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1 Document Information 

1.1 Executive summary 

This document is part of the deliverables of the IANOS project, in the context of Work Package 4 

(WP4) “IANOS Multi-Layer VPP Operational Framework”. Specifically, it presents the first version of 

IANOS iVPP forecasting engine, which is responsible for providing the necessary forecasts for all 

the uncertainties in every time horizon and spatial distribution. The deliverable provides information 

about the different sub-components of IANOS iVPP Forecasting Engine, namely load, PV and Wind 

generation and energy market forecasting. 

Initially, the introductory sections provide the necessary information about the deliverable. The 

scope and the objectives of the deliverable is presented and, subsequently, the structure of the 

current deliverable as well as its relation to other tasks.  

Before the presentation of IANOS forecasting engine, a valuable initial literature review of the related 

works in energy related time series forecasting is held. In the last decades the attention of the 

researchers has been focused in problems related to energy forecasting, due the increasing 

inclusion of renewable energy sources, and their uncertainty that introduces fluctuations to the 

energy grid. Alongside the literature review, the different energy markets in Europe are analysed, 

highlighting the importance of future predictions of its values. 

Subsequently, the allocation of the forecasting engine component into the IANOS project’s overall 

architecture is presented. The interconnections of the different components to the module are 

presented together with the outer dependencies. Furthermore, an initial daft of the data model 

utilized by IANOS iVPP Forecasting Engine is provided, in addition to the different software pre-

requirements of the module. 

In the core of the document, the methodology followed within the developing of the forecasting 

engine is presented. The initial step of IANOS forecasting methodology is the process of data 

collection, which corresponds to the connection to IANOS ESB module. The next step is the pre-

processing of the available data, and the detection of the existing outliers. IANOS iVPP Forecasting 

Engine is separated into load, PV generation, wind generation and energy market forecasting sub-

modules. Based on the aforementioned categorization the document presents an exploration of the 

available data for each category, the strategy utilized alongside with the corresponding features, 

and finally the predictions models that are used to accumulate accurate forecasts, which vary from 

tree based models to support vector machine models and artificial neural network models.  

After analysing the methodology, there is the presentation of the metrics used in the evaluation of 

the results, which are the MAE, RMSE, MAPE, sMAPE and MMR metrics. Subsequently there is 

the demonstration of actual results. For each submodule a table is presented with the collective 

results of each model used, and an example plot of the best performing algorithm. 

In the last section of the deliverable there is the conclusions and findings of the analysis of IANOS 

iVPP forecasting engine, with the next steps and future work of the task, concerning the second 

version of the deliverable. 
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1.2 List of acronyms and abbreviations 

Abbreviations Full Description 

ANN Artificial Neural Network 

ARIMA Auto Regressive Integrated Moving Average 

CNN Convolutional Neural Network 

GBR Gradient-Boosted Regressor 

GRU Gated Recurrent Units 

LightGBM Light Gradient Boosting Machine 

ENTSO-E 
European Network of Transmission System 
Operators for Electricity 

FCR Frequency Containment Reserve 

IoT Internet of Things 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Errors 

ML Machine Learning 

MLP Multilayer Perceptron 

MMR Mean/Mad Ratio 

NL Netherlands 

PV Photovoltaic 

RBF Radial Basis Function 

RF Random Forest 

RNN Recurrent Neural Network 

RMSE Root Mean Square Error 

SARIMA 
Seasonal Autoregressive Integrated Moving 
Average 

sMAPE symmetric Mean Absolute Percentage Error 

SVM Support Vector Machine 

SVR Support Vector Regressions 

VPP Virtual Power Plant 

RBFNN Radial Basis Function Neural Network 

kNN k-Nearest Neighbors 

ENN Elman Neural Network 

GRNN Generalized Regression Neural Network 

EV Electric Vehicle 

ESB Enterprise Service Bus 

MAD Mean Absolute Deviation  

ANFIS Adaptive Network based Fuzzy Inference System 

NARXNN 
Nonlinear Autoregressive Neural Network with 
Exogenous Inputs  

ELM Extreme Learning Machine 
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SCRM Clear Sky Solar Radiation  

2 Introduction 

2.1 Scope and objectives of the deliverable 

The current deliverable provides information about the methodology that was followed in defining 

and developing the necessary models for the IANOS iVPP Forecasting Engine. Additionally, a 

thorough literature review of the previous works in energy forecasting, contacted in the context of 

the project, is presented.  

