minimum and maximum natural gas and hydrogen flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Generation Data Forecasted flexibility Data 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that will be stored in the storage assets or the grid that			time (h), operating temperature (°C), dimensions
2 Fuel Cells hard technical constraints Minimum and maximum natural gas and hydrogen flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Forecasted energy supply data from production-side assets such Fuel Cells 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the IVPP for storage assets or the grid that will be stored in the storage assets or the			(m), weight (kg), noise (dBA), connectivity,
constraints flow rates; temperature range, maximum total power output (kW) 3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Forecasted energy supply data from production-side assets such Fuel Cells 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the			maximum rotational speed (rpm)
3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets or the grid that will be stored in the storage assets or the	2	Fuel Cells hard technical	Minimum and maximum natural gas and hydrogen
3 BESS hard technical constraints Minimum and maximum SoC, and charging and discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets or the grid that will be stored in the storage assets or the		constraints	flow rates; temperature range, maximum total
constraints discharging power; temperature range 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the IVPP for storage assets or the grid that will be stored in the storage assets or the			power output (kW)
4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid 4 Flywheel real-time data Real-time Power (+/- kW) and Storage (kWh); Grid 5 Fuel Cells real-time data Available NG flow rates; temperature at FC Anode 6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	3	BESS hard technical	Minimum and maximum SoC, and charging and
Voltage (Vac); Grid Current (+/- lac); Grid Power (+/- kW); Flywheel System Warnings / Errors5Fuel Cells real-time dataAvailable NG flow rates; temperature at FC Anode6BESS real-time dataSoC, temperature7Grid RequestsGrid requests8ForecastedEnergy9Forecasted Flexibility DataForecasted flexibility from the several storage assets10Optimal SetpointsOptimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the		constraints	discharging power; temperature range
4/- kW); Flywheel System Warnings / Errors 5 Fuel Cells real-time data 6 BESS real-time data 7 Grid Requests 8 Forecasted 9 Forecasted Flexibility Data 9 Forecasted Flexibility Data 10 Optimal Setpoints 0 Optimal Setpoints	4	Flywheel real-time data	Real-time Power (+/- kW) and Storage (kWh); Grid
5Fuel Cells real-time dataAvailable NG flow rates; temperature at FC Anode6BESS real-time dataSoC, temperature7Grid RequestsGrid requests8ForecastedEnergy9Forecasted Flexibility DataForecasted flexibility from the several storage assets10Optimal SetpointsOptimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the			Voltage (Vac); Grid Current (+/- Iac); Grid Power
6 BESS real-time data SoC, temperature 7 Grid Requests Grid requests 8 Forecasted Energy Generation Data side assets such Fuel Cells 9 Forecasted Flexibility Data 10 Optimal Setpoints Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the			(+/- kW); Flywheel System Warnings / Errors
7 Grid Requests Grid requests 8 Forecasted Energy 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	5	Fuel Cells real-time data	Available NG flow rates; temperature at FC Anode
8 Forecasted Energy Forecasted energy supply data from production- side assets such Fuel Cells 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	6	BESS real-time data	SoC, temperature
Generation Data side assets such Fuel Cells 9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	7	Grid Requests	Grid requests
9 Forecasted Flexibility Data Forecasted flexibility from the several storage assets 10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	8	Forecasted Energy	Forecasted energy supply data from production-
10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the		Generation Data	side assets such Fuel Cells
10 Optimal Setpoints Optimal power dispatch computed by the iVPP for storage assets. It is the amount of power from the grid that will be stored in the storage assets or the	9	Forecasted Flexibility Data	Forecasted flexibility from the several storage
storage assets. It is the amount of power from the grid that will be stored in the storage assets or the			assets
grid that will be stored in the storage assets or the	10	Optimal Setpoints	Optimal power dispatch computed by the iVPP for
			storage assets. It is the amount of power from the
amount of power sent to the grid from the storage			grid that will be stored in the storage assets or the
			amount of power sent to the grid from the storage
assets to provide balancing services			assets to provide balancing services

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety
		issues
R-BUS	Business Requirement	Business requirements to
		achieve operational state
		of iVPP per UC
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
R-CONF.	Configuration Requirement	Requirements applicable to the
		electrical, physical and digital
		configuration applicable to enable the
		asset's operation.
R-D	Data requirements and operation	Requirements related with data
	settings	exchange and operation settings
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity

R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-SEC4	Network security measures for data	Establishes the ways in which
	exchange with flywheel	communication between the iVPP and
		the flywheel control system can be done
		safely, mitigating risks of external
		interference.
R-SEC5	Flywheel site safety	Establishes the safety guidelines
		applicable to the physical location
		where the flywheel is installed. It further
		establishes the safety guidelines
		applicable to all personnel in the local
		vicinity to ensure safe operation of the
		flywheel.
R-BUS1	Assets optimal location	Specification of the
		candidate assets location in pilot sites
R-BUS2	Physical installation and grid integration	The storage asset provider or operator
		or integrator will physically integrate the
		asset with the local energy system
R-BUS3	Installation of monitoring infrastructure	The necessary monitoring infrastructure
		will be installed
R-BUS4	Prequalification of asset with the	Assets should follow grid code
	transmission code requirements	requirements according to the services
		to be provided
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance
		upon iVPP Operator request
L		

R-FUN1	Receive Operator's requests	iVPP having the ability to receive
		requests for service activation
		(e.g. FRR) from System Operator (TSO
		or DSO)
R-FUN2	Capacity reserves allocation for fast	iVPP can allocate storage Assets into
	ancillary services (AS)	different reserves/AS
R-FUN3	Dispatch prioritization	iVPP can select the most appropriate
		asset(s) to deliver the
		requested service
R-FUN4	Activation of iVPP distributed storage	BESS/FC/Flywheel assets can be
	Asset to provide primary regulation	automatically triggered to provide
		Frequency Containment Reserves
		(FCR) automatically within seconds
R-FUN5	Activation of iVPP distributed storage	iVPP having the ability to activate
	Asset to provide secondary regulation	BESS/FC/Flywheel assets to provide
		Frequency Restoration Reserves (FRR)
		within 5-15 minutes
R-FUN6	Activation of flywheel to provide	Flywheel can be automatically triggered
	voltage support	to absorb/provide reactive power for
		voltage control within seconds
R-FUN7	Activation of electrochemical storage	Assets' inverters can be automatically
	inverters to provide voltage support	triggered to absorb/provide reactive
		power for voltage control
		within seconds
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data
		ensuring interoperability
R-COM2	iVPP minimum communication	Bandwidth and latency are ensured to
	requirements	follow min. requirements according to

		the level of service to be delivered (e.g. mFRR, aFRR)
R-CONF1	Flywheel electrical connection	Defines the electrical connection parameters required to integrate the flywheel to the End User and Grid's electricity network.
R-CONF2	Flywheel control communication	Defines how the iVPP communicates with the flywheel, either activating charge/discharge events, or idling mode.
R-D.1	Grid frequency and voltage real time data	Defines how the iVPP collects the electric grid's real time data.

7 Common Terms and Definitions

	Common Terms and Definitions
Term	Definition
BESS	Battery Energy Storage System
FFR	Firm Frequency Response
GPDR	General Data Protection Regulation
IoT	Internet of Things
IVPP	Intelligent Virtual Power Plant
PV	Photovoltaic
SGAM	Smart Grid Architecture Model
SoC	State of Charge
UC	Use Case
UI	User Interface
WT	Wind Turbine

6.1.4 Use case 4: Demand Side Management and Smart Grid methods

to support Power quality and congestion management services

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and	DSM and smart grid methods to support power quality
	grid support for	optimization and congestion management services
	extremely high RES	
	penetration	

1.2 Version management

		Version Mana	gement
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	EDP NEW	First draft
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams, Actors, Scenarios; Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture
3	10.02.2021	Carlos Patrão (VPS)	Comments on Use Case conditions, References
4	23.02.2021	Rui Lopes (UNINOVA)	Comments on the Narrative of the Use Case, Scenarios; Add assumptions and pre-requisites for the smart energy router Add information exchanged from the smart energy router
5	23.03.2021	Andrea Soto (EFACEC Energia)	Add assumptions and pre-requistes for the hybrid transformer. Add information exchanged from the hybrid transformer
6	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios
7	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements

8	29.04.2021		KPI's added from D2.3 Collecting the new feedback
9	11.05.2021	Mónica Fernandes (EDP NEW	Final Version

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	The scope of this Use Case is the provision of slow ancillary services to the grid
	using available energy flexibility from demand resources of the island.
Scope	Additionally, this Use Case also demonstrates smart grid methods with interesting
00000	functionalities for the stability of the power system such as allowing an optimised
	control of the user's local production and storage and also the ability to regulate
	active and reactive power.
	This Use Case is crucial when the optimal dispatch is not enough to assure the
	stability of the power system. The main objectives are the following:
Objective(s)	1. Ensure stability of the power system
0.0,000.00(0)	2. Minimize energy curtailment
	3. Support congestion management services by utilizing demand flexibility as a
	mean to provide slow ancillary services to the grid.

1.4 Narrative of use case

Narrative of Use Case

Short description

This use case reports the methods to provide slow ancillary services to the power system through demand-side management and smart grid methods.

The intelligent Virtual Power Plant (iVPP) performs a global optimization which will consider the 4 following assets: storage assets, fuel cells, hybrid transformer and smart energy router. For each one of these assets, the iVPP computes an optimal setpoint in order to ensure the stability and quality of the power system.

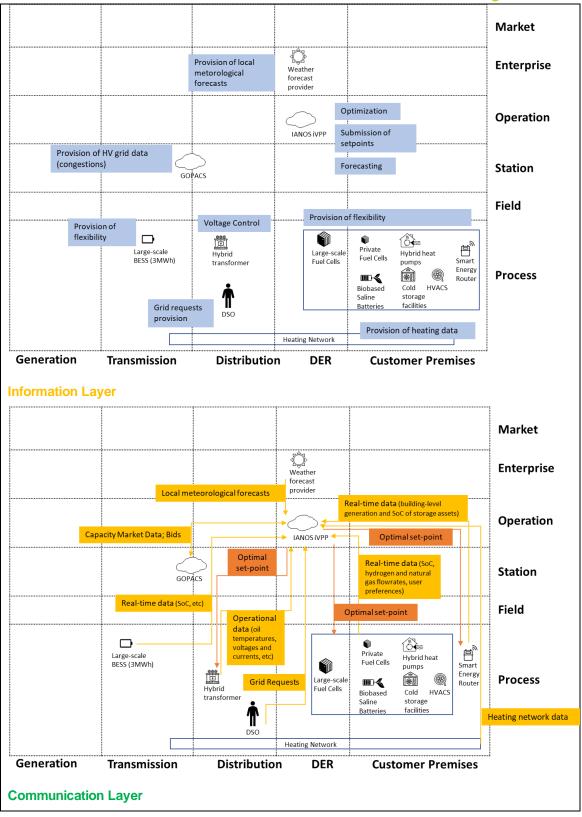
Complete description

The present use case describes the methods to support power quality optimization and congestion management services through demand-side management. For this purpose, the

iVPP performs an optimization that considers 4 different types of assets: i) storage assets, not only electrochemical but also Power-to-X, (ii) other means of very flexible electric production units as those of Fuel Cells, fully dispatchable iii) hybrid transformer and iv) smart energy router. Accordingly, the iVPP computes the optimal dispatch for each one of these assets and delivers the respective set-point in order to ensure the stability and quality of the power system.

The electrochemical storage assets considered are battery storage systems and biobased batteries. While the Power-to-X ones are hybrid heat pumps, cold storage facilities from fish industry and HVACs from service buildings. On top of those, fuel cells (both distributed of small-scale, but also centralized of large-scale) will offer slow ancillary services to the electricity grid.

The optimization is performed by the iVPP through its DSM modules to optimize the energy dispatch of each client based on a certain criteria (e.g. minimization of RES curtailment or reduction of system's operation cost) which must be defined by the system operator since the beginning of the implementation of the Use Case. DSM modules use: i) energy consumption forecasts based on historical load consumption and real time measurements, ii) energy production forecasts based on local meteorological forecasts provided by an external forecast provider and iii) historical generation data from the available RES assets.


The hybrid transformer allows to fix the voltage between phases and thereby complies with the voltage setpoint computed by the iVPP.

The smart energy router controls power flows between the grid and its storage assets and enables the possibility of providing balancing services to the grid taking into consideration local restrictions from storage assets. The iVPP calculates the optimal dispatch for the smart energy router in order to manage the energy services provided to the grid and the consumer.

SGAM LAYERS: Function Layer

				-	Ĵ					Market
				We for	ather ecast wider	IEC	61850			Enterprise
					NOS IVPP -		1			Operation
		GO	PACS							Station
										Field
		ge-scale ss (3MWh)	IEC 61850 or IEC 60	0870	Large-scale Fuel Cells	Private Fuel Cells Ibiobased Saline Batteries	Hybrid heat pumps Cold HVAC storage facilities	Sm En	hart ergy uter	Process
			DSO	Heat	ing Network					
Generation	Transm	nission	Distributio	on	DER	Cust	omer Pre	mise		
Technologica	1	Inf	ormation /						25	
_	I	Com	nmunication		Terc	ceira				and
Solutions		Com			Tero	eira			mel	
Solutions Private Fuel C	Cells	Com	nmunication		Tero	eira				
Solutions Private Fuel C Large-scale F	Cells Tuel Cell	Com	nmunication		Terc	eira			mel	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased	Cells Tuel Cell	Com	nmunication		Terc	eira			mel x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries	Cells Tuel Cell Pumps Saline	Com	nmunication Protocols		Terc	eira			mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh	Cells Tuel Cell Pumps Saline	Com	nmunication Protocols		Terc	eira			mel x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold	Cells Tuel Cell Pumps Saline	Com	nmunication Protocols			ceira			mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities	Cells Tuel Cell Pumps Saline	Com	nmunication Protocols						mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs	Cells Tuel Cell Pumps Saline	Com P	nmunication Protocols			(mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs	Cells Tuel Cell Pumps Saline	Com P	nmunication Protocols			(mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs	Cells Tuel Cell Pumps Saline	Com P	rotocols			(mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs	Cells Tuel Cell Pumps Saline	Com P	nmunication Protocols)	(mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs	Cells Tuel Cell Pumps Saline	Com P	rotocols rotocols he IEC 61850 protocol, rtheless, the bl used can be red according			(mel x x x x	
Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs	Cells Tuel Cell Pumps Saline	Com P	rotocols rotocols he IEC 61850 protocol, rtheless, the bl used can be red according e needs and	ò)	(mel x x x x	
Technologica Solutions Private Fuel C Large-scale F Hybrid Heat F Biobased Batteries BESS (3MWh Cold S Facilities HVACs Smart Energy	Cells Tuel Cell Pumps Saline	Com P Uses t Uses t protoco adjust to the specifi	rotocols rotocols he IEC 61850 protocol, rtheless, the bl used can be red according	è)	(mel x x x x	

				05
	connection at the		-	
	installation site.			
Hybrid Transformer	Based in substation			
	automation protocols			
	(IEC 61850 or IEC	Х		
	60870).			

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.1	System Average	Calculates the annual average number of	1
	Interruption	power interruptions encountered by each	
	Frequency Index	end-user	
1.2	System Average	Calculates the average time duration of the	1
	Interruption Duration	power interruptions encountered by the	
	Index	end-users each year	
1.6	Reduced energy	KPI calculates the reduction of energy	2
	curtailment of RES	curtailment due to technical/operational	
	and DER	problems	
1.7	Unbalance of the 3-	Examines the quality of the power supplied	1,3
	phase	by measuring the supply voltage gap	
		between the three phases which should be	
		120 deg	
1.8	Peak Load Reduction	Calculates the peak load reduction before	3
		the IANOS implementation (baseline) and	
		after its interventions (DSM programs and	
		storage system management)	
3.10	Financial benefit for	Evaluates the total cost savings in euros	3
	the end user	for end-users per household due to the	
		project interventions	
3.11	Energy Poverty	Assesses the change in percentage points	3
		of (gross) household income spent on	

		energy bills since the beginning until the	
		end of the project	
4.1	Increased system	Indication of the ability of the system to	3
	flexibility for energy	respond to supply and demand in real time,	
	players	as a measure of the demand side	
		participation in energy markets and in	
		energy efficiency intervention since the	
		beginning until the end of the project	
4.2	Data privacy - Data	This indicator analyses the extent to which	3
	Safety & Level of	regulations on data protection are followed	
	Improvement	and to which proper procedures to protect	
	(Improved Data	personal or private data are implemented	
	Privacy)		
4.5	Increased Reliability	Measures the relative improvement in the	3
		number of interruptions	
5.1	People Reached	Percentage of people in the target group	1,2,3
		that have been reached and/or are	
		activated by the project	
7.1	Social Compatibility	Refers to the extent to which the project's	1,2,3
		solution fits with people's 'frame of mind' and	
		does not negatively challenge people's	
		values or the ways they are used to do things	
7.2	Technical	Examines the extent to which the smart grid	1,2,3
	compatibility	solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end	Provides an indication of the complexity of	1,2,3
	users of the solution	the implemented solution within the IANOS	
		project for the end-users	

1.6 Use case conditions

Use case conditions

Assumptions	
٠	Access to DSO's energy data or retailer's smart meters capable of monitor network
	voltage parameters according to the EN 50160 standard
٠	Existence of distributed energy assets available in the island, capable of being integrated
	and remotely managed or controlled by the iVPP
٠	End-user's permission to shift demand periods

- In Ameland the Grid Operation Platforms for Congestion Solutions interface (GOPACS,) will be integrated with the iVPP decision making logic. GOPACS is a unique initiative in Europe and has resulted from active collaboration between the Dutch TSO and the DSOs. This platform is consistent with key European directives to mitigate grid congestion, while offering large and small market parties an easy way to generate revenues with their available flexibility and contribute to solving congestion situations.
- PV systems' power, voltage and current respect Smart Energy Router specifications.
- Appliances and other loads to be managed by the Smart Energy Router have communication and interaction capabilities (e.g., REST API) so monitoring and control activities can be conducted.
- iVPP set-points to Smart Energy Router take into consideration local restrictions such as storage devices' state of charge or maximum and minimum charging/discharging power.
- Close surveillance of the hybrid transformer during operation on the grid.