The deliverable presents different predictive tools, namely for demand or consumption forecasting, 

for generation forecasting, for both wind and PV generation, and for energy market forecasting 

considering different time frames. Each tool utilizes analytical, or data driven techniques derived 

from the current State-of-Art methods and further expanding them. Finally, each tool is evaluated 

with the appropriate evaluation metrics, and tuned to achieve the best possible forecasting results. 

The forecasting tools described in the deliverable constitute the core of iVPP Forecasting Engine, 

developed within the IANOS project iVPP framework.  

2.2 Structure of the deliverable 

The structure of the deliverable is as follows: 

• Chapter 1 presents information about the current document, namely the executive summary 

of the deliverable and a list of acronyms and abbreviations. 

• Chapter 2 presents the scope, objectives and structure of the deliverable, as well as its 

relation to the other tasks and deliverables of the IANOS project. 

• Chapter 3 provides the initial literature review for relative works, which contains information 

for load forecasting, PV and wind generation forecasting, and energy market forecasting.  

• Chapter 4 provides information about the architecture of iVPP Forecasting Engine, within 

IANOS project. Additionally, the model models utilized are described, together with the 

software pre-requirements. 

• Chapter 5 is the core of the document, which describes the methodology that was employed 

to develop the forecasting tools. Initially, the data collection step is described, which 

corresponds to the connection to ESB module of IANOS project. Subsequently, the 

preprocess step is described, followed by the description of the different forecasting tools. 

• Chapter 6 describes the metrics used for the evaluation of the forecasting algorithms and 

the evaluation results. 

• Chapter 7 provides conclusions about the overall work implemented in the current 

deliverable. 
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2.3 Relation to other tasks and deliverables 

This deliverable draws input from the defined Use Cases and requirements in D2.1 “Report on 

Islands requirements engineering and UCs definitions”. Additionally, in T2.5 “System Architecture”, 

which provides a description of the system’s architecture, there is an initial description of the 

functionality of the component described in this deliverable, and its interconnections and 

dependencies.  

The current deliverable is closely related to all the tasks from WP4. More specifically, in T4.1 “Cyber-

Secure data monitoring and VPP Governance”, the Enterprise Service Bus (ESB) is described, 

which is responsible to provide the Forecasting Engine with the necessary input data. Moreover, the 

component uses inputs from T4.3 “Intelligent VPP Clusters' Segmentation”, specifically for the load 

forecasting sub-module. Finally, IANOS iVPP Forecasting Engine provides predictions for load, 

generation and prices, for the Centralized Dispatcher described in T4.4 “Optimized cross-resource 

VPP coordination for energy services provision”. 
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3 Literature review and related work 

While exploring new methodologies for energy forecasting it is vital to initially review the literature 

for related works. The focus of the current section is the presentation of the related implementations 

for load forecasting, PV and wind generation forecasting and finally energy market forecasting. 

Based on the work done in these implementations IANOS Forecasting Engine is going to further 

progress beyond the State-of-Art, using novel forecasting strategies or algorithms.  

3.1 Time series forecasting 

The data utilized in IANOS Forecasting Engine belong to a very specific category of datasets that 

are called time series, which have a unique way of being analyzed and processed. Time series are 

the set of data that express the evolutions of a variable during consecutive time periods, for example 

a day, a week, or a month and are also collected over a certain period of time. In time series, time 

is more often the independent variable and the goal is to make predictions for future times.  

In order to predict the future values in energy related time series, different kinds of models are 

utilized, separated in basic categories, as presented in Figure 3.1. The first categorization is between 

analytical or physical models and data driven models. Analytical models are used to describe 

physical relationships between the values of the time series (e.g., station power generation) and 

relative parameters (e.g,. weather conditions, solar radiation). In the data driven models, the physical 

process is not taken into account. Data driven models are separated into: statistical models, machine 

learning models and hybrid models. The statistical models use mathematical models that derive 

from the correlation of the historical data with relative parameters, in order to find a function to best 

depict the behavior of time series. Machine learning models try to derive a relation between the 

relative parameters and values of the time series, while automatically improving its performance with 

experience. Lastly, hybrid models are combinations of statistical and machine learning models. In 

this document, the focus will be mainly on physical models and machine learning data driven 

models. 

 

Figure 3.1: Classification of energy related time series forecasting 

There are four types of time series forecasting, based on the prediction horizon, those are very 

short-term, short-term, mid-term and long-term forecasting. After the prediction, the results are 

evaluated, based on their comparison with the actual values, with the most common evaluation 
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metrics being: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and Symmetric Mean Absolute Percentage Error (SMAPE or sMAPE). 