Prerequisites

- The criteria for optimization must be defined by the system operator for each island
- Connection from the VPP to storage assets and power production units (hybrid heat pumps, fuel cells, BESS and biobased batteries) in Ameland
- Connection from the VPP to fishing industry cold storage facilities and HVACs in Terceira
- Hybrid Transformer is connected to the iVPP
- Smart Energy Router is connected to the iVPP
- Acceptance and/or certification by the corresponding authority for the installation on the electric distribution grid of the hybrid transformer.
- Hybrid transformer monitoring system communicates with EFACEC asset management platform with cellular communication connection.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases
UC1: Community demand-side driven self-consumption maximization
UC2: Community supply-side optimal dispatch and intra-day services provision
UC3: Island-wide, any-scale storage utilization for fast response ancillary services
distributed storage technologies to help balancing the grid; flywheels, batteries
UC5: Decarbonisation of transport and the role of electric mobility in stabilizing the energy
system
UC9: Active Citizen and LEC Engagement into Decarbonization Transition
Level of depth

Specialized use case

Prioritisation

High level of priority

Generic, regional or national relation

Generic

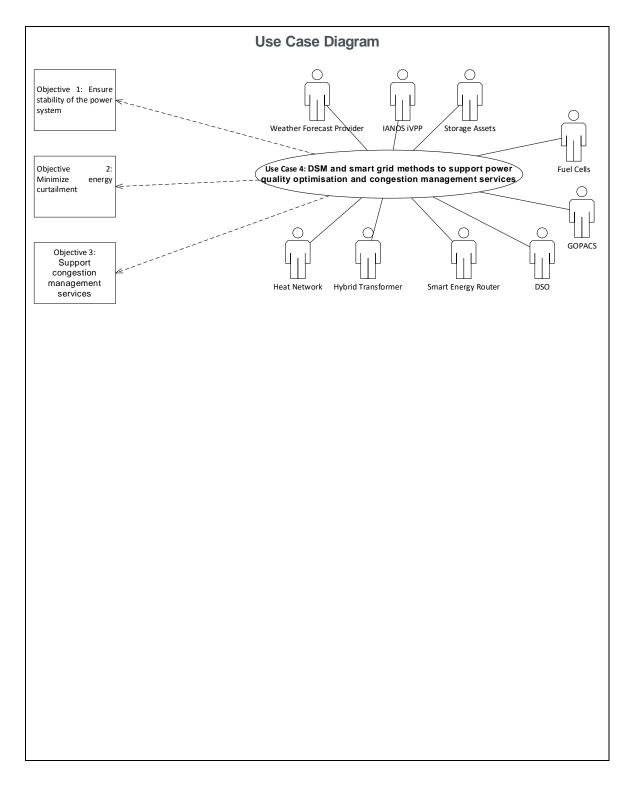
Nature of the use case

Technical use case

Further keywords for classification

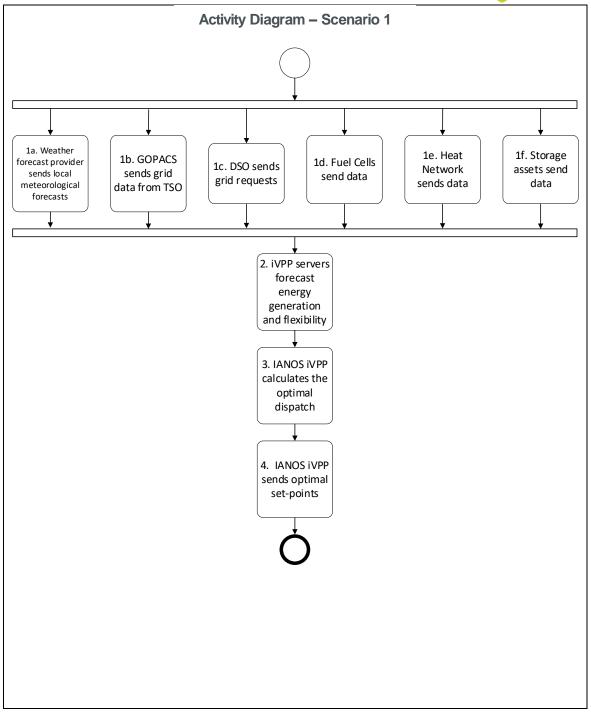
Demand side management, smart grids, smart energy router, hybrid transformer, ancillary services, demand flexibility

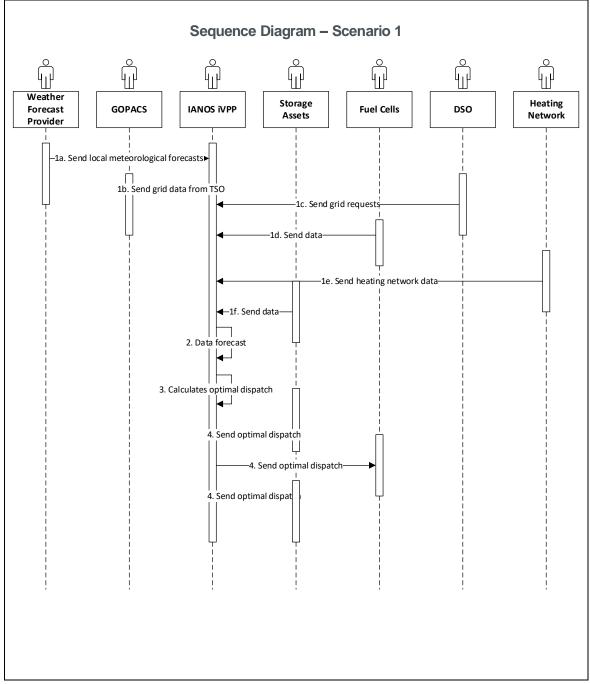
1.8 General Remarks

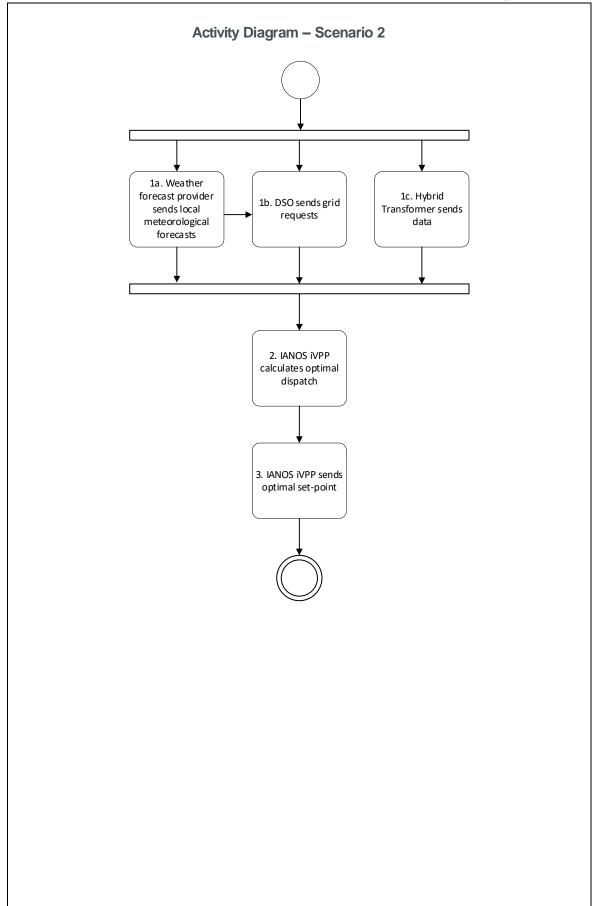

General Remarks

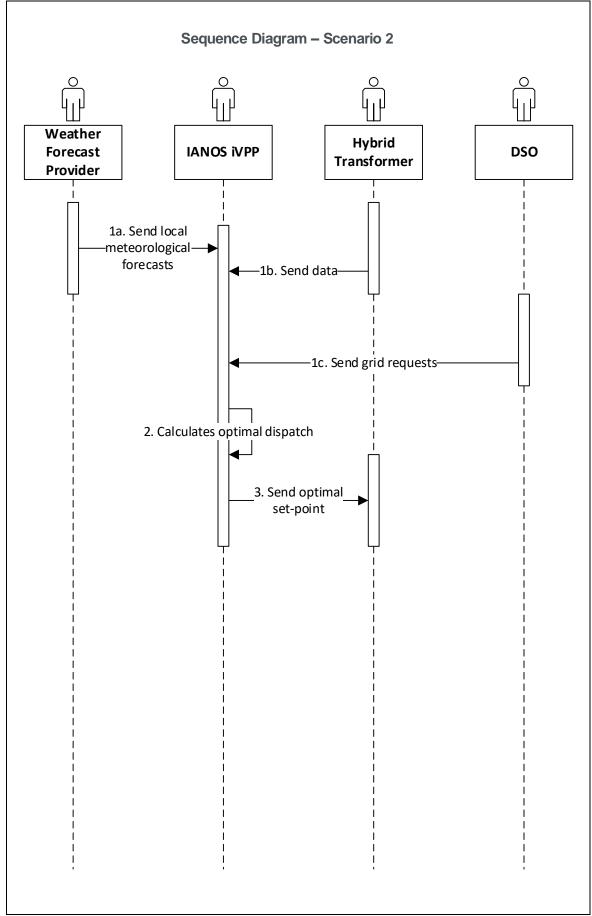
2 Diagrams of use case

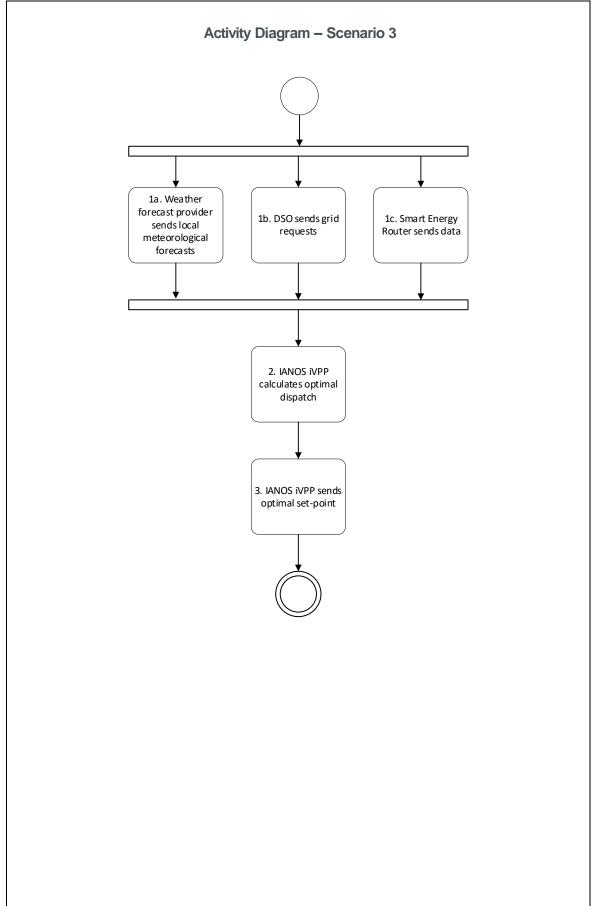
Diagram(s) of use case

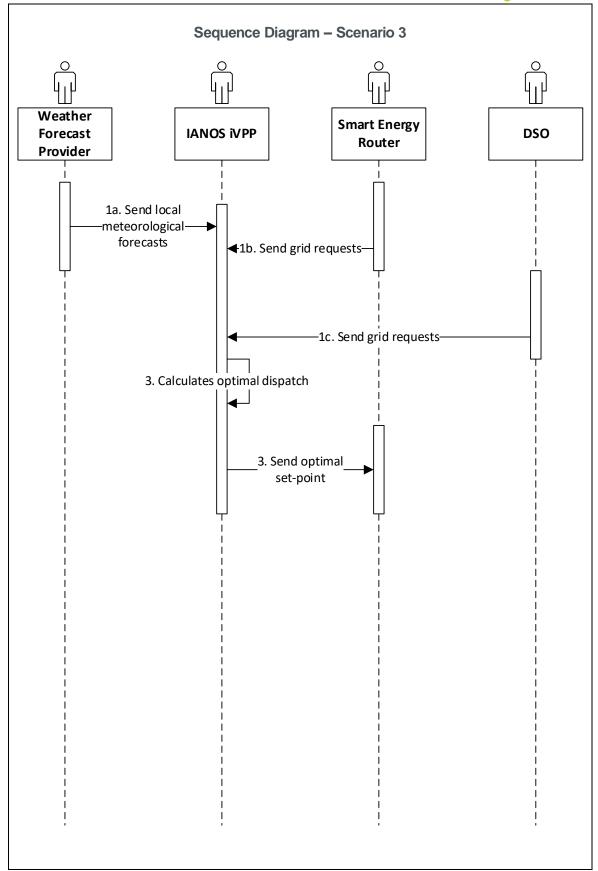












3 Technical details

3.1 Actors

		Actors				
Actor Name	Actor Type	Actor Description				
Weather Forecast		Provides generation, consumption and weather-				
Provider	Role	related operational risks, for a given location and a				
		specific time horizon.				
		The IANOS iVPP sets up a virtual network of				
		decentralized renewable energy resources, both				
		non-dispatchable such as wind, solar, tidal				
		resources and dispatchable ones such as				
		geothermal and green gas CHP plants. Moreover,				
		the iVPP comprises Energy Storage System				
		(ESS), integrated as a single unit, providing				
		flexibility services and fostering island renewable				
	System	energy self-consumption.				
IANOS iVPP		The optimal, autonomous, real-time iVPP operation				
		will be driven by multi-level decision making				
		intelligence, complemented by predictive algorithms				
		for smart integration of grid assets into active				
		network management based on relevant energy				
		profiles. For this purpose, the iVPP is composed of				
		6 different modules: aggregation & classification,				
		forecasting engine, centralized dispatcher,				
		distributed ledger-based energy transactions, virtual				
		energy console and secured enterprise service bus.				
		Assets with the ability of storing energy to be used				
Storage Assets	System	later such as HVACs (heating, ventilation and air				
		conditioning systems), hybrid heat pumps, fishing				

		industry cold storage facilities, BESS and biobased
		batteries.
Fuel Cells	System	Assets with the ability of offering electricity, when necessary, while also supporting the synergy between energy grids (NG and electricity in the specific case). Device with the capability of regulating voltage during operation. This hybrid transformer employs independent control of each phase and features
Hybrid Transformer	Device	such as reactive power or unbalance compensation, which cannot be provided by conventional transformers. It is able to implement a dynamic voltage regulation actuation, in each phase, with unlimited number of operations and with the addition of other features such as the contribution to reactive power compensation, unbalance correction and improvement in the voltage profile quality.
Smart Energy Router	Device	Power electronic device that provides grid-to-grid communication, load management and integration of multiple generation & storage units, heterogeneous appliances and existing distribution grid. Moreover, it also allows to provide ancillary services to the grid.
DSO	Role	Distribution System Operator
Heat Network	System	System which distributes centralized heat to consumers through a system of insulated pipes carrying hot water.
GOPACS	System	Grid Operation Platforms for Congestion Solutions interface (GOPACS) is an unique initiative in Europe

· · · · · · · · · · · · · · · · · · ·
and has resulted from active collaboration between
the Dutch TSO and the DSOs. This platform is
consistent with key European directives to mitigate
grid congestion, while offering large and small
market parties an easy way to generate revenues
with their available flexibility and contribute to
solving congestion situations.

3.2 References

				References		
No.	Reference	Reference	Status	Impact on use	Originator /	Link
	s Type			case	organisation	
1	European	EN 50160	Revised,	Definition of the	CENELEC	https://www.cene
	Standard		1 July	voltage		lec.eu/dyn/www/f
			2010	characteristics		<u>?p=104:110:959</u>
				of electricity		<u>538371060101:::</u>
				supplied by		:FSP_ORG_ID,F
				public electricity		SP LANG ID,FS
				networks		P_PROJECT:12
						<u>58595,25,51993</u>
2	Internatio	IEC		Power	Internation	https://webstore.i
	nal	60076-		transformers -	al	ec.ch/publication/
	Standard	1:2011		Part 1: General	Electrotech	<u>588</u>
					nical	
					Commissio	
					n (IEC)	
3	Commiss	No		Commission		https://ec.europa.
	ion	548/2014		regulation (EU)		eu/growth/single-
	regulatio	of 21 May		No 548/2014 of		market/european
	n (EU)	2014		21 May 2014		=

				implementing		standards/harmo
				Directive		<u>nised-</u>
				2009/125/EC of		standards/ecode
				the European		sign/transformers
				Parliament and		<u>_en</u>
				of the Council		
				with regard to		
				small, medium		
				and large power		
				transformers.		
4	Internatio	IEC	Edition	Power	Internation	https://webstore.i
	nal	60076-24	1.0,	transformers -	al	ec.ch/publication/
	Standard		2020-07	Part 24:	Electrotech	<u>30367</u>
				Specification of	nical	
				voltage	Commissio	
				regulating	n (IEC)	
				distribution		
				transformers		
				(VRDT)		
L		1			1	

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions									
No.	Scenario name	Scenario description	Primary	Triggerin	Pre-condition	Post-				
			actor	g event		condition				
1	Demand-side	The iVPP	IANOS	Periodi	Power	Power				
	management	computes the	iVPP	cally	system	system is				
	capable of	optimal set-point			requires	stable and				
	providing slow	which allows to			balancing	controlled				
		provide slow			services.					

	ancillary	balancing services			No power	
	services	to the grid through			fluxes from	
		storage assets by			or to storage	
		using demand-side			assets	
		flexibility				
2	Voltage	The hybrid	Hybrid	Periodi	Power	Voltage is
	control to	transformer	Transform	cally	system	regulated
	support power	complies with the	er		requires	
	quality	voltage setpoint			voltage	
	optimisation	computed by the			control	
	and	iVPP in order to				
	congestion	ensure a				
	management	continuous power				
	services					
3	Localized	iVPP calculates	Smart	Periodi	Power	Smart
	energy routing	the optimal	Energy	cally	system	Energy
	management	dispatch to the	Router		requires	Router
	capable of	smart energy			balancing	contributes
	providing	router which			services. No	to stabilize
	ancillary	manages the			power fluxes	and control
	services	energy transfer			from or to	the power
		from and to			storage	system
		different sources			assets	
		(RES generators				
		and distribution				
		grid), loads and				
		storage systems in				
		order to provide				
		services to the grid				
		and the consumer				

4.2 Steps – Scenarios

			Scena	rio				
Scena	rio name :	No. 1 - Demand-side r	nanagement capable of providing	slow ancillary s	ervices			
Step	Event	Name of process/	Description of process/ activity	Service	Information	Information	nformation Information	
No.		activity			producer	receiver	Exchanged	R-IDs
					(actor)	(actor)	(IDs)	
1a	Submission	Sends local	Weather forecast provider		Weather	IANOS	1	
	of local	meteorological	sends local meteorological	CREATE	forecast	iVPP		
	weather	forecasts	forecasts		provider			
	forecasts							
1b	Submission	Send grid data from	GOPACS exchange high	REPORT	GOPACS	IANOS	2	
	of grid data	TSO	voltage grid data related to			iVPP		
	from TSO		congestions with iVPP					
1c	Submission	Sends data	DSO sends grid requests to	GET	DSO	IANOS	3	
	of grid		the iVPP			iVPP		
	requests							
1d	Submission	Sends data	Fuel Cells send its data to	GET	Fuel Cells	IANOS	4,5	
	of fuel cell's		the iVPP			iVPP		
	data							

1e	Submission	Sends data	Heat Network sends its data	GET	Heat	IANOS	6
	of heat		to the iVPP		Network	iVPP	
			0				
1f	Submission	Sends data	Storage assets send data to		Storage	IANOS	7,8
	of storage		the iVPP	GET	assets	iVPP	
	asset's data						
2	Data	Forecasts energy	iVPP servers forecast	EXECUTE	IANOS iVPP	IANOS	9,10
	Forecasting	generation and	energy generation from			iVPP	
		flexibility	production-side assets such				
			as fuel cells and flexibility				
			forecasts from storage				
			assets				
3	Calculation	Calculates optimal	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS	-
	of optimal	dispatch	dispatch for the storage			iVPP	
	dispatch		assets considering the				
			provision of slow balancing				
			services to the grid				
4	Submission	Sends set-points	iVPP sends the optimal	CREATE	IANOS iVPP	Storage	11,12
	of optimal		setpoint to storage assets			Assets,	

set-points	and fuel cells		Fuel Cells	

			Scenari	0			
Scena	rio name :	No. 2 - Vol	tage control to suppo	ort power q	uality optimisa	tion and conge	stion
		managemen	t services				
Step	Event	Name of	Description of	Service	Information	Information	Informati
No.		process/	process/ activity		producer	receiver	on
		activity			(actor)	(actor)	Exchang
							ed (IDs)
1a	Submission	Sends	Forecast		Forecast	IANOS	1
	of local	local	Provider sends	CREA	provider	iVPP	
	weather	meteorol	local	TE			
	forecasts	ogical	meteorological				
		forecasts	forecasts				
1b	Submission	Sends	DSO sends grid	GET	DSO	IANOS	3
	of grid	requests	requests to the			iVPP	
	requests		iVPP				
1c	Submission	Sends	Hybrid		Hybrid	IANOS	13
	of hybrid	data	Transformer	GET	Transform	iVPP	
	transformer		sends data to		er		
	data		the iVPP				
2	Calculation	Calculate	iVPP computes	EXEC	IANOS	IANOS	-
	of optimal	s optimal	the optimal	UTE	iVPP	iVPP	
	dispatch	dispatch	voltage dispatch				
			for the hybrid				
			transformer in				
			order to fix the				
			voltage				
			between				
			phases and				
			regulate the				
			voltage in the				

				power system				
3	Sub	mission	Sends	iVPP sends the	CREA	IANOS	Hybrid	14
	of	optimal	set-points	optimal setpoint	TE	iVPP	Transform	
	set-	points		to the hybrid			er	
				transformer				

	Scenario						
Scena	rio name :	No. 3 - Localized energy routing management capable of providing ancillary					
		services					
Step	Event	Name of	Description of	Service	Information	Informatio	Informati
No.		process/	process/ activity		producer	n receiver	on
		activity			(actor)	(actor)	Exchang
							ed (IDs)
1a	Submission	Sends	Forecast		Forecast	IANOS	1
	of local	local	Provider sends	CREA	provider	iVPP	
	weather	meteorolo	local	TE			
	forecasts	gical	meteorological				
		forecasts	forecasts				
1b	Submission	Sends	DSO sends grid	GET	DSO	IANOS	3
	of grid	grid	requests to the			iVPP	
	requests	requests	iVPP				
1c	Submission	Sends	Smart Energy		Smart	IANOS	15
	of smart	data	Router sends	CREA	Energy	iVPP	
	energy		data to the iVPP	TE	Router		
	router data						
2	Calculation	Calculate	iVPP computes	EXEC	IANOS	IANOS	-
	of optimal	s optimal	the optimal	UTE	iVPP	iVPP	
	dispatch	dispatch	dispatch for the				
			smart energy				
			router				

						· · · · · · · · · · · · · · · · · · ·	
3	Submission	Sends	iVPP sends the	CREA	IANOS	Smart	16
	of optimal	set-point	optimal setpoint	TE	iVPP	Energy	
	set-point		to the smart			Router	
			energy router				

5 Information exchanged

Information	Name of information	Description of information exchanged
exchanged (ID)		
1	Local meteorological forecasts	Expected irradiances and wind speeds for
		specific locations
2	HV grid data	High voltage grid real-time data related with
		congestions; Bids.
3	Grid Requests	Grid requests
4	Fuel Cells hard technical	Minimum and maximum natural gas and
	constraints	hydrogen flow rates; temperature range,
		maximum total power output (kW)
5	Fuel Cells real-time data	Available NG flow rates; temperature at FC
		Anode
6	Heating Network Data	Heating network status, real-time data
7	Storage Assets hard technical	Minimum and maximum SoC and charging and
	constraints	discharging power; User preferences
8	Storage Assets real-time data	SoC, temperature, etc
9	Forecasted Energy Generation	Forecasted energy supply data
	Data	from production-side assets such as Fuel Cells
10	Forecasted Flexibility Data	Forecasted flexibility from the several storage
		assets
11	Optimal Set-points for storage	Optimal power dispatch computed by the iVPP
	assets	for storage assets. It is the amount of power
		from the grid that will be stored in the storage
		assets or the amount of power sent to the grid

		from the storage assets to provide slow
		balancing services
12	Optimal Set-points for fuel cells	Optimal power dispatch computed by the iVPP
		for fuel cells. It is the amount of power sent to
		the grid from fuel cells to provide balancing
		services
13	Hybrid Transformer real-time	Operational data (oil temperatures and
	data	dissolved moisture; voltages and currents
		measured on LV side) and ambient related
		operational data (temperature and humidity;
		noise and vibration) from transformer to iVPP.
14	Optimal Set-point for hybrid	Optimal voltage dispatch computed by the
	transformer	iVPP for the hybrid transformer. It corresponds
		to the voltage required to fix the voltage
		between phases
15	Smart Energy Router Data	Real-time building-level generation and local
		storage state of charge data
16	Optimal Set-point for Smart	Optimal energy dispatch computed by the
	Energy Router	iVPP for the smart energy router. It
		corresponds to the amount of power that will be
		provided to the grid or to the loads or storage
		systems

6 Requirements

	Requirements	
Categories Category name for requirements		Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety
		issues

R-BUS	Business Requirement	Business requirements to
IN DOO		
		achieve operational state
		of iVPP per UC
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the system
R-CONF.	Configuration Requirement	Requirements applicable to the
		electrical, physical and digital
		configuration applicable to enable the
		asset's operation.
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-USER	User requirement	Requirements related with the user
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus) to
		enhance data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-SEC4	Network security measures for data	Establishes the ways in which
	exchange with hybrid transformer	communication between the iVPP and
		the
		hybrid transformer system can be done
		hybrid transformer system can be done safely.

R-SEC5	Hybrid transformer site safety	Establishes the safety guidelines
		applicable to the physical location
		where the hybrid transformer is
		installed.
R-BUS1	Assets optimal location	Specification of the
		candidate assets location in pilot sites
R-BUS2	Physical installation and grid integration	Storage assets providers or operators
		or integrators will physically integrate
		the asset with the local energy system
R-BUS3	Installation of monitoring infrastructure	The necessary monitoring
		infrastructure will be installed
R-BUS4	Prequalification of asset with the	Assets should follow grid code
	transmission code requirements	requirements according to the services
		to be provided
R-FUN1	Day-ahead load and/or generation	iVPP can predict the load and/or
	forecast	generation of its assets for the following
		day
R-FUN2	Intraday load and/or generation forecast	iVPP can predict the load and/or
		generation of its assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the prosumers'
		flexibility
R-FUN4	Flexibility segmentation	iVPP can break down the total DR
		requirement into the available assets
R-FUN5	3-phase balancing	Ability of Smart Energy Router to
		provide 3-phase load balancing
R-FUN6	Dispatch prioritization	iVPP can select the most appropriate
		asset(s) to deliver the
		requested service

R-CONF1	Hybrid transformer electrical connection	Defines the electrical connection
R-CONF1	Hybrid transformer electrical connection	
		parameters required to install the
		hybrid transformer to the grid.
R-CONF2	Hybrid transformer control	Defines how the iVPP communicates
	communication	with the hybrid transformer.
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator
		request
R-USER1	Opt-out option from DR service	Prosumer having the option to opt-out
		from demand response service before
		activation (and a certain time)
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability
R-COM2	Smart Energy Router interaction with	Appliances and other loads to be
	appliances and other loads	managed by the Smart Energy Router
		have communication and interaction
		capabilities (e.g., REST API) so
		monitoring and control activities can be
		conducted.

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
BESS	Battery Energy Storage Systems	
CHP	Combined Heat and Power	
DR	Demand Response	
DSM	Demand-Side Management	

B 8 8	
DSO	Distribution System Operator
FC	Fuel Cell
GDPR	General Data Protection Regulation
GOPACS	Grid Operation Platforms for Congestion Solutions
HVAC	Heating, Ventilating and Air Conditioning
iVPP	Intelligent Virtual Power Plant
LEC	Local Energy Communities
LV	Low Voltage
MV	Medium Voltage
NG	Natural Gas
RES	Renewable Energy Sources
SGAM	Smart Grid Architecture Model
SoC	State of Charge
TSO	Transmission System Operator
UC	Use Case
UI	User Interface

6.2 Transition Track 2: Use Cases

Transition Track 2 comprises all the Use Cases that demonstrate the potential of electrification as a mean to decarbonize relevant sectors along with non-emitting fuels utilization for cross-resource integration (e.g. hydrogen) and circular economy. Thereby, the decarbonization of the transport (UC5) and industry sector (UC6) as well as means to decarbonize the gas grid through the utilization of waste streams for energy production (UC7) and the heating network (UC8) are demonstrated in four Use Cases.

6.2.1 Use case 5: Decarbonization of transport and the role of electric

mobility in stabilizing the energy system

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and	Decarbonization of transport and the role of electric
	grid support for	mobility in stabilizing the energy system
	extremely high RES	
	penetration	

1.2 Version management

		Version Mana	gement
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	EDP NEW	First draft
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	CommentsandinputsonActors,ScenariosSuggestionofinclusionofinformationregardingprotocolsforcommunication/informationdataexchangeaccording toSGAMarchitecture
3	08.03.2021	Nuno Costa (EFACEC MOBILITY)	Comments on Use Case conditions, Information Exchanged
4	09.03.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios
5	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
6	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
7	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version

1.3 Scope and objectives of use case

Scope and Objectives of Use Case

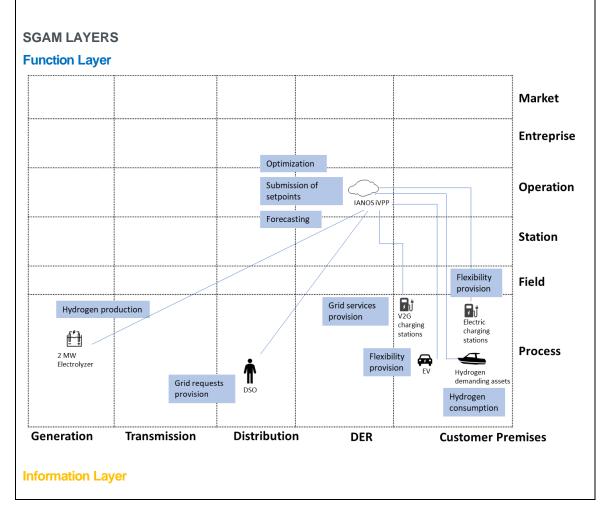
Scope	The scope of this Use Case is the decarbonization of the transport sector. Accordingly, it aims to install electric chargers in the islands to promote electric mobility. Moreover, it also aims to demonstrate the provision of grid services from electric vehicles leveraging charging stations with V2G capabilities.
	Apart from electrification, this use case also demonstrates other alternative fuels such as hydrogen to fuel water taxis.
	This Use Case focuses on the decarbonization of the transport sector on the
	islands, therefore it has the following objectives:
Objective(s)	 Present a clear roadmap to decarbonize the transport sector Study the potential of electric chargers, hydrogen taxis, V2G and smart
	charging schemes to reach decarbonization targets
	3. Offer flexibility in the electricity grid

1.4 Narrative of use case

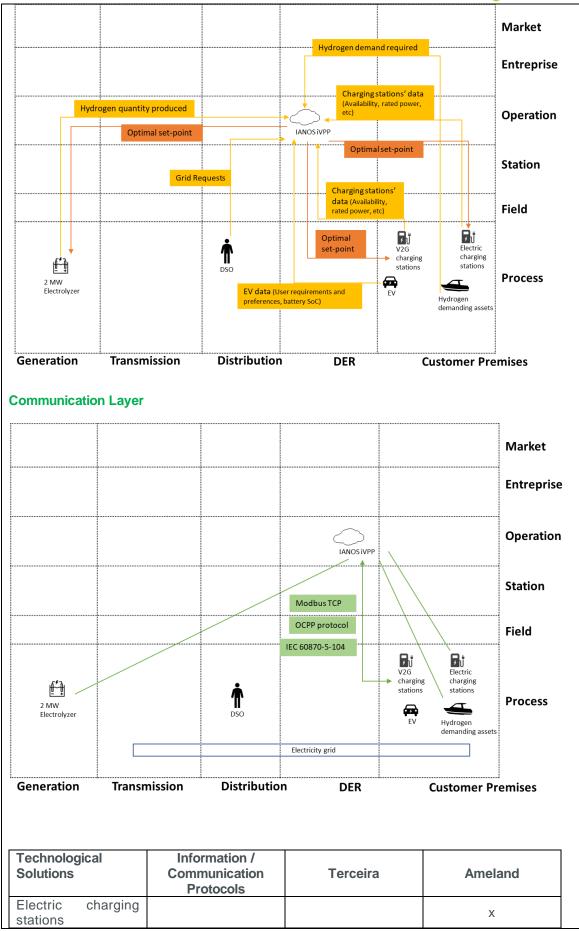
Narrative of Use Case

Short description

This Use Case aims to define a roadmap to reach decarbonization in the transport sector on the islands. Moreover, it explores the growth potential of EV chargers with or without V2G capabilities and smart charging schemes. The Intelligent Virtual Power Plant (iVPP) will manage the power flows of these chargers in order to ensure the stability of the power system.


Complete description

This Use Case intends to define a roadmap to decarbonize the transport sector of Ameland and Terceira islands, while also offering flexibility in the electricity grid. For this purpose, EV charging stations are installed to evaluate its growth potential. All the EV charging stations are connected to the iVPP which controls their charging and discharging modes. Some of these charging stations have V2G technology and therefore allow the provision of grid services such as the contribution to frequency and voltage regulation. Apart from V2G charging stations, smart charging schemes will also be analysed with the aim of providing flexibility to the power system.



Moreover, this Use Case will also study the potential of hydrogen fuelled water taxis, to support the decarbonization of the transport sector, taking advantage of the hydrogen produced from the electrolyser in the case of Ameland (UC#2).

V2G charging stations	Usually the EV Chargers are equipped with the OCPP protocol. These V2G chargers support also some field buses (Modbus TCP) for the interface with other management systems. It can also be considered automation protocols such as the IEC 60870-5- 104.	Х	
EV	-	Х	
Hydrogen Demanding Assets (water taxis) Electrolyzer			X
Electrolyzer			^

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Name Description	
			case objectives
1.4	Energy Savings	Calculates the reduction of the energy	1,2
		consumption to reach the same services	
		(e.g. Comfort levels) after the	
		interventions, taking into consideration	
		the energy consumption from the	
		reference period	
1.6	Reduced energy	KPI calculates the reduction of energy	2
	curtailment of RES and	curtailment due to technical/operational	
	DER	problems	
1.7	Unbalance of the 3-phase	Examines the quality of the power supplied	3
		by measuring the supply voltage gap	
		between the three phases which should be	
		120 deg	
1.1	Storage capacity of the	Compares the storage capacity with the	2,3
0	island's energy grid per	total energy consumption of the island	
	total island energy		
	consumption		

consumptionwhich is not consumed anymore because of IANOS demonstrated solutions (e.g. Electrification of transport, RES penetration)2.2Reduced Greenhouse Gas EmissionsMeasures the reduction of greenhouse gas emissions1.2.4Air quality index (Air pollution)Measures air quality according to the concentration of major air pollutants1.4.1Increased system flexibility for energy playersIndication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project2.4.3ICT Response TimeRelated to the services developed and a the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project2.	,2 ,2 ,2 2,3
of IANOS demonstrated solutions (e.g. Electrification of transport, RES penetration)2.2Reduced Greenhouse Gas EmissionsMeasures the reduction of greenhouse gas emissions2.4Air quality index (Air pollution)Measures air quality according to the concentration of major air pollutants4.1Increased system flexibility for energy playersIndication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side 	,2
Electrification of transport, RES penetration)2.2Reduced Greenhouse Gas EmissionsMeasures the reduction of greenhouse gas emissions2.4Air quality index (Air pollution)Measures air quality according to the concentration of major air pollutants4.1Increased system flexibility for energy playersIndication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project1.4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The1.	,2
2.2Reduced Greenhouse Gas EmissionsMeasures the reduction of greenhouse gas emissions2.4Air quality index (Air pollution)Measures air quality according to the concentration of major air pollutants4.1Increased system flexibility for energy playersIndication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	,2
2.2 Reduced Greenhouse Gas Measures the reduction of greenhouse 1 2.4 Air quality index (Air pollution) Measures air quality according to the pollutants 1 4.1 Increased system flexibility for energy players Indication of the ability of the system to participation in energy markets and in energy efficiency intervention since the beginning until the end of the project 2 4.3 ICT Response Time Related to the services developed and the project is applicable to the various platforms and ICT deployment actions and services in the project 1 4.4 Increased hosting capacity for RES, electric vehicles and other new loads Gives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	,2
Emissionsgas emissions2.4Air quality index (Air pollution)Measures air quality according to the concentration of major air pollutants4.1Increased system flexibility for energy playersIndication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	,2
 2.4 Air quality index (Air pollution) 4.1 Increased system flexibility for energy players 4.1 Increased system flexibility for energy players 4.3 ICT Response Time 4.3 ICT Response Time 4.4 Increased hosting capacity for RES, electric vehicles and other new loads 4.4 Increased hosting capacity for RES, electric vehicles and other new loads 4.4 Increased hosting capacity for RES, electric vehicles and energy management techniques are applied (e.g. VPP platform). The 	
pollution)concentration of major air pollutants4.1Increased system flexibility for energy playersIndication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
 4.1 Increased system flexibility for energy players 4.1 Increased system flexibility for energy players 4.3 ICT Response Time 4.3 ICT Response Time 4.4 Increased hosting capacity for RES, electric vehicles and other new loads 4.4 Increased hosting capacity for RES, electric vehicles and other new loads 4.4 Increased hosting capacity for RES, electric vehicles and energy management techniques are applied (e.g. VPP platform). The 	2,3
for energy playersrespond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project24.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	,
time, as a measure of the demand side participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project24.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
Participation in energy markets and in energy efficiency intervention since the beginning until the end of the project4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project24.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project24.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
4.3ICT Response TimeRelated to the services developed and the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project24.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
 4.3 ICT Response Time Related to the services developed and 2 the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project 4.4 Increased hosting capacity for RES, electric vehicles and other new loads 4.4 Increased hosting capacity for RES, electric vehicles and other new loads 4.4 Electric vehicles and energy management techniques are applied (e.g. VPP platform). The 	
 the payload (information exchanged) between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project 4.4 Increased hosting capacity for RES, electric vehicles and other new loads Gives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The 	
 between them. The indicator is applicable to the various platforms and ICT deployment actions and services in the project 4.4 Increased hosting capacity for RES, electric vehicles and other new loads Gives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The 	
4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The1	
4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
4.4Increased hosting capacity for RES, electric vehicles and other new loadsGives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	
and other new loads the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The	,2,3
and energy management techniques are applied (e.g. VPP platform). The	
applied (e.g. VPP platform). The	
calculation is realized by comparing the	
calculation to rounzou by comparing the	
network capacity before and after IANOS	
implementation	
4.5 Increased Reliability Measures the relative improvement in 3	
the number of interruptions	
7.1 Social Compatibility Refers to the extent to which the project's 1	,2,3
solution fits with people's 'frame of mind'	1
and does not negatively challenge	
people's values or the ways they are used	
to do things	
7.2 Technical compatibility Examines the extent to which the smart 1.	
grid solutions fit with the current existing	,2,3
technological standards/infrastructures	,2,3

7.3	Ease of use for end users of	Provides an indication of the complexity of	1,2,3
	the solution	the implemented solution within the IANOS	
		project for the end-users	

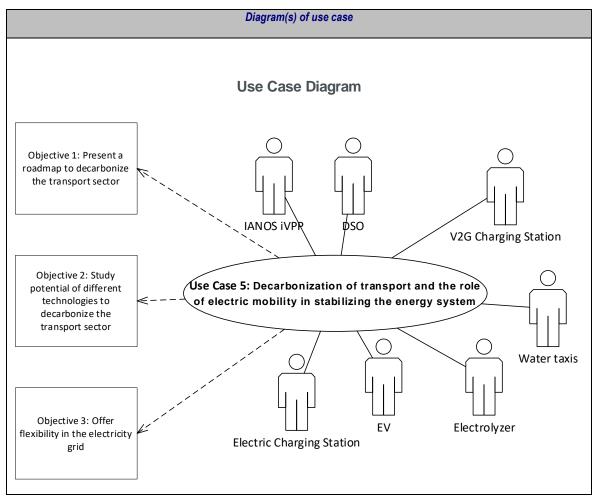
1.6 Use case conditions

Use case conditions			
Assumptions			
 Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP Bidirectional smart meters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time There are EVs and charging stations on the islands, including models with the V2G operation mode Some charging stations have V2G technology 			
Prerequisites			
 All available energy assets can be integrated on the iVPP platform Communication between charging station and EV established for all EV types For the V2G scenario, the EV allows the bidirectional power flow with the grid and is authorized to operate on this mode 			

- Connection between iVPP and the EV manufacturer API with the battery SoC information
- Communication between all energy assets and the iVPP
- Connection between iVPP and charging stations
- A (physical) hosting environment on which the iVPP can be established.