3.2 Load forecasting 

In smart electricity grids that depend heavily on renewable energy it is very important for the energy 

distributors to know in advance the energy requirements of the consumers. The overall process of 

predicting the amount of the energy required by consumers in order to fulfill their energy demands 

is described with the term load forecasting. Due to its importance, load forecasting has been the 

main focus of the research in recent years. In this chapter, works related to load forecasting, mainly 

using machine learning algorithms, are going to be presented. In addition, Table 3.1 lists the papers 

that are presented in this chapter. 

In [1], Lahouar et al., Random Forests regression models are utilized in a real load data set from 

Tunisian Power Company for load prediction. They use features related to season, temperature 

(which was considered the most influential variable) and type of day to offer an accurate method 

with low errors for long test periods, without requiring an optimization process. Fumo and Biswas in 

[2] make use of simple and multiple linear regression models on a research house consumption 

dataset with daily and hourly data, showing improved results with features such as outdoor 

temperature and solar radiation. In [3] the goal is the prediction of short-term household’s hourly 

energy consumption using Neural Gas, Decision Trees, MLP and XGBoosting models, while firstly 

using clustering methodologies to aggregate the consumers. Amin et al. in [4] make predictions with 

the use of ensembles of linear regression models in residential apartments dataset, while 

additionally clustering the usage profiles, demonstrating the significance of different time scales and 

a small percentage error. Short-term load forecasting is the objective of [5], where LightGBM, 

XGBoosting, and MLP are used on a power supply industry from Malaysia and wholesale load 

dataset from New England, with LightGBM giving the best results. 

Tian et al. in [6] propose a framework based on the combination of CNN and LSTM networks. The 

framework is tested on electric load datasets provided by ENTSO-e Transparency Platform [7] for 

north Italy, and it is proved to outperform simple CNN and LSTM models. In [8] the researching team 

proposes a method using recurrence plots and two-dimensional CNN in a household dataset, where 

the time series dataset is encoded to recurrence plot images. The proposed model performs better 

than SVM, ANN and one-dimensional CNN. Almalaq and Edwards in [9] make a comparison 

between recurrent artificial neural networks, namely LSTM and GRU, and non-recursive networks, 

such as RBF Network and MLP for short term and medium test load forecasting in two aggregated 

energy consumption datasets for buildings in the US. They prove that the recursive models 

outperform non-recursive models. Ploysuwan in [10] utilize a combination of deep CNN as feature 

learning and LSTM network using data derived from IoT sensors from a household in Belgium and 

compare the model with GBM, Radial kernel SVM and Random Forest regressors, showing that the 

proposed model outperforms the previous comparison methods. Finally, Shabbir et al. in [11] use 

LSTM network in data collected from an Estonian household to achieve better results than shallow 

learning methods, such as Linear Regression, Tree-Based Regression and SVM. 
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Table 3.1: Load forecasting literature review 

Work Data Algos used Findings 

[1] 
Real load data set 

from Tunisian Power 
Company 

Random Forest 

Features related to season, 
temperature and type of day to offer 

an accurate method with low errors for 
long test periods, without requiring an 

optimization process 

[2] 

Research house 
consumption dataset 
with daily and hourly 

data 

Multiple linear regression 
models 

Improved results with features such 
as outdoor temperature and solar 

radiation 

[3] 

Short-term 
household’s hourly 

energy consumption 
data 

Neural Gas, Decision Trees, 
MLP and XGBoosting 

models 

Better results when first use clustering 
methodologies to aggregate the 

consumers 

[4] 
Residential apartments 

dataset 
Ensembles of linear 
regression models 

The significance of different time 
scales and a small percentage error 

[5] 

Load dataset of a 
power supply industry 

from Malaysia and 
from New England 

LightGBM, XGBoosting, and 
MLP 

LightGBM gives the best results. 

[6] 

Electric load datasets 
provided by ENTSO-e 
Transparency Platform 

for north Italy 

Framework based on the 
combination of CNN and 

LSTM networks 

Proposed framework outperforms 
simple CNN and LSTM models 

[8] 
Household 

consumption dataset 

Recurrence plots and two-
dimensional CNN, where the 

time series dataset is 
encoded to recurrence plot 

images 

The proposed model performed better 
than SVM, ANN and one-dimensional 

CNN 

[9] 

Two aggregated 
energy consumption 
datasets for buildings 

in the US 

Recursive: LSTM and GRU 
Non-recursive: RBF and MLP 

The recursive models outperformed 
non-recursive models 

[10] 
Data derived from IoT 

sensors from a 
household in Belgium 

Combination of deep CNN as 
feature learning and LSTM 

network  

The proposed model outperforms with 
GBM, Radial kernel SVM and 

Random Forest regressors 

[11] 
Data collected from an 

Estonian household 
LSTM network 

Model achieves better results than 
shallow learning methods, such as 

Linear Regression, Tree-Based 
Regression and SVM 

3.3 Generation forecasting  

In the IANOS project, the main source of energy generation comes from renewable energy sources. 