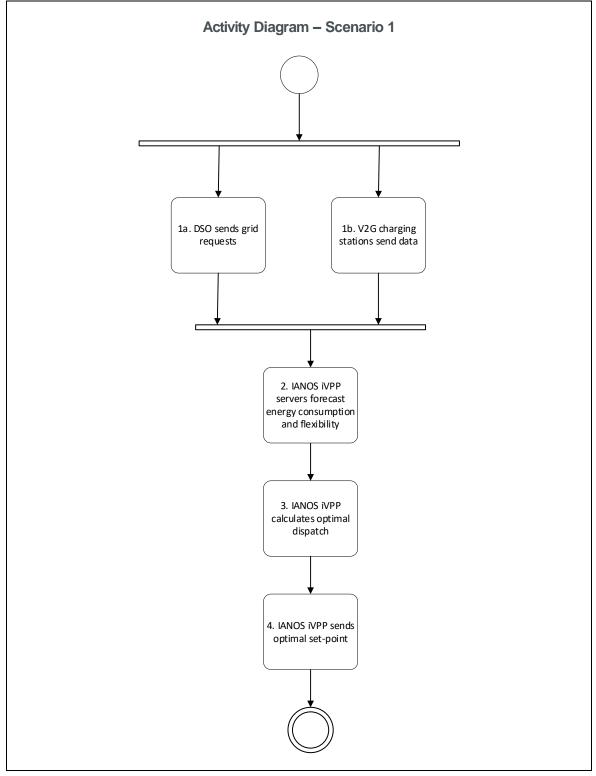
1.7 Further Information to the use case for classification / mapping

Classification Information		
Relation to other use cases		
UC1: Community demand-side driven self-consumption maximization		
UC4: Demand Side Management and Smart Grid methods to support Power quality and		
congestion management services		
Level of depth		
High level use case		
Prioritisation		
High level of priority		
Generic, regional or national relation		
Generic		
Nature of the use case		
Technical use case		
Further keywords for classification		

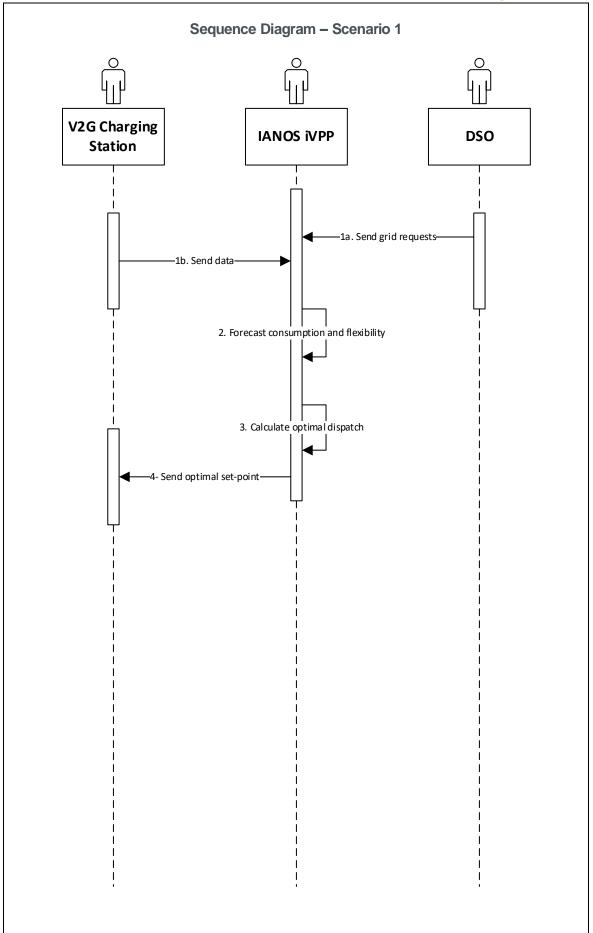


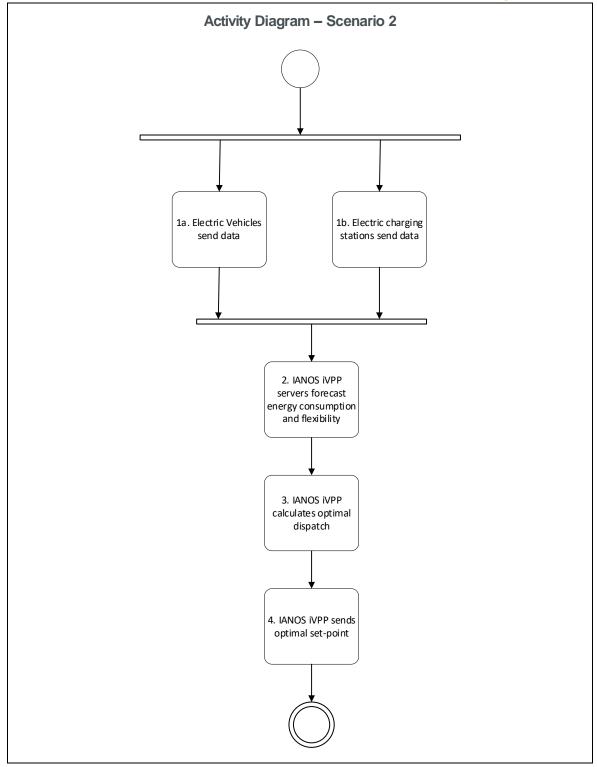
Electric vehicles, V2G, decarbonization, transport sector, smart charging, EV chargers, hydrogen taxis, electric mobility

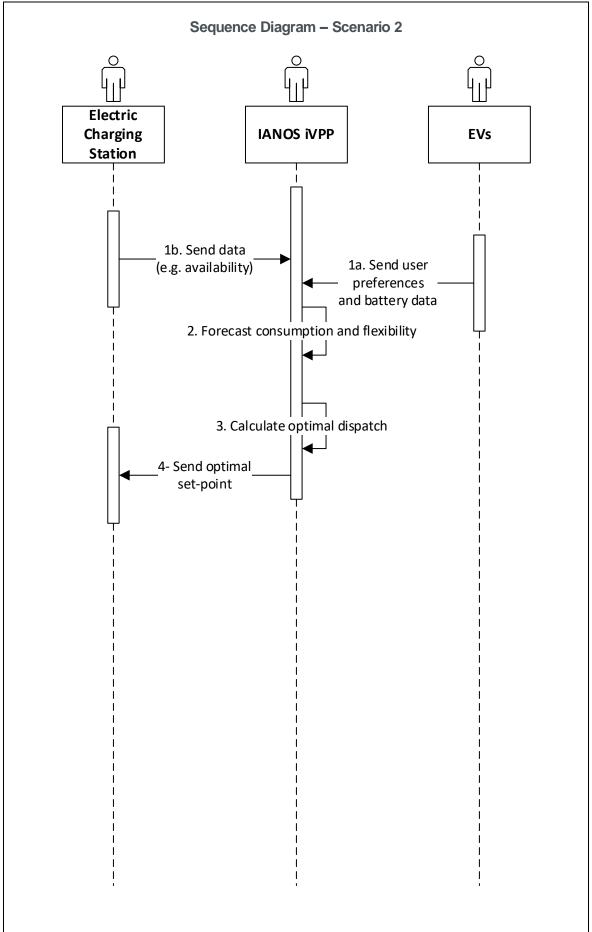
1.8 General Remarks

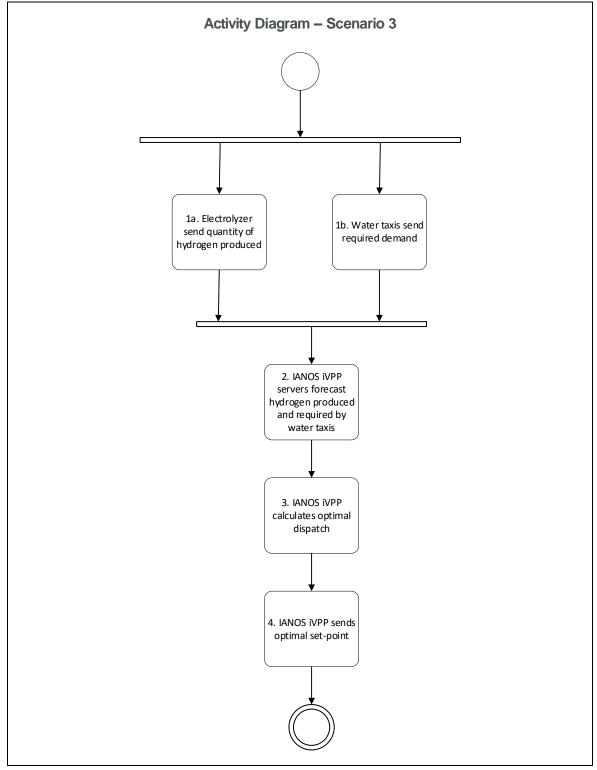

General Remarks

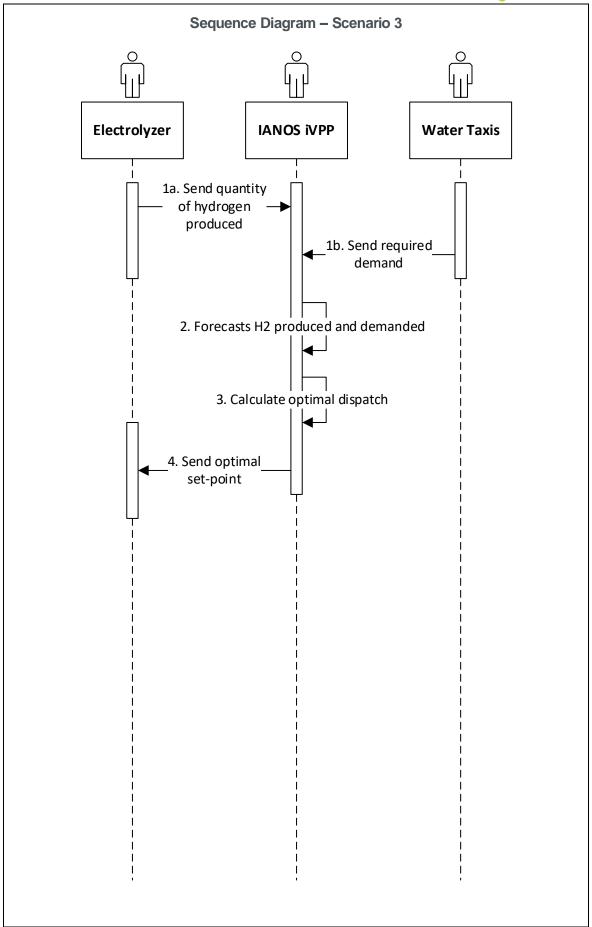
2 Diagrams of use case











3 Technical details

3.1 Actors

		Actors
Actor Name	Actor Type	Actor Description
		The IANOS iVPP sets up a virtual network of
		decentralized renewable energy resources, both
		non-dispatchable such as wind, solar, tidal
		resources and dispatchable ones such as
		geothermal and green gas CHP plants. Moreover,
		the iVPP comprises Energy Storage Systems
		(ESS), integrated as a single unit, providing
		flexibility services and fostering island renewable
		energy self-consumption.
IANOS iVPP	System	The optimal, autonomous, real-time iVPP operation
		will be driven by multi-level decision making
		intelligence, complemented by predictive algorithms
		for smart integration of grid assets into active
		network management based on relevant energy
		profiles. For this purpose, the iVPP is composed of
		6 different modules: aggregation & classification,
		forecasting engine, centralized dispatcher,
		distributed ledger-based energy transactions, virtual
		energy console and secured enterprise service bus
DSO	Role	Distribution System Operator
		Bidirectional system that connects an electric
	System	vehicle (EV) to a source of electricity. Besides
V2G Charging Station		recharging the vehicle's battery, it enables to
		provide balancing services

Electric Charging	System	System that connects an electric vehicle (EV) to a				
Station	Cycloni	source of electricity to recharge vehicle's battery				
Electric Vehicle	System	A vehicle with an electric drive and a battery which				
	Cycloni	can be charged at a charging station				
Electrolyzer	System	System which produces hydrogen from electricity				
	Cycloni	through water electrolysis				
Water Taxis	System	Hydrogen fueled water taxis with capacity of 12				
	-,	people				

3.2 References

	References					
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions					
No.	Scenario name	Scenario description	Primary	Triggering	Pre-	Post-
			actor	event	condition	condition
1	The use of	iVPP is connected to	IANOS	EV is	Power	V2G
	V2G for	V2G charging	iVPP	connected	system	charging
	power system	stations and		to the	requires	station
	stabilization	manages power		charging	balancing	charges
		fluxes allowing the		station	services	EVs or
		provision of			No power	provide
		balancing services to			fluxes	energy to
		the grid			between	the grid
					the grid and	for

				charging	balancing
				station	services.
					Power
					system is
					stable
The use of	iVPP is connected to	IANOS	EV is	No power	Electric
smart	electric charging	iVPP	connected	fluxes	charging
charging for	stations and		to the	between	station
power system	manages power		charging	the electric	charges
stabilization	fluxes from the grid to		station	charging	EV
	the station			station and	
	considering the end-			the EV	
	user profile and				
	ensuring the stability				
	of the power system				
The use of	iVPP is connected to	IANOS	Available	Water taxis	Transport
hydrogen for	the electrolyzer and	iVPP	H2	need to be	of H2 from
mobility in	manages the		quantities	fuelled	the
order to	hydrogen quantity				Electrolys
decarbonize	which can be used to				er to the
the transport	fuel hydrogen water				water
sector	taxis and the				taxis
	possible transport				harbour
	mean to transport the				
	hydrogen to water				
	taxis (e.g trucks)				
	smart charging for power system stabilization The use of hydrogen for mobility in order to decarbonize the transport	smart electric charging for stations and power system manages power gruther fluxes from tegrid to fluxes from tegrid to the station the station considering the end-user profile and user profile and ensuring the stability of the power system of the electrotyzer and hydrogen for the electrotyzer and nobility in manages the order to hydrogen for the transport fuel hydrogen system sector the transport fuel hydrogen to mean to transport the hydrogen to hydrogent	smart electric charging iVPP charging for stations and power system manages power stabilization fluxes from the grid to fluxes from the grid to the station the station considering the end- user profile and user profile and ensuring the stability of the power system The use of iVPP is connected to hydrogen for the electrolyzer and iVPP mobility in manages the order to hydrogen quantity decarbonize which can be used to the transport sector taxis and the possible transport mean to transport the hydrogen to water	smart electric charging iVPP connected charging for stations and to to the power system manages power into the grid to the stabilization fluxes from the grid to the station the station into the grid to the station into the grid to the station into the grid to the ensuring the end- ensuring the stability into the grid to the grower system into the grid to the ensuring the stability into the electrolyzer and into the electrolyzer and into the electrolyzer and into the station int	Image: sectorImage:

4.2 Steps – Scenarios

			Scenario				
Scena	Scenario name : No. 1 - The use of V2G for power system stabilization						
Step No.			Description of process/ activity Service		Information producer (actor)	Information receiver (actor)	Information Exchanged (IDs)
1a	Submission of grid data	Sends grid requests	DSO sends grid requests to the iVPP	GET	DSO	IANOS iVPP	1
1b	Submission of V2G charging station data	Sends data V2G charging station se data to the iVPP		GET	V2G charging station	IANOS iVPP	2,3
2	Data forecast	Forecasts	iVPP servers forecast energy consumption and flexibility	EXECUT	IANOS iVPP	IANOS iVPP	4,5
3	Calculation of optimal dispatch	Calculates the optimal dispatch	iVPP computes the optimal dispatch for V2G charging stations in order to ensure energy supply to EVs and	EXECUT	IANOS iVPP	IANOS iVPP	-

			also the provision of				
			balancing services to the				
			grid by the V2G chargers	grid by the V2G chargers			
			when required				
4	Submission	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	V2G	6
	of optimal	points	setpoint to the V2G			charging	
	set-points		charging stations			stations	

	Scenario						
Scena	rio name :	No. 2 - The us	e of smart charging for power syst	tem stabilizatio	on		
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information
No.		process/			producer	receiver	Exchanged
		activity			(actor)	(actor)	(IDs)
1a	Submission	Send user	EVs send user preferences	REPORT	EV	IANOS	7
	of EV's data	preferences	and battery data such as			iVPP	
		and battery	SoC				
		data					
1b	Submission	Sends data	Electric charging station	GET	Electric	IANOS	8,9
	of electric		sends data to the iVPP		charging	iVPP	

	ah a rain a						
	charging				station		
	station data						
2	Data	Forecasts	iVPP servers forecast	EXECUT	IANOS iVPP	IANOS	4,5
	forecast		energy consumption and	E		iVPP	
			flexibility				
3	Calculation	Calculates	iVPP computes the optimal	EXECUT	IANOS iVPP	IANOS	-
	of optimal	the optimal	dispatch for electric	E		iVPP	
	dispatch	dispatch	charging stations in order to				
			stabilize the energy system				
			while simultaneously				
			ensuring user's preferences				
			and requirements.				
4	Submission	Sends set-	iVPP sends the optimal set-	CREATE	IANOS iVPP	Electric	10
	of optimal	point	point to the electric charging			charging	
	set-points		stations			stations	

	Scenario						
Scena	ario name :	No. 3 - The use of hydrogen for mobility in order to decarbonize the transport sector					
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information

No.		process/			producer	receiver	Exchanged
110.		p100033/			producer	receiver	Lichangeu
		activity			(actor)	(actor)	(IDs)
1a	Submission	Send	Electrolyzer sends quantity	GET	Electrolyzer	IANOS	11
	of	quantity	of hydrogen produced to the			iVPP	
	electrolyzer	of hydrogen	iVPP				
	data	produced					
1b	Submission	Sends	Water taxis send required	GET	Water Taxis	IANOS	12
	of water taxis	required	demand to the iVPP			iVPP	
	data	demand					
2	Data	Forecasts	iVPP servers forecast	EXECUT	IANOS iVPP	IANOS	13,14
	forecast		hydrogen produced and	E		iVPP	
			hydrogen required by water				
			taxis				
3	Calculation	Calculates	iVPP computes the optimal	EXECUT	IANOS iVPP	IANOS	-
	of optimal	the optimal	dispatch for the electrolyzer	E		iVPP	
	dispatch	dispatch	in order to assure water				
			taxis demand				
4	Submission	Sends set-	iVPP sends the optimal	CREAT	IANOS iVPP	Electrolyzer	15
	of optimal	points	setpoint to the electrolyzer				

			OS	
set-points				

5 Information exchanged

		Information exchanged
Information	Name of information	Description of information exchanged
exchanged (ID)		
1	Grid Requests	Grid requests
2	V2G charging	Availability, etc
	station real-time	
	data	
3	V2G charging	Rated power, etc
	station hard	
	technical constraints	
4	Forecasted Energy	EV's forecasted energy consumption data
	Consumption Data	
5	Forecasted	Forecasted flexibility from EVs
	Flexibility Data	
6	Optimal Setpoints	Optimal energy dispatch computed by the iVPP for V2G
	for V2G charging	charging stations. It is the amount of power from the grid
	stations	that will be provided to the V2G charger to charge EVs or
		to be stored for later use. Moreover, it may also represent
		the amount of energy used for providing balancing
		services to the grid from the V2G charger (if the EV allows
		the bidirectional power flow with the grid and is authorized
		to operate on this mode)
7	EV data	User preferences, battery SoC
8	Electric charging	Availability, etc
	station real-time	
	data	
9	Electric charging	Rated power, etc
	station hard	
	technical constraints	
	technical constraints	

10	Optimal Setpoints	Optimal energy dispatch computed by the iVPP for electric
	for electric charging	charging stations. It is the amount of power from the grid
	stations	that will be provided to the electric charger to charge EVs
		or to be stored for later use. Additionally, it may also
		represent the start and end of the charging and
		discharging modes
11	Hydrogen quantity	Hydrogen produced at real-time
12	Water taxis demand	Hydrogen consumption and demand from water taxis
13	Forecasted H2	Forecasted hydrogen production from the electrolyzer
	production	
14	Forecasted H2	Forecasted hydrogen demand from water taxis
	demand	
15	Optimal Set-point for	Optimal power dispatch computed by the iVPP for the
	electrolyzer	electrolyzer. It corresponds to the amount of hydrogen that
		should be transported to water taxis to meet their demand.

Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-SEC.	Security Requirement	Requirements related to the safety
		issues
Requirement	Requirement name	Requirement description
R-ID		

R-FUN1	Charging/discharging constraints	Defines the period for
		charging/discharging the EV, including
		the considerations related with the user
		authorisation and battery SoC
		expectation after the charging process
R-FUN2	Receive Operator's requests	iVPP having the ability to receive
		requests for service activation (e.g.
		congestion management) from System
		Operator (TSO or DSO)
R-FUN4	Activation of iVPP EV assets to provide	iVPP having the ability to activate EVs
	secondary regulation	to provide Frequency Restoration
		Reserves (FRR) within 5-15 minutes
R-FUN5	Activation of iVPP EV assets to provide	EV battery inverter can be
	voltage support	automatically triggered to provide
		voltage control within seconds
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability
		Interoperability
R-COM2	iVPP minimum communication	Bandwidth and latency are ensured to
R-COM2	iVPP minimum communication requirements	
R-COM2		Bandwidth and latency are ensured to
R-COM2		Bandwidth and latency are ensured to follow min. requirements according to
R-COM2		Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g.
	requirements	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR)
	requirements	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR) iVPP operation can be visually
R-UI1	requirements Graphical visualization of iVPP operation	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR) iVPP operation can be visually inspected through the use of KPIs
R-UI1	requirements Graphical visualization of iVPP operation	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR) iVPP operation can be visually inspected through the use of KPIs iVPP can produce reports on system
R-UI1	requirements Graphical visualization of iVPP operation	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR) iVPP operation can be visually inspected through the use of KPIs iVPP can produce reports on system performance upon iVPP Operator
R-UI1 R-UI2	requirements Graphical visualization of iVPP operation Reporting	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR) iVPP operation can be visually inspected through the use of KPIs iVPP can produce reports on system performance upon iVPP Operator request
R-UI1 R-UI2	requirements Graphical visualization of iVPP operation Reporting	Bandwidth and latency are ensured to follow min. requirements according to the level of service to be delivered (e.g. mFRR, aFRR) iVPP operation can be visually inspected through the use of KPIs iVPP can produce reports on system performance upon iVPP Operator request iVPP functions are accessible from

R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g.
		secure communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
DER	Distributed Energy Resource	
EV	Electric Vehicle	
GDPR	General Data Protection Regulation	
iVPP	Intelligent Virtual Power Plant	
LV	Low Voltage	
MV	Medium Voltage	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
SoC	State of Charge	
UC	Use Case	
UI	User Interface	
V2G	Vehicle-to-grid	

6.2.2 Use case 6: Decarbonizing large industrial continuous loads

through electrification and locally induced generation

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case

	IANOS
Decarbonization	Decarbonizing large industrial continuous energy
through electrification	consumers through electrification and local generation
and support from non-	
emitting fuels	

1.2 Version management

	Version Management			
Version No.	Date	Name of Author(s)	Changes	
1	04.02.2021	EDP NEW	First draft	
2	05.02.2021	Nikolaos Nikolopoulos	Comments and inputs on the Narrative of the Use Case, Diagrams	
		(CERTH)	Suggestionofinclusionofinformationregardingprotocolsforcommunication/informationdataexchangeaccording toSGAMarchitecture	
3	12.02.2021	Bastiaan Vreijsen (NEROA), Luuk Meijer (NEROA)	Comments on the Narrative of the Use Case, Diagrams	
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version.	
			Add SGAM layers characterization and requirements.	
			Improve diagrams, description, information exchanged and scenarios	
5	29.04.2021	Mónica Fernandes	KPI's added from D2.3	
		(EDP NEW)	Collecting the new feedback	
6	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version	

1.3 Scope and objectives of use case

Scope and Objectives of Use Case			
	The scope of this Use Case is to use electrification and local generation for		
Seene	decarbonizing large industrial energy consumers located in the islands.		
Scope	This Use Case is limited to the decarbonization of the natural gas platform located		
	off the cost of Ameland.		

	This Use Case orients at decarbonizing large industrial sites which tend to be
	very difficult sites to eliminate emissions due to their requirements for stable
Objective(s)	electricity. Therefore, the main objectives are the following:
	 Maximize consumption from local RES Decarbonize the industrial sector

1.4 Narrative of use case

Narrative of Use Case

Short description

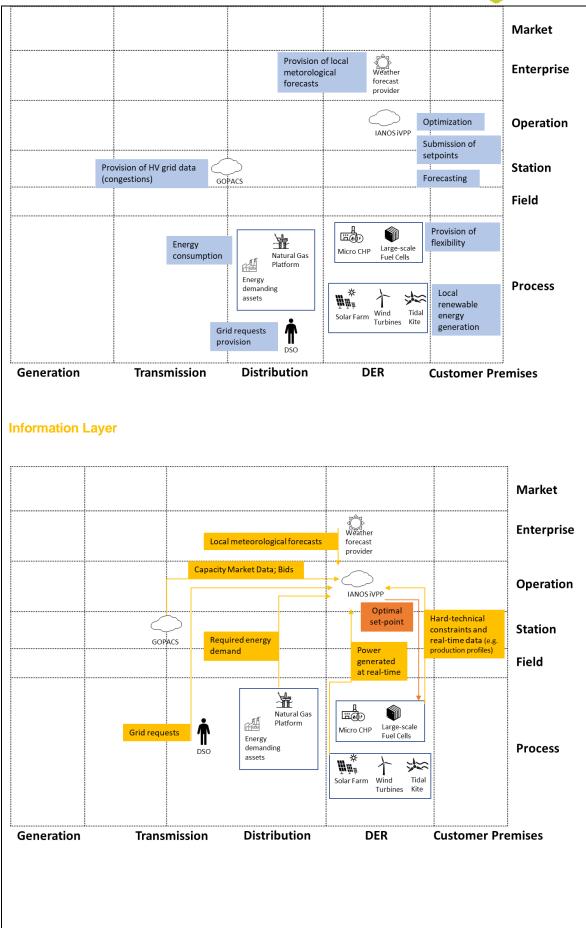
The present use case aims to decarbonize large industrial continuous and power intensive energy consumers, either located in the island or interconnected as in the case of the AWG natural gas platform off the coast of Ameland. The electrification and local renewable generation will be the main drivers to reach decarbonization in this site and will allow the maximization of renewable sources in the local grid.

Complete description

This use case intends to explore means to decarbonize large industrial sites which have a huge impact on global emissions due to their high levels of energy consumption.

In Ameland, there is the AWG natural gas platform which is located off the coast of Ameland and will be electrified until the end of 2021. For this purpose, its gas-powered modules will be replaced by electric drives and the facilities will be connected to Ameland's electricity grid.

This use case focuses on supporting the decarbonization process of the AWG platform, by exploring the potential of local renewable generation such as tidal, wind and solar to replace fossil-based power consumed by the platform. Furthermore, fuel cells and CHP also contribute to provide flexibility to the system and thereby allowing to maximize renewable energy penetration.


The intelligent Virtual Power Plant (iVPP) is responsible for distributing energy throughout the whole of Ameland. Since the demand of electricity from the AWG platform has a big impact on the energy supply of the island, the iVPP needs to safeguard a steady flow of energy to this platform. The iVPP has a facilitating role in making the AWG platform as green as possible by contributing to the maximization of renewable energy utilization. For this purpose, the iVPP optimizes energy flows to the platform by sending set-points to the dispatchable assets (fuel cells and CHP) according to the data that will be received from the platform, the dispatchable and the non-dispatchable assets.

SGAM LAYERS:

Function Layer

Technological Solutions	Information / Communication Protocols	Ameland
Large-scale Fuel Cell	-	Х
Micro CHP	-	Х
Solar Farm	-	Х
Wind Turbines	-	Х
Tidal Kite	-	Х
AWG Natural Gas Platform	-	Х

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use
			case objectives
1.3	Degree of energetic self-	Ratio of locally produced energy from RES	1
	supply by RES	and the final energy consumption over a	
		period of time (e.g. Month, year)	
1.4	Energy Savings	Calculates the reduction of the energy	1,2
		consumption to reach the same services	
		(e.g. Comfort levels) after the	
		interventions, taking into consideration the	
		energy consumption from the reference	
		period	
1.5	RES Generation	Calculates the energy production from	1,2
		renewable energy sources.	
1.6	Reduced energy	KPI calculates the reduction of energy	1
	curtailment of RES and	curtailment due to technical/operational	
	DER	problems	
2.1	Reduced fossil fuel	Measures the amount of fossil fuels which	2
	consumption	is now not consumed because of IANOS	
		demonstrated solutions (e.g. Electrification	
		of transport, RES penetration)	
2.2	Reduced Greenhouse	Measures the reduction of greenhouse gas	2
	Gas Emissions	emissions	
2.4	Air quality index (Air	Measures air quality according to the	2
	pollution)	concentration of major air pollutants	

3.9	Load Purchasing from	Measures the electricity purchasing from	1
	Mainland	mainland.	
7.1	Social Compatibility	Refers to the extent to which the project's	2
		solution fits with people's 'frame of mind' and	
		does not negatively challenge people's	
		values or the ways they are used to do things	
7.2	Technical compatibility	Examines the extent to which the smart grid	2
		solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end users	Provides an indication of the complexity of	2
	of the solution	the implemented solution within the IANOS	
		project for the end-users	

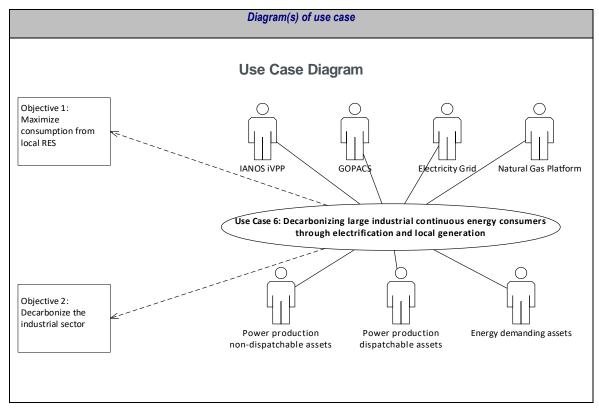
1.6 Use case conditions

	Use case conditions						
Assum	Assumptions						
• • Prereq	It is considered that the island has a natural gas platform The connection between the platform and the electricity grid of Ameland is established The platform will be electrified in the end of 2021 <i>uisites</i>						
•	Direct connection between the iVPP, solar farm and the platform Direct connection between the iVPP, the tidal kite and the platform Direct connection between the iVPP, the small turbines and the platform Direct connection between the iVPP, the CHP systems and Fuel cells and the platform A (physical) hosting environment on which the iVPP can be established						

1.7 Further Information to the use case for classification / mapping

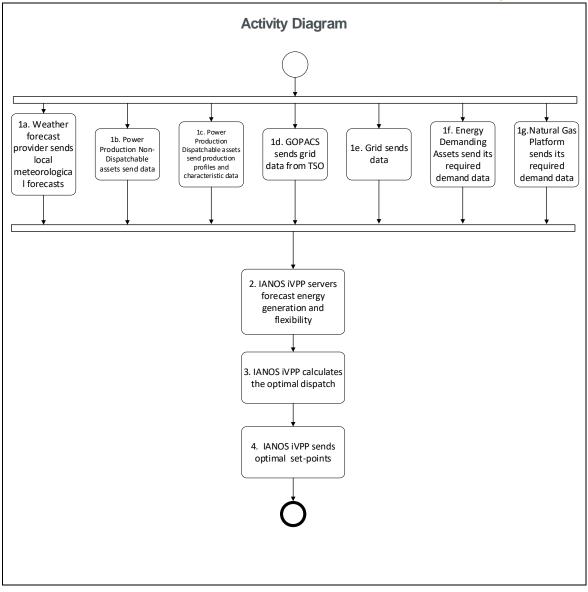
Classification Information
Relation to other use cases
-
Level of depth
Specialized use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case

Technical use case

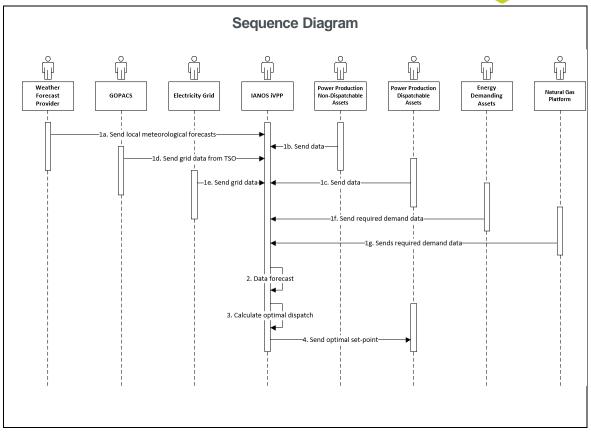

Further keywords for classification

Decarbonization, industry, natural gas platform, tidal kite, local renewable generation, wind turbines, solar farm, grid connection, electrification

1.8 General Remarks


General Remarks

2 Diagrams of use case



3 Technical details

3.1 Actors

		Actors				
Actor Name	Actor Type	Actor Description				
Weather Forecast Provider	Role	Provides generation, consumption and weather- related operational risks, for a given location and a specific time horizon.				
IANOS iVPP	System	The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and green gas CHP plants. Moreover, the iVPP comprises Energy Storage Systems (ESS), integrated as a single unit, providing				

		flexibility services and fostering island renewable				
		energy self-consumption.				
		The optimal, autonomous, real-time iVPP operation				
		will be driven by multi-level decision making				
		intelligence, complemented by predictive algorithms				
		for smart integration of grid assets into active				
		network management based on relevant energy				
		profiles. For this purpose, the iVPP is composed of				
		6 different modules: aggregation & classification,				
		forecasting engine, centralized dispatcher,				
		distributed ledger-based energy transactions, virtual				
		energy console and secured enterprise service bus.				
		Grid Operation Platforms for Congestion Solutions				
	System	interface (GOPACS) is an unique initiative in Europ				
		and has resulted from active collaboration between				
		the Dutch TSO and the DSOs. This platform is				
GOPACS		consistent with key European directives to mitigate				
		grid congestion, while offering large and small				
		market parties an easy way to generate revenues				
		with their available flexibility and contribute to				
		solving congestion situations.				
	Sustem	Power system including power generation units,				
Electricity Grid	System	transmission system and MV/LV distribution grids				
		Power intensive energy consumers from the				
		industrial sector.				
	System	In the case of Ameland, there is a Natural gas				
Natural Gas Platform		platform located in Ameland's coast which has been				
		operated by the Nederlandse Aardolie Maatschappij				
		(NAM) since 1986. Current natural gas production is				
		close to 1 million m ³ /day, of which 100k m ³ /day is				

		used as fields as such the aletterne (as sight
		used as fuel to power the platform (mainly
		compression).
Energy demanding		
	System	Energy demanding assets of the island.
assets		
		Assets which power can be dispatched on demand
Power production		receite which power our se dispatened on demand
	System	at the request of grid operators when needed for
dispatchable assets		
		instance fuel cells and CHPs.
		Local power generation assets which power cannot
Power production non-		Loodi power generation addete which power dufiner
	System	be controlled by grid operators such as wind, solar
dispatchable assets		
		and tidal power generators.

3.2 References

	References							
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions								
No.	Scenario	Scenario	Primary actor	Triggering	Pre-	Post-			
	name	description		event	condition	condition			
1	Electrificati	iVPP computes	IANOS iVPP	Natural Gas	Natural	Steady			
	on of	the optimal		Platform runs	Gas	energy flux			
	Natural	setpoint for		on electricity	Platform	of natural			
	gas	production			requires	gas			
	Platform	dispatchable			electricity	platform			
		assets to			to operate.				
		supply energy							

to the all		
energy		
demanding		
assets present		
in the island		
(including the		
natural gas		
platform) while		
ensuring the		
maximization of		
renewable		
penetration in		
the power		
system		

4.2 Steps – Scenarios

	Scenario								
Scena	rio name :	No. 1 - Reference scenario							
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information	Requirement, R-IDs	
No.		process/			producer	receiver	Exchanged		
		activity			(actor)	(actor)	(IDs)		
1a	Submission	Send local	Weather Forecast Provider	CREATE	Weather	IANOS	1		
	of local	meteorologic	sends local meteorological		Forecast	iVPP			
	weather	al forecasts	forecasts		provider				
	forecasts								
1b	Submission	Sends data	Power Production Non-	GET	Power	IANOS	2		
	of power		Dispatchable Assets send		Production	iVPP			
	production		real-time data to the iVPP		Non-				
	non-		regarding its status		Dispatchabl				
	dispatchable				e Asses				
	assets data								
1c	Submission	Sends data	Power Production	GET	Power	IANOS	3,4		
	of power		Dispatchable Assets send		Production	iVPP			
	production		real-time data to the iVPP		Dispatchabl				

	diamatah ak la		recording its status		• ^ • • • • •			[]
	dispatchable		regarding its status		e Asses			
	assets data							
1d	Submission	Send grid	GOPACS exchange high	REPORT	GOPACS	IANOS	5	
	of grid data	data from	voltage grid data with iVPP			iVPP		
	from TSO	TSO						
1e	Submission	Send grid	Grid sends data regarding	GET	Electricity	IANOS	6	
	of grid data	data	its status to the iVPP		Grid	iVPP		
1f	Submission	Send data	Energy demanding assets	REPORT	Energy	IANOS	7	
	of required		send its required demand		Demanding	iVPP		
	demand data		data to the iVPP		Assets			
	from energy							
	demanding							
	assets							
1g	Submission	Sends data	Natural Gas platform sends	REPORT	Natural gas	IANOS	8	
	of required		data regarding its required		platform	iVPP		
	demand data		demand to the iVPP					
	from the							
	natural gas							
	platform							

2	Data faraasst						0.40	1
2	Data forecast	Forecasts	iVPP servers forecast	EXECUTE	IANOS iVPP	IANOS	9,10	
			energy generation and			iVPP		
			energy generation and			IVEE		
			flexibility					
			,					
3	Calculation	Calculates	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS	-	
	at a data	d a second	Production of the state					
	of optimal	the optimal	dispatch for the			iVPP		
	dispatch	dispatch	dispatchable assets in order					
			to ensure a steady energy					
			flux for all the assets					
			present in the island and a					
			maximum penetration of the					
			RES in the power system					
4	Submission	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	Dispatchabl	11	
						-		
	of optimal	points	setpoint to the dispatchable			e Assets		
	set-points		assets					

5 Information exchanged

		Information exchanged
Information	Name of information	Description of information exchanged
exchanged (ID)		
1	Local	Expected irradiances and wind speeds for specific
	meteorological	locations
	forecasts	
2	Non-Dispatchable	Amount of energy (MWh) generated by non-dispatchable
	assets data	generator assets (wind, solar and tidal) at real-time
3	Fuel Cells and CHP	Maximum power, electrical and thermal efficiency, heat to
	hard technical	power ratio, operating temperature
	constraints	
4	Fuel Cells and CHP	Amount of existent fuel (hydrogen or methane);
	real-time data	production profiles.
5	HV grid data	High voltage grid real-time data
6	Grid data	Grid status
7	Energy demanding	Required demand from energy demanding assets
	data	
8	Natural gas platform	Energy consumption and required demand from natural
	required demand	gas platform
9	Forecasted Energy	Forecasted energy supply data from production-side
	Generation Data	assets (wind, solar and tidal generators, fuel cells and
		micro CHP)
10	Forecasted	Forecasted flexibility from production units and energy
	Flexibility Data	demanding assets
11	Optimal Setpoints	Optimal power dispatch computed by the iVPP for
		dispatchable assets such as fuel cells and CHP's.