The use of renewable energy introduces uncertainty and fluctuations in the energy grid,.Therefore, 

since the start of the 21st century, a growth in research of renewable energy forecasting has been 

observed. In the current chapter, an analysis of literature related to renewable energy generation is 

presented, for both solar and wind power. Table 3.2 presents the reviewed works related to solar 

generation forecasting and Table 3.3 the works related to wind generation forecasting. 
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Regarding the IANOS Forecasting Engine, in two pilot islands, Ameland and Terceira, the focus is 

on the prediction of energy generation from PV farms in both islands, and wind farms in Terceira.  

3.3.1 Solar power (PV) 

In the recent literature, both physical models and data driven models are used for solar power 

forecasting. Physical models are mainly used as a benchmark in forecasting tools, being already 

tested in various datasets. [12], [13]   

The data driven models have been the main focus of research for solar power forecasting. These 

models consist of statistical and machine learning based models, with the latter being the main focus 

of the literature review implemented within the IANOS project. The literature provides an abundance 

of works that use machine-learning techniques for solar energy forecasting. Starting with [14], Zeng 

and Qiao, use SVM models in solar data collected from the National Solar Radiation Database, to 

predict the solar power. They prove that SVM models outperform statistical AR models. Random 

forest and multiple linear regression are used, by Huang et al., in [15] to predict the daily solar 

irradiance. The data used are Global horizontal solar irradiance data, was collected between 2003 

and 2012. They found that the random forest model outperforms the multiple linear regression 

model, which has better results than the simple persistence models. Zhang et al in [16] utilize several 

shallow learning algorithms for day-ahead solar power forecasting, varying from RBFNN, SVM, kNN 

and weighted kNN. The dataset used in this work is derived from data from three different PV 

systems locations around the world, while using different features combinations, varying from solar 

irradiance, cloud coverance and more. 

Lee et al., in [16], used a RNN model with LSTM to predict the power generation of photovoltaic 

stations, using data from meteorological stations, sensors and photovoltaic generation data. They 

found that those models are able to provide fast results with a high accuracy. In [18], Lee et al., 

collected data and used it to forecast solar power generation using LSTM and Convolutional Neural 

Networks. The data consist of date, time, power generation, irradiation, and temperature from 71 

photovoltaic inverters and the findings were that the models used outperforms traditional regressors 

and deep neural networks. Finally, in [19] the research team make use of CNN, LSTM and their 

combination in 4 years of solar data, with the hybrid model outperforming the other models, but has 

the longest time.  

Di Su et al. in [20] test several machine learning algorithms, namely Back Propagation Neural 

Network (BPNN), Elman Neural Network (ENN), Generalized Regression Neural Network (GRNN), 

Adaptive Network based Fuzzy Inference System (ANFIS), Nonlinear Autoregressive Neural 

Network with Exogenous Inputs (NARXNN), K Nearest Neighbours (kNN), Extreme Learning 

Machine (ELM) and Random Forest (RF), for solar power forecasting on a dataset of a PV plant in 

the UK and propose a model based on the weighted average of the best performing models. In [21], 

Leva et al. utilize a Hybrid Artificial Neural Network system based on MLP, hybridised with the 

physical Clear Sky Solar Radiation (SCRM) algorithm in data concerning PV power measured in the 

SolarTechLab in Politecnico di Milano, achieving good results, but with high time complexity.  

Table 3.2: PV generation forecasting literature review 

Work Data Algos used Findings 

[12] 
[13] 

Various solar generation 
datasets 

PVLib Physical models 
Comparison of forecasts using 

physical models 
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Work Data Algos used Findings 

[14] 
Solar data from National 

Solar Radiation Database 
SVM SVM model outperforms AR 

[15] 
Global horizontal solar 

irradiance between 2003 
and 2012 

Random forest and 
Multiple linear regression 

Random forest better than multiple 
linear regression better than simple 

persistence models 

[16] 
Data from three different 

PV systems locations 
around the world, while 

RBFNN, SVM, kNN and 
weighted kNN 

Better results using different features 
combinations, varying from solar 

irradiance, cloud coverage and more 

[17] 
Photovoltaic generation, 

sensor, and weather data 
RNN and LSTM Fast results, high accuracy 

[18] 

Date, time, power 
generation, irradiation, 
and temperature data 
from 71 photovoltaic 

inverters 

LSTM and Convolutional 
Neural Networks 

Model outperforms traditional 
regressors and deep neural networks 

[19] 4 years of solar data 
CNN, LSTM and their 

combination 

The hybrid model outperforming the 
other models, but has the longest 

time. 

[20] 
Dataset of a PV plant in 

the UK 

BPNN, ENN, GRNN, 
ANFIS, NARXNN, kNN, 

ELM and RF 

Model based on the weighted average 
of the best performing models 

outperforms other models 

[21] 
PV power data measured 

in the SolarTechLab in 
Politecnico di Milano 

Hybrid Artificial Neural 
Network system based on 
MLP, hybridised with the 
physical Clear Sky Solar 

Radiation (SCRM) 
algorithm 

Good results, but with high time 
complexity 

 

3.3.2 Wind power 

The wind power forecasting problem has been proved to be more challenging than the solar power 

forecasting in the recent literature, due to the highest complexity of the weather features, namely 

wind speed and direction, which affect the power output of the wind farm. The models used vary 

from statistical, shallow learning, including Random Forest, Gradient Boosted, XGBoosting 

regressions or SVM, to more complex deep learning models, while ensembles of the previously 

mentioned methods are also utilized. [22] 

In [23] Barbounis et al. make use of various RNN models to predict the power output of a wind park 

in Crete, Greece using meteorological predictions as input features. ANN and kNN models are used 

by Jursa and Rohrig in [24] to predict the power output of wind farms. The data used consist of 

weather data and historic power data of wind farms and the finding is that the models used achieve 

an improvement of around 11% over the persistent method.  Short-term prediction of wind power is 

achieved by Jursa in [25] using several methods, such as ANN, SVM, kNN, and ensembles and 

power output data of German wind farms and weather prediction data from German weather service. 
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The combinations of the models are found to produce better results. In [26] Click or tap here to enter 

text.Chen et al. use LSTM and SVRM, which are combined to an EnsemLSTM, to predict the wind 

speed using data from wind farms in China. They found that the ensemble method outperforms 

SVR, ANN, and kNN. 

Table 3.3: Wind generation forecasting literature review 

Work Data Algos used Findings 

[22] 
Various wind power 
generation datasets 

Statistical, Random 
Forest, Gradient Boosted, 
XGBoosting,  SVM, and 
deep learning models 

Comparisons between the models 

[23] 
Power output of a wind 
park in Crete, Greece 

RNN models 
Meteorological predictions as input 

features have better results 

[24] 
Weather data and historic 
power data of wind farms 

ANN and kNN 
Improvement of around 11% over the 

persistent method 

[25] 

Power output data of 
German wind farms and 
weather prediction data 
from German weather 

service 

ANN, SVM, kNN, and 
ensembles  

The combinations of the models are 
found to produce better results 

[26] 
Wind speed data from 
wind farms in China 

LSTM and SVRM, 
combined to an 
EnsemLSTM 

the ensemble method outperforms 
SVR, ANN, and kNN 

3.4 Energy market forecasting 

3.4.1 Energy markets in Europe 

Since the start of the 21st century, the electricity system context in Europe went through significant 

changes, mainly due to the growing penetration of intermittent renewable energy sources and 

liberalization of energy markets. These factors have led to the need for a more efficient and lower-

carbon system. EU Wholesale markets now experience the inclusion of a vast amount of distributed 

energy resources such as EVs and energy storage systems, while prosumers are having a key role 

into this energy transition. In IANOS, a need has appeared for accurate energy market forecasting 

together with generation and demand forecasting (focused mainly in the NL wholesale market 

including Ameland). More specifically, the markets that are further researched are the day-ahead 

market, the intra-day market, the imbalance market and the frequency response services market.  

3.4.1.1 Day-ahead market 

The day-ahead market concerns the bidding process that takes place on day D and with which the 

stakeholders make commitments for selling or buying specific amounts of electricity at each hour of 

day D+1. The price of energy is not already known at the time of the bidding but is formed when all 

the bids from the energy generators are revealed. The outcome of the day-ahead market clearing 

mechanism is the amount of the energy that each participant sells or buys and the price of the 

electricity. More specifically, each hour an amount and a price of energy is determined. 
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3.4.1.2 Intra-day market 

The bids that each participant submits in the day-ahead market have a high degree of uncertainty, 

mainly due to the uncertainties of renewable energy sources. To tackle this challenge more 

accurately, the mechanism of intra-day market has been introduced. According to this mechanism, 

the participants are able to make adjustments in the transaction of energy that are committed from 

the day-ahead process closer to the actual time of energy delivery, and thus while having more 

certain information for the availability of the assets and needs.  