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety
		issues
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus) to
		enhance data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance
		upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day

R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability

7 Common Terms and Definitions

	Common Terms and Definitions		
Term	Definition		
СНР	Combined Heat and Power		
DER	Distributed Energy Resources		
GOPACS	Grid Operation Platforms for Congestion Solutions		
GPDR	General Data Protection Regulation		
iVPP	Intelligent Virtual Power Plant		
SGAM	Smart Grid Architecture Model		
TSO	Transmission System Operator		
UC	Use Case		
UI	User Interface		

6.2.3 Use case 7: Circular economy, utilization of waste streams and gas

grid decarbonization

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Decarbonization	Circular economy, the utilization of waste streams and
	through electrification	connection to the local gas grid
	and support from non-	
	emitting fuels	

1.2 Version management

	Version Management				
Version No.	Date	Name of Author(s)	Changes		
1	04.02.2021	EDP NEW	First draft		
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams, Actors, Scenarios		
			Suggestion of inclusion of informationregardingprotocolscommunication/informationdataexchange according to SGAM architecture		
3	15.02.2021	Johan Boekema (AME)	Comments and inputs on Scope and Objectives of Use Case, the Narrative of the Use Case, Diagrams, Scenarios, Information Exchanged.		
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization and requirements. Improve diagrams, description, information exchanged and scenarios		
5	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collect the new feedback		
6	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version		

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case			
Scope	This use case is limited to the use of the high-pressure digester in Ameland and the research into remaining waste streams with potential to produce green energy.			
Objective(s)	The main objectives of this Use Case are the following:1. Reduce the negative impact of waste streams produced on island by reusing them to produce green energy2. Foster gas and electricity grid decarbonization			

1.4 Narrative of use case

Narrative of Use Case

Short description

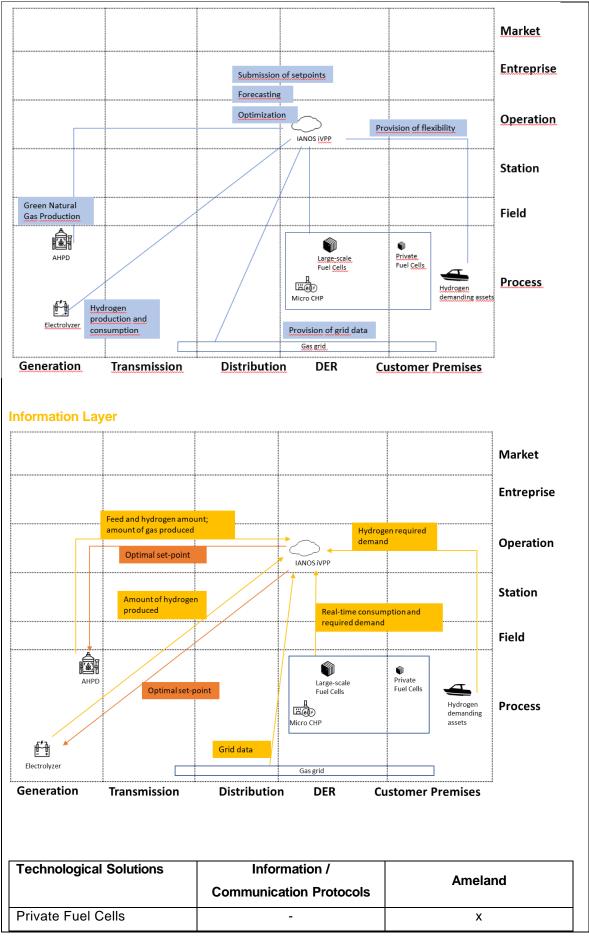
The present use case describes how waste streams are used to produce renewable energy and help to decarbonize the local grid, either for electricity production and/or heating purposes, using green natural gas. Therefore, a demonstration of a small-scale Auto generative High-Pressure Digester will occur at Ameland to exploit the potential of converting organic waste into green natural gas, while hydrogen produced from the Electrolyzer (using excess of RES) can be used to upgrade the remaining CO2 in the digester to natural gas.

Moreover, an investigation regarding the potential of technologies to process biomass for using the remaining streams is also performed.

Complete description

This use case focuses on exploring methods to manage waste streams produced on islands by reusing them to produce renewable energy and allow to decarbonize the local grid.

Accordingly, a small-scale Auto generative High-Pressure Digester (AHPD) is used in Ameland which allows to convert i) sewage from households and businesses, ii) swill from catering industry and hospitals and iii) other organic waste into green natural gas. Moreover, some hydrogen produced from the 2MW Electrolyzer, despite of being stored, may also supply the AHPD in order to convert the CO2 that remains in the digester to natural gas. This green natural gas will feed the gas grid where it is used in Fuel Cells and CHPs. For this purpose, the iVPP is responsible for sending the necessary setpoints to the AHPD, including any available excess of H2 produced and not consumed by the water taxis transport needs. The by-product of the digestion process, the digestate, will be used as fertilizer.


Additionally, this use case also intends to investigate the potential of the remaining waste streams. The main goals consist of mapping all the waste streams, identifying the technologies to process these biomass types, analysing the respective business models and select the best ones. This process must occur with the engagement of the local citizens.

SGAM LAYERS

Function Layer

		IANOS
Large-scale Fuel Cell	-	x
Hydrogen Demanding Assets (Water Taxis)	-	x
Micro CHP	-	X
AHPD	It is unkown which protocols will be used. This will be a subject of further studies.	x
Electrolyzer	-	Х

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.5	RES	Calculates the energy production from renewable	2
	Generation	energy sources. All ders and centralized RES should	
		be included in this KPI. It can be expressed either in	
		energy units or in % of the energy mix	
2.1	Reduced	Measures the amount of fossil fuels which is now not	2
	fossil fuel	consumed because of IANOS demonstrated solutions	
	consumption	(e.g. Electrification of transport, RES penetration)	
2.2	Reduced	Measures the reduction of greenhouse gas emissions	2
	Greenhouse		
	Gas		
	Emissions		
2.3	Electrical and	Computes the amount of electrical and thermal	1
	thermal	energy that is produced by the waste exploitation.	
	energy		
	produced		
	from solid		
	waste or other		
	liquid waste		
	treatment per		
	capita per		
	year		
2.4	Air quality	Measures air quality according to the concentration of	1,2
	index (Air	major air pollutants	
	pollution)		

2.5	Reduction in	Calculates the percentage reduction in the amount of	1
	the amount of	waste collected due to the project	
	waste		
	collected		
4.4	Increased	Gives a statement about the additional loads and RES	2
	hosting	that can be installed in the system, when innovative	
	capacity for	solutions and energy management techniques are	
	RES, electric	applied (e.g. VPP platform). The calculation is	
	vehicles and	realized by comparing the network capacity before	
	other new	and after IANOS implementation	
	loads		
5.1	People	Percentage of people in the target group that have	1,2
	Reached	been reached and/or are activated by the project	
5.3	Thermal	Estimates the quality of the delivered heating/cooling	1
	Comfort	service	
7.1	Social	Refers to the extent to which the project's solution fits	1,2
	Compatibility	with people's 'frame of mind' and does not negatively	
		challenge people's values or the ways they are used to	
		do things	
7.2	Technical	Examines the extent to which the smart grid solutions fit	1,2
	compatibility	with the current existing technological	
		standards/infrastructures	
7.3	Ease of use	Provides an indication of the complexity of the	1,2
	for end users	implemented solution within the IANOS project for the	
	of the solution	end-users	
L		L	1

1.6 Use case conditions

	Use case conditions		
Assumptions			
•	The feedstock for the AHPD will be usual post treated sludge and swill from catering industry and hospitals.		
Prerequ	Prerequisites		
•	An Auto generative High-Pressure Digester is available Community involvement in the research for the use of the remaining streams Communication between the iVPP and the AHPD established Information on flexibility and availability of the AHPD required		

- The AHPD is connected to the electrolyzer
- A (physical) hosting environment on which the iVPP can be established

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

UC2: Community supply-side optimal dispatch and intra-day services provision

Level of depth

Specialized use case

Prioritisation

High level of priority

Generic, regional or national relation

Generic

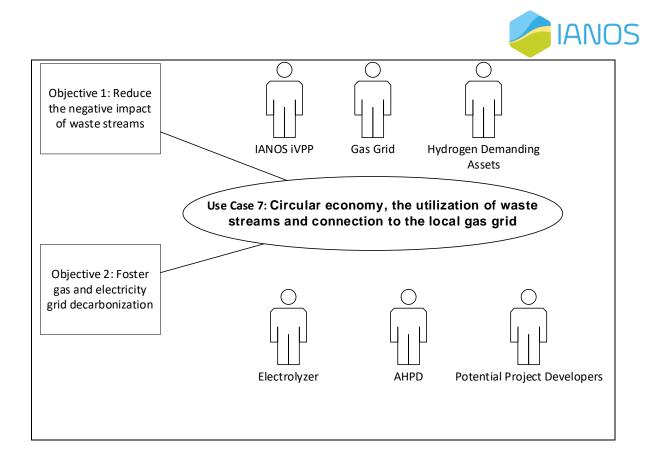
Nature of the use case

Technical

Further keywords for classification

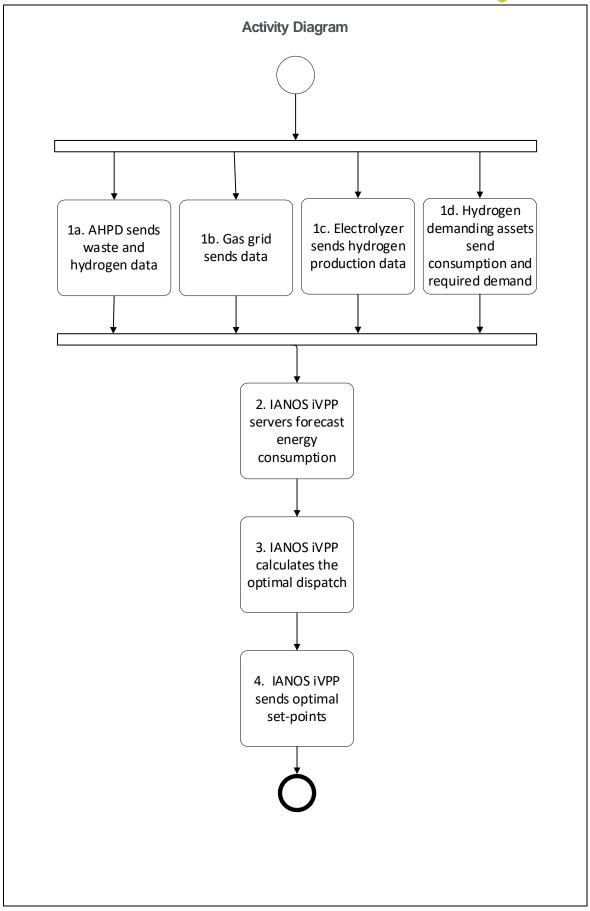
High pressure digester, circular economy, waste, green natural gas, gas grid decarbonization, hydrogen

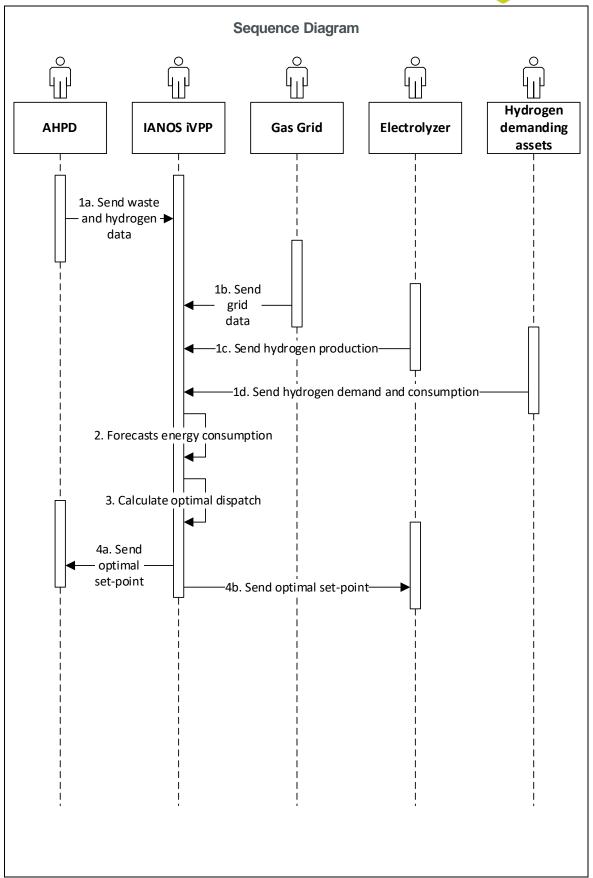
1.8 General Remarks


General Remarks

2 Diagrams of use case

Diagram(s) of use case


Use Case Diagram



3 Technical details

3.1 Actors

Actors					
Actor Name	Actor Type	Actor Description			
		Digester which converts sewage, swill and other			
Auto generative High-		organic waste into green natural gas at high			
Pressure Digester	System	pressure, thus allowing to produce high methane			
(AHPD)		content (90% of methane). It produces 110.000 Nm ³			
(of green gas from 300 tons of dry substance.			
		This digester can also use hydrogen as substrate.			
		The 2MWe BESS-Electrolyser DC connected			
Electrolyzer	System	system, will be used to supply green H2 to the			
		digestion process			
		The IANOS iVPP sets up a virtual network of			
		decentralized renewable energy resources, both			
		non-dispatchable such as wind, solar, tidal			
		resources and dispatchable ones such as			
		geothermal and green gas CHP plants. Moreover,			
		the iVPP comprises Energy Storage Systems			
		(ESS), integrated as a single unit, providing			
IANOS iVPP	System	flexibility services and fostering island renewable			
		energy self-consumption.			
		The optimal, autonomous, real-time iVPP operation			
		will be driven by multi-level decision making			
		intelligence, complemented by predictive algorithms			
		for smart integration of grid assets into active			
		network management based on relevant energy			
		profiles. For this purpose, the iVPP is composed of			
		6 different modules: aggregation & classification,			

		forecasting engine, centralized dispatcher,
		distributed ledger-based energy transactions, virtual
		energy console and secured enterprise service bus.
Hydrogen demanding	System	Assets which consume hydrogen such as water
assets	Oystem	taxis
Gas grid	System	Network where gas is transported, to feed CHPs
	oystem.	and fuel cells
Potential Project	Role	Project Developers interested in applying biomass
Developers		technologies to reduce waste streams

3.2 References

	References						
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link	

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions							
No.	Scenario	Scenario	Primary	Triggering	Pre-	Post-condition		
	name	description	actor	event	condition			
1	Green	iVPP computes	AHPD,	Significant	No use of	Green		
	natural gas	the optimal	IANOS	costs of	waste	natural gas		
	production	dispatch for the	iVPP	waste	streams for	to feed the		
	from waste	electrolyzer and		treatment	energy	gas grid		
	streams	for the AHPD		(economic	production.			
		regarding the		and	No power			
		respective		environmenta	flows in the			
				l)	AHPD			

		amounts of gas				
		to be supplied				
2	Research	Investigate the	NEC	Earthquakes	Natural gas	Biogas is the
	on	most suitable		(due to	is the main	main
	biomass	technologies to		natural gas	source for	source for
	processing	process		extraction)	heating the	heating the
	technologi	biomass for the		and climate	built	built
	es	remaining		policies force	environme	environment
		waste streams		us to	nt on the	on the
		of the islands.		minimize the	Island.	Island.
				use of natural		
				gas.		

4.2 Steps – Scenarios

			Scenario				
Scena	Scenario name : No. 1 - Green natural gas production from waste streams						
Step No.	Event	Name of process/	Description of process/ activity	Service	Information producer	Information receiver	Information Exchanged (IDs)
		activity			(actor)	(actor)	
1a	Submission of AHPD data	Sends waste and hydrogen data	AHPD sends the data regarding its status to the iVPP	GET	AHPD	IANOS iVPP	1,2
1b	Submission of grid data	Sends data	Gas grid sends data regarding its status to the iVPP	GET	Gas Grid	IANOS iVPP	3
1c	Submission of Electrolyser data	Sends data	Electrolyzer sends the amount of hydrogen produced to the iVPP	GET	Electrolyser	IANOS iVPP	4
1d	Submission	Send	Hydrogen demanding	REPORT	Demanding	IANOS	5

	1		1	1			
	of hydrogen	hydrogen	assets send its hydrogen		Assets	iVPP	
	demanding	demand and	demand and consumption				
	assets	consumption	to the iVPP				
2	Data	Forecasts	iVPP servers forecast	EXECUT	IANOS iVPP	IANOS	6
	forecast		energy consumption	E		iVPP	
3	Calculation	Calculates	iVPP computes the optimal	EXECUT	IANOS iVPP	IANOS	-
	of optimal	the optimal	dispatch for the AHPD in	E		iVPP	
	dispatch	dispatch	order to ensure the delivery				
			of the green natural gas to				
			feed the gas grid. Moreover,				
			the iVPP also calculates the				
			optimal dispatch for the				
			electrolyzer				
4a	Submission	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	AHPD	7
	of optimal	points	setpoint to the AHPD				
	set-points						
4b	Submission	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	Electrolyzer	8
	of optimal	points	setpoint to the electrolyzer				
	set-points						
L	1		l				1

	Scenario						
Scena	rio name :	No. 2 - Resear	ch on biomass processing technol	logies			
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information
No.		process/			producer	receiver	Exchanged (IDs)
		activity			(actor)	(actor)	
1	Identification	Makes	Identifying the available	CREATE	NEC	Potential	9
	of	inventory of	biomass streams on the			project	
	biomass/was	available	islands			developers	
	te streams	biomass					
		streams					
2	Investigation	Investigates	Investigating the most	EXECUT	NEC	Potential	10
	of biomass	technologies	suitable technologies for	E		project	
	processing		biomass processing			developers	
	technologies						
3	Technology	Select best	Selecting the most	REPORT	NEC	Potential	11
	Selection	technologies	interesting business cases			project	
			related to specific			developers	
			biomass/technology				

	combination		

5 Information exchanged

	Informa	tion exchanged
Information exchanged (ID)	Name of information	Description of information exchanged
1	AHPD hard technical constrains	Maximum and minimum feed per hour and in total; maximum and minimum gas production; maximum and minimum hydrogen addition
2	AHPD real-time data	Quality and quantity of feed in digester, amount of hydrogen in digester, amount of hydrogen being added; gas production
3	Grid Data	Grid status
4	Hydrogen production	Amount of hydrogen produced
5	Hydrogen demanding assets data	Hydrogen demand and consumption at real-time
6	Forecasted Energy Consumption Data	Loads forecasted energy consumption data
7	AHPD Optimal Set-point	Optimal setpoint computed by the iVPP for the AHPD which corresponds to the amount of natural gas that will feed the gas grid.
8	Electrolyzer Optimal Set- point	Optimal setpoint computed by the iVPP for the electrolyzer which corresponds to the amount of hydrogen to be sent to the AHPD
9	Biomass Streams	Database with biomass streams and quantities.
10	Biomass Technologies	Technology overview with bio/syngas potential.
11	Selected technologies	Description of the top 3 business cases for bio/syngas production on the island.