3.4.1.3 Balancing Market  

Balancing energy market 

The last main market of the modern electricity market system in Europe is the imbalance market or 

balancing energy market. This market is executed every hour of each day in order to handle the 

deviations of the commitments of the previously mentioned markets and the actual demand and 

generation in near real-time. With this mechanism, the price of the deviation of the power agent is 

determined. 

Balancing capacity market 

In order for the electricity system to function appropriately, the system operator must ensure that the 

frequency is set to a referenced value, namely at 50 Hz in Europe. To achieve that the operators 

use instruments, called frequency response services. The system outlined by the European Network 

of Transmission System Operators for Electricity (ENTSO-E) suggests that these services are 

divided into three main instruments, namely Frequency Containment Reserve (FCR), also called 

primary control reserve, automatic Frequency Restoration Reserve (aFRR), also called secondary 

control reserve and manual Frequency Restoration Reserve (mFRR), or tertiary control reserve.  

The main difference between these mechanisms is the time of activation. More specifically, FCR 

reacts almost instantaneously, and must fix the deviation within 30 seconds in an automatic and 

nonselective manner. A certain amount of primary control is, at any given time, ready for activation, 

in order to ensure grid’s stability. The secondary control reserve, aFRR, gradually replaces the FCR, 

if the deviation from the reference value of the frequency persists, and must provide reserve within 

5 minutes. Finally, the mFRR must be fully deployable to assist or substitute the aFRR after 12.5 

minutes. 

3.4.2 Energy market forecasting review 

In the past years, the focus of the research in energy market forecasting has mainly shifted to 

electricity price forecasting, for the three main markets. The importance of forecasting the electricity 

prices, namely day-ahead and intra-day, is highlighted in [27], where statistical methods are used to 

predict the electricity price in order to benefit a small-scale RES generator. Most of the works 

reviewed within the IANOS project make use of shallow or deep learning techniques, or 

combinations of the previous, to predict the future values of the prices. Table 3.4 lists the different 

papers that are presented. 

In [28] the research team make use of SVM forecasting model in market clearing price, proving the 

model to be more robust and reliable than ANN and traditional approaches. An alternative to SVM, 

the informative vector machine (IVM) is used by Elattar in [29] to forecast the day-ahead price of 

electricity, while kernel principal component analysis is used to extract features, in real world 

datasets. González et al. in [30] highlight the effectiveness of an ensemble of regression tree 
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models, such as Bagging and Random Forests in electricity price dataset for the Spanish market. 

Electricity locational marginal price of New England electricity market is the forecasted variable of 

[31] where the researching team use an ensemble of XGBoost and relevance vector machines, with 

accurate and low time complexity results. 

Recurrent Neural Networks, and more specifically LSTM and GRU are used in [32] to forecast the 

electricity prices time series of the Turkish day-ahead market, with GRU giving the best results. 

Different RNN models are also used from Anbazhagan and Kumarappan in [33] in prices dataset 

from the electricity market of Spain and New York. Finally, in [34] Kraft et al. use statistical models 

and ANN models to forecast the prices of the European FCR market, produce high forecast quality 

results. 

Table 3.4: Energy market forecasting literature review. 

Work Data Algos used Findings 

[27] 
Day-Ahead and Intra-day 

price data 
Statistical methods 

Importance of forecasting electricity 
prices in order to benefit a small-scale 

RES generator 

[28] Market clearing price SVM 
Proposed model is more robust and 

reliable than ANN and traditional 
approaches 

[29] 
Real world datasets of 

day-ahead price of 
electricity 

Informative vector 
machine (IVM) 

Kernel principal component analysis is 
used to extract features 

[30] 
Electricity price dataset 
for the Spanish market 

Ensemble of regression 
tree models, such as 
Bagging and Random 

Forests 

Highlight the effectiveness of the 
proposed models 

[31] 
Electricity locational 

marginal price of New 
England electricity market 

Ensemble of XGBoost 
and relevance vector 

machines 

Accurate and low time complexity 
results 

[32] 
Electricity prices time 

series of the Turkish day-
ahead market 

LSTM and GRU GRU gives the best results 

[33] 
Prices dataset from the 

electricity market of Spain 
and New York 

RNN models 
Highlight the effectiveness of the 

proposed models 

[34] 
Prices of the European 

FCR market  
Statistical models and 

ANN models 
High forecast quality results 
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4 IANOS Forecasting Engine 

The Forecasting Engine is a key part of IANOS architecture. In this section, a view of the 

component’s allocation is presented, together with an analysis of the different subcomponents and 

the connections to other submodules. Finally, the data model utilized within the Forecasting Engine 

is presented.  