6 Requirements

Requirements	

Category name for requirements	Category description
Security Requirement	Requirements related to the safety
	issues
User Interface Requirement	Requirements related with the iVPP UI
Functional Requirement	Requirements that capture the
	intended behaviour of the system
Communication Requirement	Requirements related
	with communication aspects
Requirement name	Requirement description
Access Control	iVPP functions are accessible from
	personnel with specialized
	authorization rights
iVPP cybersecurity	Utilization of good practices
	(e.g. secure communication bus) to
	enhance data cybersecurity
iVPP data privacy	Utilization of good practices to ensure
	compliance with GDPR regulations
Network security measures for data	Establishes the ways in which
exchange with AHPD	communication between the iVPP and
	the AHPD control system can be done
	safely, mitigating risks of external
	interference
AHPD site safety	Establishes the safety guidelines
	applicable to the physical location
	where the AHPD is installed. It further
	establishes the safety guidelines
	applicable to all personnel in the local
	Security Requirement User Interface Requirement Functional Requirement Communication Requirement Requirement name Access Control iVPP cybersecurity iVPP data privacy Network security measures for data exchange with AHPD

		vicinity to ensure safe operation of the
		AHPD
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance
		upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
AHPD	Auto generative High-Pressure Digester	
BESS	Battery Energy Storage Systems	
СНР	Combined Heat and Power	
CO2	Carbon Dioxide	
DER	Distributed Energy Resource	
FC	Fuel Cells	
GDPR	General Data Protection Regulation	
H2	Hydrogen	
iVPP	Intelligent Virtual Power Plant	

	_	
LEC	Local Energy Community	
NEC	New Energy Coalition	
NG	Natural Gas	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
UC	Use Case	
UI	User Interface	

6.2.4 Use case 8: Decarbonization of heating network

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Decarbonization	Decarbonization of heating network
	through electrification	
	and support from non-	
	emitting fuels	

1.2 Version management

	Version Management			
Version No.	Date	Name of Author(s)	Changes	
1	04.02.2021	EDP NEW	First draft	
2	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback from relevant partners and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios Add iVPP requirements	
3	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3	
4	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version	

1.3 Scope and objectives of use case

Scope and Objectives of Use Case		
	The scope of this Use Case is to decarbonize the heating network in Ameland	
	which currently runs on natural gas. For this purpose, this Use Case focuses on	
Scope	the installation of equipment that allows the reduction of emissions such as hybrid	
	heat pumps to be powered by local RES. Moreover, it also explores further	
	possibilities to phase-out natural gas of certain villages.	
	This Use Case aims to decarbonize the existent heating grid in Ameland which	
Objective(s)	currently uses mainly natural gas as fuel (Objective 1).	

1.4 Narrative of use case

Narrative of Use Case

Short description

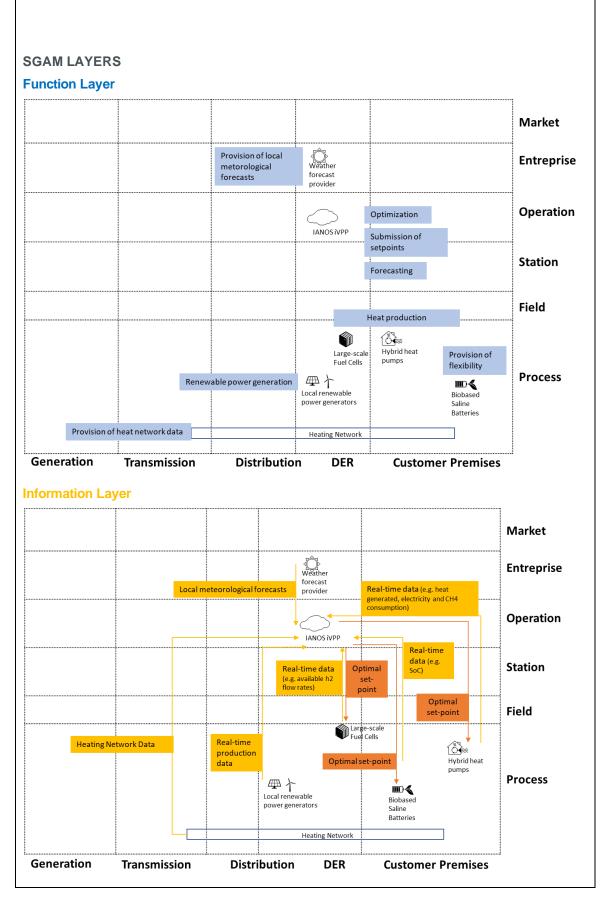
This Use Case focuses on decarbonizing the existent heating network in Ameland which currently runs mainly on natural gas. Therefore, this Use Case explores different strategies such as installation of heat pumps and hybrid heat pumps powered by local RES and research work regarding the potential of phasing-out natural gas in particular sites.

Complete description

The present use case describes the methods that aim to decarbonize the existent heating network in Ameland, which currently runs mainly on natural gas. Accordingly, 4 strategies are implemented to achieve this goal.

Firstly, hybrid heat pumps composed of a 20kWth boiler and a 1.1kWe/5kWth heat pump each, are installed in residential neighbourhoods. The intelligent Virtual Power Plant (iVPP) manages the power fluxes of these hybrid heat pumps according to the data received from them.

Moreover, the Klein Vaarwater holiday park will create an integrated design of a 500kWe fuel cell, H2 storage and additional heat pumps for peak demands which allow to expand the current heating grid in the site. The fuel cell will provide heat and electricity to support the heating network.


Another strategy is to study different means of phasing out natural gas from Buren Aardgasvrij village by selecting a technical approach with communities' collaboration.

Finally, the last strategy consists of installing an innovative heating grid infrastructure in Nes city by using heat pumps that are powered by local RES. Furthermore, an organic hybrid battery will be used to store excess energy in periods of high levels of renewable generation.

The iVPP is responsible for sending the set-points to the heat pumps and storage assets according to the data provided by both and also from the local RES assets.

Technological Solutions	Information / Communication Protocols	Amelanc
Large-scale Fuel Cell	-	x
Biobased saline batteries	-	х
Hybrid Heat Pumps	-	х

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned use
			case objectives
1.3	Degree of energetic self-	Ratio of locally produced energy from	1
	supply by RES	RES and the final energy consumption	
		over a period of time (e.g. Month, year)	
2.1.	Reduced fossil fuel	Measures the amount of fossil fuels which	1
	consumption	is not consumed anymore because of	
		IANOS demonstrated solutions (e.g.	
		Electrification of transport, RES	
		penetration)	
2.2	Reduced Greenhouse	Measures the reduction of greenhouse	1
	Gas Emissions	gas emissions	
2.4	Air quality index (Air	Measures air quality according to the	1
	pollution)	concentration of major air pollutants	
3.1	Financial benefit for the	Evaluates the total cost savings in euros	1
0	end user	for end-users per household due to the	
		project interventions	
3.1	Energy Poverty	Assesses the change in percentage	1
1		points of (gross) household income spent	
		on energy bills since the beginning until	
		the end of the project	

4.1	Increased system	Indication of the ability of the system to	1
	flexibility for energy	respond to supply and demand in real	
	players	time, as a measure of the demand side	
		participation in energy markets and in	
		energy efficiency intervention since the	
		beginning until the end of the project	
5.1	People Reached	Percentage of people in the target group	1
		that have been reached and/or are	
		activated by the project	
5.3	Thermal Comfort	Estimates the quality of the delivered	1
		heating/cooling service	
6.1	Involvement of the island	Examines the extent to which the local	1
	administration	authority is involved in the development of	
		the project, other than financial, and how	
		many departments are contributing	
7.1	Social Compatibility	Refers to the extent to which the project's	1
		solution fits with people's 'frame of mind'	
		and does not negatively challenge people's	
		values or the ways they are used to do	
		things	
7.2	Technical compatibility	Examines the extent to which the smart grid	1
		solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end users	Provides an indication of the complexity of	1
	of the solution	the implemented solution within the IANOS	
		project for the end-users	
L	1		

1.6 Use case conditions

	Use case conditions		
Assump	Assumptions		
•	Community engagement for studying the possibilities for phasing out natural gas from Buren Aardgasvrij village. Local RES supply electricity to heat pumps		
Prerequi	sites		
•	Direct connection between the iVPP and hybrid heat pumps and heat pumps Connection between iVPP and biobased saline batteries A (physical) hosting environment on which the iVPP can be established.		

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

Level of depth

High level use case

Prioritisation

High level of priority

Generic, regional or national relation

Generic

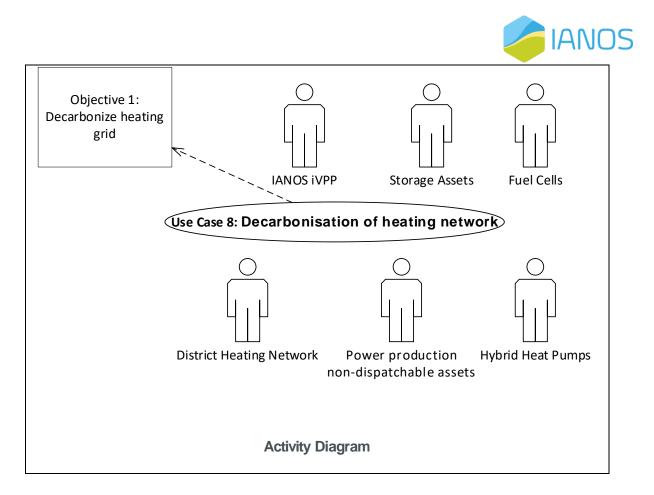
Nature of the use case

Technical use case

Further keywords for classification

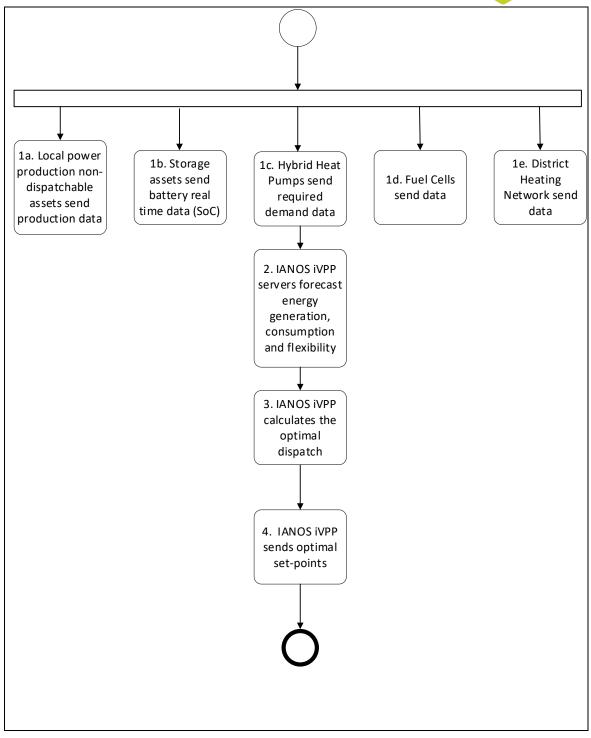
Heating network, hybrid heat pumps, fuel cell, phasing out natural gas, local RES

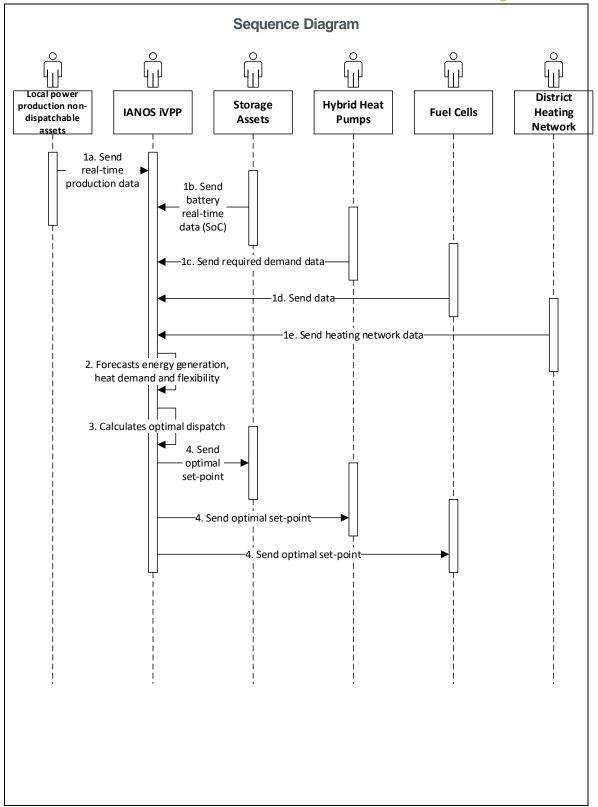
1.8 General Remarks


General Remarks

2 Diagrams of use case

Diagram(s) of use case


Use Case Diagram



3 Technical details

3.1 Actors

Actors		
Actor Name	Actor Type	Actor Description
		The IANOS iVPP sets up a virtual network of
		decentralized renewable energy resources, both
		non-dispatchable such as wind, solar, tidal
		resources and dispatchable ones such as
		geothermal and green gas CHP plants. Moreover,
		the iVPP comprises Energy Storage Systems
		(ESS), integrated as a single unit, providing
		flexibility services and fostering island renewable
	System	energy self-consumption. The optimal, autonomous,
IANOS iVPP		real-time iVPP operation will be driven by multi-level
		decision making intelligence, complemented by
		predictive algorithms for smart integration of grid
		assets into active network management based on
		relevant energy profiles. For this purpose, the iVPP
		is composed of 6 different modules: aggregation &
		classification, forecasting engine, centralized
		dispatcher, distributed ledger-based energy
		transactions, virtual energy console and secured
		enterprise service bus.
		Assets such as biobased saline batteries that store
Storage Assets	System	energy in periods of energy excess to be used later
Storage Assets		by the dispatchable assets such as hybrid heat
		pumps.
Fuel Celle	Sustam	Assets with the ability of offering electricity or heat,
Fuel Cells	System	when necessary.

		Hybrid heat pumps run on both electricity and
		natural gas and are composed of a 20 kWth boiler
Hybrid Heat Pumps	System	and a 1.1kWe/5kWth heat pump, thereby allowing to
		a switch between gas and electricity operation.
		Hybrid heat pumps can also run on biogas.
Local power production		Local power generation assets which power cannot
non-dispatchable	System	be controlled by grid operators such as wind and
assets		solar power generators.
District Heating		Pipe network which provides heating and hot water
Network	System	from a central power plant for connected consumers

3.2 References

	References					
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions					
No.	Scenario	Scenario	Primary actor	Triggering	Pre-condition	Post-
	name	description		event		conditio
						n
1	Decarboni	Decarbonizatio	IANOS iVPP	Periodically	No power	District
	zation of	n of the heating			fluxes	heating
	heating	network by			between	network
	network	installing heat			dispatchable	is stable
		and hybrid			assets and	and
		pumps which			local	energy

use electricity		renewable	curtailm
generated by		generators	ent is
local RES. The			avoided
iVPP manages			
the steady			
energy flow			
from the local			
RES to the heat			
pumps ensuring			
heat and hot			
water is			
provided to the			
buildings.			

4.2 Steps – Scenarios

	Scenario						
Scer	Scenario name : No. 1 - Reference scenario						
St	Event	Name of	Description of	Service	Information	Informati	Informati
ер		process/	process/ activity		producer	on	on
No		activity			(actor)	receiver	Exchang
						(actor)	ed (IDs)
1a	Submission	Send real-	Local Power	GET	Local	IANOS	1
	of Local	time	Production Non-		power	iVPP	
	Power	production	Dispatchable		productio		
	Production	data	Assets send real-		n non-		
	Assets		time production		dispatcha		
			data to the iVPP		ble assets		
1b	Submission	Send	Storage assets		Storage	IANOS	2,3
	of Storage	battery real-	send battery real-	GET	Assets	iVPP	
	Assets data	time data	time data (e.g.				
			SoC) to the iVPP				
1c	Submission	Send	Hybrid Heat		Hybrid	IANOS	
	of Hybrid	required	Pumps send	GET	Heat	iVPP	4
	Heat	demanddat	required demand		Pumps		
	Pumps	а	data to the iVPP				
	data						
1d	Submission	Send data	Fuel Cells send	GET	Fuel Cells	IANOS	5,6
	of Fuel		data regarding its			iVPP	
	Cells data		status to the iVPP				
1e	Submission	Send	District Heating	GET	District	IANOS	7
	of heating	heating	Network send data		Heating	iVPP	
	network	network	regarding its status		Network		
	data	data	to the iVPP				
	data	data	to the iVPP				

2	Data	Forecasts	iVPP servers	EXEC	IANOS	IANOS	8, 9,10
	Forecast	energy	forecast energy	UTE	iVPP	iVPP	
		generation,	generation from				
		consumptio	production-side				
		n and	assets,				
		flexbility	consumption from				
			heat demanding				
			assets and				
			flexibility forecasts				
			from storage				
			assets				
3	Calculation	Calculates	iVPP computes the	EXEC	IANOS	IANOS	-
	of optimal	the optimal	optimal dispatch	UTE	iVPP	iVPP	
	dispatch	dispatch	for the				
			dispatchable and				
			storage assets in				
			order to ensure a				
			steady heat and				
			hot water supply				
			for the community				
			and also to avoid				
			energy curtailment				
			by utilizing local				
			renewable energy				
			as a fuel for hybrid				
			and heat pumps.				
4	Submission	Sends set-	iVPP sends the	CREA	IANOS	Dispatc	11,
	of optimal	points	optimal setpoint to	TE	iVPP	hable	12,13
	set-points		the dispatchable			Assets,	
			and storage assets			Storage	

5	Information	exchanged
---	-------------	-----------

	Informatio	on exchanged
Information	Name of information	Description of information exchanged
exchanged (ID)		
1	Local power production non-	Amount of energy generated by non-
	dispatchable assets data	dispatchable generator assets (MWh) at real-
		time
2	Storage Assets hard	Min and Max SoC, Min and max charging and
	technical constraints	discharging power
3	Storage Assets real-time data	SoC, temperature, etc
4	Heat and hybrid pumps real-	Electricity and natural gas consumption
	time data and hard technical	Heat generated
	consraints	
5	Fuel Cells and CHP hard	Minimum and maximum natural gas and
	technical constraints	hydrogen flow rates; temperature range,
		maximum total power output (kW)
6	Fuel Cells and CHP real-time	Available natural gas and hydrogen flow rates;
	data	temperature at FC Anode
7	District Heating Network data	District Heating Network status
8	Forecasted Energy	Forecasted energy supply data from production-
	Generation Data	side assets such as Fuel Cells
9	Forecasted required demand	Forecasted required demand from heat
	data	demanding assets which are present in the
		district heating network
10	Forecasted Flexibility Data	Forecasted flexibility from storage assets
11	Storage Assets Optimal Set-	Optimal power dispatch computed by the iVPP
	point	for storage assets such as biobased saline
		batteries. It corresponds to the power generated

		· · · · · · · · · · · · · · · · · · ·
		by RES that will be stored or provided to the
		dispatchable assets such as hybrid and heat
		pumps.
12	Hybrid Heat Pumps Optimal	Optimal power dispatch computed by the iVPP
	Set-points	for heat and hybrid heat pumps. It corresponds
		to the power used for hybrid and heat pumps to
		generate heat.
13	Fuel Cells Optimal Set-points	Optimal power dispatch computed by the iVPP
		for fuel cells. It corresponds to the amount of
		hydrogen used to produce a certain amount of
		heat
L		

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety
		issues
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights

R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus) to
		enhance data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance
		upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
CHP	Combined Heat and Power	
GDPR	General Data Protection Regulation	
iVPP	Intelligent Virtual Power Plant	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
SoC	State of Charge	

UC	Use Case
UI	User Interface

6.3 Transition Track 3: Use Cases

Transition Track 3 includes the Use Case 9 related with Local Energy Communities engagement and involvement of local citizens into island's energy transition.

6.3.1 Use case 9: Active Citizen and LEC Engagement into

Decarbonization Transition

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of U	Jse Case				
	Empowered LECs	Active	Citizen	and	LEC	Engagement	into
		Decarbo	onization T	ransitio	n		

1.2 Version management

	Version Management			
Version No.	Date	Name of Author(s)	Changes	
1	04.02.2021	EDP NEW	First draft	
2	11.05.2021	EDP NEW	Final version	

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case		
	The scope of this Use Case is to promote the citizen engagement in the local		
	community by involving them in the island's energy transition. The maximum reach of the use case refers to the whole island's inhabitants (both		
Scope			
	permanent and not), while the first target will be just a part of them, directly		
	involved in the IANOS activities. Technical staff and IANOS partners will facilitate		

	the activities and the community engagement, supported by the relevant local authorities.
Objective(s)	 The main goals of this use case focus on: 1. Promoting the engagement of the local community in island's energy transition 2. Raising customer's environmental and energy efficiency awareness. 3. Support local generation 4. Promote DSM programs

1.4 Narrative of use case

Narrative of Use Case

Short description

This Use Case aims to promote an active role and engagement of the community in island's energy transition. Accordingly, it uses Local Energy Cooperatives to reach this purpose where various strategies will be applied such as involving the community in DSM programs and raising customer's environmental and energy efficiency awareness through training for local homeowners and children.