4.1 Conceptual View 

IANOS Forecasting Engine is responsible for providing energy & price related forecasts to other 

components of IANOS system, while communicating with external components to retrieve necessary 

input data.  

The Forecasting Engine is connected with IANOS Secure Enterprise Service Bus (ESB) to receive 

generation and consumption data and numerical weather predictions, while external APIs provide 

energy market data. The engine will utilize the clustering results of Aggregation and Classification 

module in order to facilitate load forecast based on the cluster of each prosumer. It will receive as 

input the label of the cluster that the consumption profile of each consumer belongs. Currently, the 

models that have been created are single-prosumer based, but the aim is to support both 

personalized and cluster based models. 

The forecasts are retrieved by the Centralized Dispatcher to optimally dispatching field-level IANOS 

elements and the DLT-based Transactive Logic in order to facilitate direct energy transactions in the 

community. The following figure presents the allocation of the Forecasting Engine into IANOS 

architecture component and its interaction with other modules. 

 

Figure 4.1: Allocation of the forecasting component into the IANOS project’s architecture 

4.2 Components and outer dependencies 

IANOS Forecasting Engine consists of four different sub-components, namely Demand Forecasting, 

PV Generation Forecasting, Wind Generation Forecasting, and finally Energy Market Forecasting. 

For each of the subcomponents, there is a dependency on data retrieved from other components or 

external sources. More specifically, historical data, regarding energy generation and consumption, 

and numerical weather predictions will be stored in a time series database and will be accessible 
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through ESB, cluster labels need to be provided by Aggregation and Classification module and 

finally price data and generation and demand forecasts are provided by ENSTO-E [7] energy market. 

Depending on what is requested, the final output of the component is either the day-ahead, or the 

intra-day forecast. A detailed functionality diagram of IANOS Forecasting Engine can be observed 

in the figure below.  

 

Figure 4.2: Detailed functionality diagram of IANOS Forecasting Engine 

4.3 Data model 

The outputs of IANOS Forecasting Engine follow a specified data model dependent on the resolution 

of the forecast. For both categories of the forecast, the engine outputs a .json file containing 

information for the id of the prosumer and the asset, for which the predictions are made, and 

information about the forecast, namely the type of forecast, the horizon of forecast and the 

measurement unit. Additionally, for intra-day forecasts under the properties key the timestamp and 

the value of the corresponding prediction is depicted. Finally, for day-head forecast there are either 

24 timestamp-value pairs for hourly resolution datasets, or 96 timestamp-value pairs for quarterly 

resolution datasets.  

In the following figures, there are examples of the outputs of the Forecasting Engine for intra-day 

and day-ahead forecasts. Additionally, Table 4.1 is provided to illustrate descriptions of the inputs 

and output variables of the Forecasting Engine 

Table 4.1: Description of the input and output variables of the Forecasting Engine 

Friendly name 
Measureme

nt name 
Measureme

nt unit 
Measureme

nt type 
Description 

Residential Load Forecasting Input 

Power 
Consumption 

active_power W float 
Measurement name of the 
respective historical load 
measurements 

Temperature temp Celsius float 
Historical values of temperature 
predictions 
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Friendly name 
Measureme

nt name 
Measureme

nt unit 
Measureme

nt type 
Description 

Residential Load Forecasting Output 

Forecasted 
Energy 

Consumption 
energy Wh float The forecasted value of load 

Solar Generation Forecasting Input 

Power Generation active_power W float Historical values of solar generation 

Temperature temp Celsius float 
Historical values of temperature 
predictions 

Cloud Coverage cloud_cover - float 
Historical values of cloud coverage 
predictions 

Wind Speed wind_spd m/s float 
Historical values of the wind speed 
predictions 

Solar Generation Forecasting Output 

Forecasted Solar 
Generation 

energy Wh float 
The forecasted value of solar 
generation 

Wind Generation Forecasting Input 

Power Generation active_power W float Historical values of wind generation 

Temperature temp Celsius float 
Historical values of temperature 
predictions 

Cloud Coverage cloud_cover - float 
Historical values of cloud coverage 
predictions 