Complete description

This Use Case describes the methodologies that will be used to promote the engagement of local communities in island's energy transition. For this purpose, a Local Energy Cooperative is created (in case of Terceira) or improved (in the case of Ameland) that fosters local generation and participation of its members in DSM programs.

The Local Energy Cooperative aims to increase local renewable generation by the cooperative members through the organization of group meetings, workshops and discussions. Moreover, it allows the connection of the members to the local DSM programs, through the development of useful indicators and provision of interfaces to monitor their power consumption (carefully respecting data ownership) and providing them with an economic/environmental feedback signal for their actions.

Furthermore, in the case of Ameland, it will also be developed a new cooperatively owned DC-solar farm combined with storage. It will be demonstrated a business model value where revenues coming from the solar farm will be invested back into green energy projects on the island.

Additionally, this Use Case also focuses on raising customer's environmental and energy efficiency awareness and therefore intends to provide capacity building and training for local homeowners and children through targeted promotion campaigns.

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned use
			case objectives
-	LEC citizens	Number of citizens involved in the	1
		LEC	
-	Events organized	Number of sessions/events	1,2,4
		organised	
1.1	Kwp photovoltaic installed per	Measures the installed capacity of	1,3
2	100 inhabitants	photovoltaic interpolated to 100	
		inhabitants. To be assessed per	
		sector (residential, tertiary,	
		industrial and public)	
4.2	Data privacy - Data Safety &	This indicator analyses the extent to	4
	Level of Improvement (Improved	which regulations on data protection	
	Data Privacy)	are followed and to which proper	
		procedures to protect personal or	
		private data are implemented	
5.1	People Reached	Percentage of people in the target	1,2,4
		group that have been reached	
		and/or are activated by the project	
5.6	Increased citizen awareness of	Measures the increased citizen	1,2
	the potential of smart grid	awareness of the socio-cultural	
	projects	potential of smart city projects	
7.1	Social Compatibility	Refers to the extent to which the	1,2,3,4
		project's solution fits with people's	
		'frame of mind' and does not	
		negatively challenge people's values	
		or the ways they are used to do things	

1.6 Use case conditions

Use case conditions

Assumptions

• A national regulation for LEC should be in place before the use case reaches its objectives, while it could be initiated without it being fully developed.

Prerequisites

• The materials for the group meetings and workshops should be developed as far as possible in local language to maximise its reach and guarantee the inclusion of the citizens.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

- UC1: Community demand-side driven self-consumption maximization
- UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion management services

Level of depth

High level use case

Prioritisation

High level of priority

Generic, regional or national relation

Generic

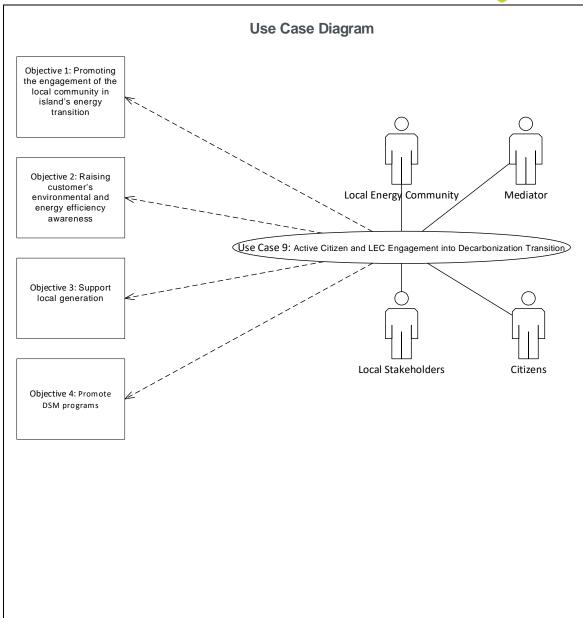
Nature of the use case

Social use case

Further keywords for classification

Local energy cooperative, community engagement, local generation, DSM programs, local community, training, raising awareness

1.8 General Remarks


General Remarks

2 Diagrams of use case

Diagram(s) of use case

3 Technical details

3.1 Actors

Actors			
Actor Type	Actor Description		
	Decentralized cooperatives of local communities		
	and citizens that promote the production and		
TUE	consumption of local energy. Local energy		
	communities share a common long-term goal for a		
,	Actor Type		

		sustainable future of energy and work to advance
		the transition through active citizenship
		engagement. In Terceira there is not a LEC yet,
		while in Ameland already exists.
Mediator (e.g. local	Role	Person who helps to connect the community and the
authority)	Role	project
Citizens	Role	Citizens who live in the community
Local Stakeholders	Role	Local stakeholders present in the community

3.2 References

			Reference	s		
No.	References	Reference	Status	Impact on	Originator /	Link
	Туре			use case	organisation	
		Legal				To be completed
		documentation				in the following
						versions
		National Report on				To be completed
		new regulatory Plan				in the following
		based on LEC				versions
		National incentive				To be completed
		policies for LEC				in the following
						versions

4 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
LEC	Local Energy Communities	
DSM	Demand Side Management	

7 Conclusions and Next Steps

This deliverable identifies the requirements for each Lighthouse Island to deploy all the hardware solutions in the demonstrator sites. Additionally, it defines the 9 Use Cases of IANOS project in detail according to IEC-62559 standards.

The requirements for the LH islands are defined for each hardware solution that will be demonstrated. Most of the solutions are innovative elements and therefore some might be tested for the first time, therefore it is crucial to list all the requirements needed for the LH islands to assure that the implementation of the solutions in their pilot sites runs smoothly and most of the risks are mitigated.

The Use Cases of IANOS describe the functionality level of the system, therefore are technical use cases. All the Use Cases (except UC9) are connected to the intelligent Virtual Power Plant (iVPP) platform and what differentiates them is its scope and aim. The Use Cases are divided by 3 Transition Tracks which represent the main areas that IANOS addresses: #TT1: Energy efficiency and grid support for extremely high RES penetration, #TT2: Decarbonization through electrification and support from non-emitting fuels and #TT3: Empowered LECs. The Use Cases might be implemented in both LH islands or only in one of them.

The Use Cases are defined in a general way to assure the possibility of replicability in different islands. Thereby, these Use Cases will also be replicated in some of the Fellow Islands (Lampedusa, Bora-Bora and Nisyros).

This Deliverable is being developed in an early stage of the project when certain issues are still being defined, therefore it is expected that, along with the further developments of future tasks, this document will be updated which will originate the new versions that will be submitted in month 19 and 26.

The descriptions of the use cases, list of actors, scenarios, information exchanged and requirements represent a quality foundation for several upcoming tasks. They enable to define System Architecture (T2.5), to develop the Decarbonization Master Plan (T2.4), to define the multi-layer iVPP operational framework (T4.1, T4.3, T4.4) and for the Use Cases Realization (T5.1, T5.2, T5.3, T6.1, T6.2, T6.3).

8 References

1. CEN-CENELEC-ETSI Smart Grid Coordination Group (SG-CG), "Smart Grid Architecture Model (SGAM) Reference Architecture," 2012

9 Annex I

1 Description of the use case

Use case describes functions of a system in a technology-neutral way. It identifies participating actors which can for instance be other systems or human actors which are playing a role within a use case. Use cases can be specified on different levels of granularity and are according to their level of technological abstraction and granularity either described as High Level Use Case (HL-UC) or Primary Use Case (PUC).

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Select from: (1) Energy efficiency and grid	
	support for extremely high RES penetration;	
	(2) Decarbonization through electrification and	
	support from non-emitting fuels; (3)	
	Empowered Local Energy Communities;	

1.2 Version management

	Version Management			
Version No.	Date	Name of Author(s)	Changes	
	DD.MM.YYYY			

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
Scope	The scope defines the limits of the use case.

Objective(s)	List of objectives of the use case
Related	Provides a description or reference with some rationale for the suggested use case.
business	Usually the business case is related to several use cases. Therefore, an external
case(s)	reference or link to a business case/business requirements might be more efficient and
	can be added here.

1.4 Narrative of use case

Narrative of Use Case

Short description

Short text intended to summarize the main idea as service for the reader who is searching for a use case or looking for an overview. <u>Recommendation: This short description should have not more</u> than 150 words.

Complete description

Complete Description Provides a complete narrative of the use case from a user's point of view,

describing what occurs when, why, with what expectation, and under what conditions. This narrative

should be written in plain text so that non-domain experts can understand it. The complete

description of the Use Case can range from a few sentences to a few pages.

This section often helps the domain expert to think through the user requirements for the function

before getting into the details required by the next sections of the Use Case.

1.5 Key performance indicators (KPI)

The KPIs defined in the D2.3 will be used in this Section.

ID	Name	Description	Reference to mentioned use case objectives
		The description specifies the KPI and may	Here is the link to one of the
		include specific targets in relation to one of	objective which are specified in the
		the objectives of the use case and the	targets and the KPI before.
		calculation of these targets.	

1.6 Use case conditions

	Use case conditions	
Assumptions		

May be used to define further, general assumption for this use case. In some use cases, it is critical

to understand which preconditions or other assumptions are being made.

- Any assumptions shall be identified, such as: which systems already exist, which contractual relations exist, and which configurations of systems are probably in place.
 - Any initial states of information exchanged in the steps in the next section shall be identified.

Prerequisites

Describes what condition(s) should have been met prior to the initiation of the use case, such as

prior state of the actors and activities.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

Known relations to other use cases can be provided here.

Level of depth

Defines the level of depth of the use case:

High level use case (HL-UC) use case which describes a general requirement, idea or concept

independently from a specific technical realization like an architectural solution

Primary use case (PUC) use case which describes in detail the functionality of (a part of) a business

process.

Specialized use case (SUC) use case which is using specific technological solutions/implementations

Prioritisation

Considering a larger number of use cases it might be interesting to cluster them according to priority. This prioritisation might be different from country to country.

Generic, regional or national relation

<u>Generic, regional or national relation</u>: On international level, the use case description might be generic enough to describe a use case in a more general way independently from the national or regional market design. But use cases might be used to describe regional or national specific circumstances like laws or even project-specific details. If the use case reflects those circumstances, it should be characterized accordingly.

Note: Use Cases demonstrated in more than one DSO (country) should be classified and written as <u>Generic</u>.

Nature of the use case

This field can help to classify the main focus of the use case. EXAMPLE: Technical/system use case,

business use cases (e.g. market processes), political, test use cases.

Further keywords for classification

Keywords can be defined in order to support extended search functionalities within a use case repository.

Multiple keywords should be provided as a comma-separated list.

EXAMPLE: Smart grid, electric vehicles, loading of vehicles, electricity metering, storage, renewables.

1.8 General Remarks

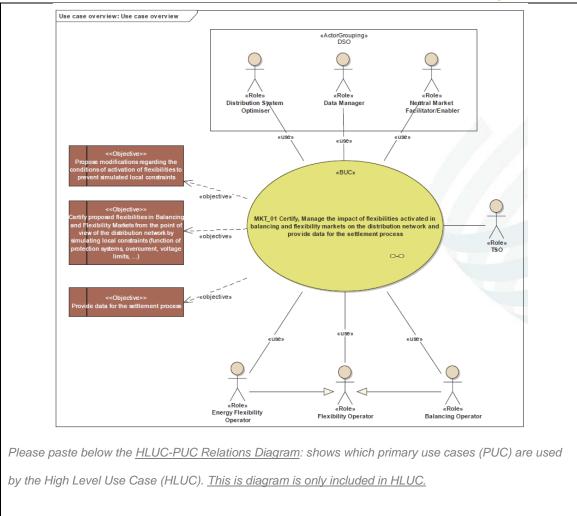
General Remarks

Is used for further comments which are not considered elsewhere.

2 Diagrams of use case

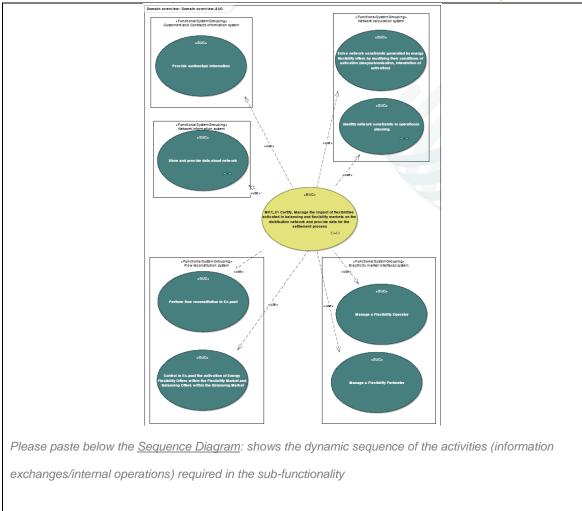
For clarification, in general it is recommended to provide drawing(s) by hand, by a graphic or as UML graphics.

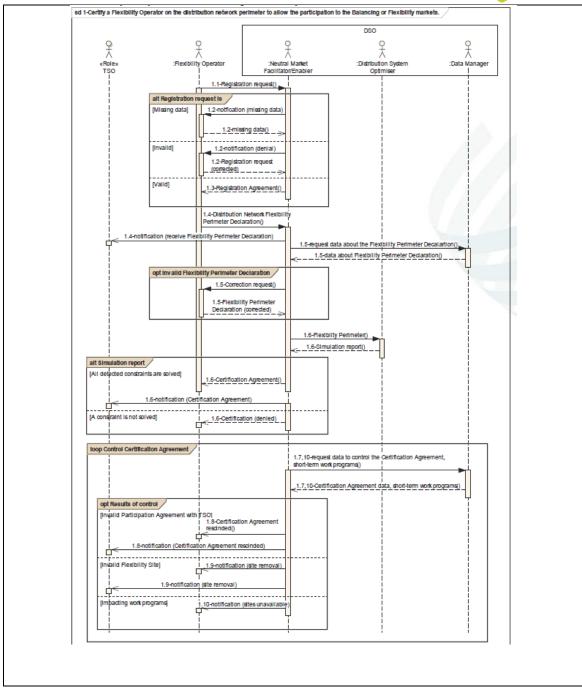
The drawing should show interactions which identify the steps where possible.


Diagram(s) of use case

Please paste below the Use Case Diagram: shows how actors interact within the Use Case by

participating in the technical functions





3 Technical details

3.1 Actors

In this section 3.1, actors which are involved in the use case are listed and described. These can for instance

include roles, systems, applications, databases, devices, etc.

	Actors			
Actor Name	Actor Type	Actor Description		

3.2 References

References (which are standards, reports, mandates and regulatory constraints) associated with the Use Case. The writers <u>must</u> identify the standards that should be used to realize the Use Case and improve the replicability of the solution.

Identify any legal issues that might affect the design and requirements of the function, including contracts, regulations, policies, financial considerations, engineering constraints, pollution constraints, and other environmental quality issues.

	References					
No.	References Type	Reference	Status	Impact on use	Originator /	Link
				case	organisation	
			The status	e.g. copy		
			of the	right, IPR		
			referenced			
			document.			

4 Step by step analysis of use case

Template section 4 focuses on describing scenarios of the use case with a step-step analysis (sequence

description). There should be a clear correlation between the narrative and these scenarios and steps.

4.1 Overview of scenarios

The table provides an overview of the different scenarios of the use case like normal and alternative scenarios

which are described in section 4.2 of the template.

In general, the writer of the use case starts with the normal sequence (success). In case precondition or postcondition does not provide the expected output (e.g. no success = failure), alternative scenarios have to be defined.

	Scenario conditions						
No.	Scenario	Scenario	Primary actor	Triggering event	Pre-	Post-condition	
	name	description			condition		
			Refers to the actor	Event that	Describe	Describes the	
			that triggers the	triggers the	s the	expected	
			scenario. For	scenario. It can	state of	state of the	
			instance, a	be a real event	the	system after	
			function called	such as, "a fault	system	the scenario	
			"Protection" would	occurs in the	before	is realized.	
			probably be	grid", or it is also	the		
			triggered by an	possible to define	scenario		
			"Intelligent	scenarios that	starts.		
			Electronic Device	occur			
			(IED)".	periodically.			

4.2 Steps – Scenarios

For this scenario, all the steps performed shall be described going from start to end using simple verbs like - get, put, cancel, subscribe etc. Steps shall be numbered

sequentially - 1, 2, 3 and so on. Further steps can be added to the table, if needed (number of steps are not limited).

Should the scenario require detailed descriptions of steps that are also used by other use cases, it should be considered creating a new "sub" use case, then referring to that

"subroutine" in this scenario.

	Scenario							
Scenar	io name :	No. 1 - Reference scenario						
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information	Requirement, R-IDs
No.		process/ activity			producer	receiver (actor)	Exchanged (IDs)	
					(actor)			
	Event that	Label that	This describes what action		Name of the	Name of the	Here the	
	triggers the	would appear	takes place in this step. The	Identifies	actor that	actor that	information can	
	activity. This	in a process	focus should be less on the	the	produces the	receives the	use a short ID	
	triggering	diagram.	algorithms of the applications	nature of	information.	information.	referring to	
	event can be	Action verbs	and more on the interactions	flow of			template	
	an event, such	should	and information flows between	informati			section 5 for	
	as "a fault that	be used when	actors.	on and			further details.	
	occurs in the	naming		the			Several	
	grid", or it may	activity.		originator			information	
	refer to an	EXAMPLE:		of the			exchanged IDs	
	activity that	"Fault occurs		informati			can be listed,	

occurs	in the grid".	on (*).		comma	
"periodically".				separated.	

(*) Available options are:

- CREATE means that an information object is to be created at the Producer.
- GET (this is the default value if none is populated) means that the Receiver requests information from the Producer (default).
- CHANGE means that information is to be updated. Producer updates the Receiver's information.
- DELETE means that information is to be deleted. Producer deletes information from the Receiver.
- CANCEL, CLOSE imply actions related to processes, such as the closure of a work order or the cancellation of a control request.
- EXECUTE is used when a complex transaction is being conveyed using a service, which potentially contains more than one verb.
- REPORT is used to represent transferral of unsolicited information or asynchronous information flows. Producer provides information to the Receiver.
- TIMER is used to represent a waiting period. When using the TIMER service, the Information Producer and Information Receiver fields shall refer to the same actor.
- REPEAT is used to indicate that a series of steps is repeated until a condition or trigger event. The condition is specified as the text in the "Event" column for this row or step. Following the word REPEAT, shall appear, in parenthesis, the first and last step numbers of the series to be repeated in the following form REPEAT(X-Y) where X is the first step and Y is the last step.

5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step

by Step Analysis". If appropriate, further requirements to the information objects can be added.

Information exchanged					
Information exchanged (ID)	Name of information	Description of information exchanged	Requirement, R-IDs		
Refers to an identifier	Is a unique ID which identifies the	Brief description, in case a reference to existing data	Can be used to define requirements		
used in the field	selected information in the context	models/information classes should be added. Using	referring to the information and not to		
	of the use case.	existing canonical data models is recommended.	the step as in the step by step		

"Information Exchanged"		analysis (see template section 6
of Table 4.2.		below): EXAMPLE: Data protection
		class corresponding to this
		information object.

6 Requirements

This table summarizes the requirements of all steps in the use case and it is linked to template section 4 "Step by Step Analysis".

	Requirements	
Categories ID	Category name for requirements	Category description
Unique identifier for	Name for the category of requirements.	Description of the requirement category.
the category.		
Requirement R-ID	Requirement name	Requirement description
Unique identifier	A name of the requirement.	Description of the requirement (this might be populated
which identifies the		automatically from the repository, if the requirement has already
requirement within		been described in the external document before).
its category and		
which		

can link the	
requirement to an	
external requirement	
document.	

7 Common Terms and Definitions

Should be defined in a common glossary for all use cases. Here relevant terms belonging to this use case are listed. Using a database repository for the glossary, the

definitions might be filled automatically based on existing information.

Common Terms and Definitions	
Term	Definition