Wind Speed wind_spd m/s float 
Historical values of the wind speed 
predictions 

Wind Direction wind_dr 
degrees from 

north 
float 

Historical values of wind direction 
predictions 

Wind Generation Forecasting Output 

Forecasted Wind 
Generation 

energy Wh float 
The forecasted value of wind 
generation 

Energy Market Forecasting Input 

Price or FCR 

da_price 
intra_price 
imb_price 

fcr 

EUR/MWh 
EUR/MW/ISP 

float Historical values of price or FCR 

Day ahead load 
forecast 

da_load MWh float 
Historical values of day ahead load 
predictions for all the region 
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Friendly name 
Measureme

nt name 
Measureme

nt unit 
Measureme

nt type 
Description 

Day ahead 
generation 

forecast 
da_gen MWh float 

Historical values of day ahead 
generation predictions for all the 
region 

Energy Market Forecasting Output 

Forecasted prices 
or FCR 

da_price_for 
intra_price_for 
imb_price_for 

fcr_for 

EUR/MWh 
EUR/MW/ISP 

float Forecasted values of price or FCR 

  

Figure 4.3: Example of the input of the Forecasting Engine for day-ahead forecast. 

4.4 Software pre-requirements 

The reference language of the Forecasting Engine component, in order to facilitate its functionalities, 

will be Python[35]. Python is ideal for fast and easy prototyping and while containing suitable 
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packages for machine learning based tasks. More specifically, in the implementation of IANOS 

Forecasting Engine, the packages are used for data manipulation are Numpy[36], which offers an 

immense set of mathematical functions that enable fast and convenient array operations, and 

Pandas[37]. Pandas is a well-known and widely-used data analysis library. It is a simple tool for 

working with datasets in a variety of formats, including csv, h5, json and others. Pandas is great for 

time-series analysis since it includes a variety of ways for reading, writing, and pre-processing raw 

time-series data by extracting key data. 

In the development of IANOS Forecasting Engine, for data modeling, there are two main packages 

used, namely Scikit-learn[38], that offers various pre-built supervised machine learning algorithms, 

including the tree-based models and SVM that are utilized within IANOS Forecasting Engine, and 

Keras[39] which provides Neural Network algorithms. 

Lastly, the library utilized for visualizing the data and the results is Plotly[40], which provides useful 

tools for interactive graphics and plots. 
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5 IANOS forecasting methodology 

In this section, the progress of IANOS Forecasting Engine beyond the state-of-art is described. The 

techniques used are focused on delivering lightweight forecasting agents that accurately forecast 

the consumption, generation and price of electrical energy in the two pilot islands.  

The methodology used within the module is mainly separated into four steps as explained in Figure 

5.1. The first step includes the acquisition of the data, in which data is collected either from local or 

external databases or by utilizing specific APIs that allow frameworks to communicate with each 

other. The next step is the preprocessing and cleaning of the data, whereas the module detects 

missing values and outliers and cleans or drops them respectively and finally normalizes the data. 

The first two steps are common to all the forecasting sub-modules and they are further described in 

the following chapters. 

 

Figure 5.1: IANOS methodology flowchart 

The third step of the methodology is the training of the models used in the Forecasting Engine, in 

which the feature engineering is carried out as well. Based on defined evaluation metrics, the models 

with the best performance are identified and saved for future use. For each submodule, the features 

and the algorithms used may vary, but the logic remains. The final step of methodology is real time 
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forecasting, where the aforementioned pre-trained models are loaded and the previous data is 

fetched in order to get real time predictions.  

In energy related time series it is possible to encounter changes in the incoming measurements that 

may lead to poor forecasting performance. To facilitate this kind of problem the models are 

frequently re-trained in specific time periods, aiming to adapt in the most recent conditions. 

A separate note has to be made for load forecasting where the forecast methodology is going to be 

held with respect to the cluster that each consumer belongs. The Forecasting Engine will acquire 

the clustering labels for the consumption of each actor, and a model will be built based on the 

datasets of all the actors belonging to the same cluster. By following this methodology, it is easier 

to provide forecasts for newly installed consumers/prosumers simply by assigning them in the 

appropriate cluster. The Aggregation and Classification module developed within IANOS project is 

further described in Deliverable D4.5 “iVPP Aggregation and intelligent Segmentation”. 

Based on the analysis of IANOS project’s different scenarios, there have been two main time 

horizons of forecasting, as presented in Figure 5.2: Forecast horizons considered in the energy 

forecasting model. In the day-ahead forecast, in the start of each day, the values of the whole next 

day are forecasted, while the short-term forecast will be executed on a specific time-intervals in 

order to generate the next value. In the different submodules the forecasting horizons may vary, 

thus a more detailed explanation is going to be presented in the following chapters. 

 

Figure 5.2: Forecast horizons considered in the energy forecasting model 

5.1 Data collection 

The IANOS Forecasting Engine tool requires proper data exchange between different system 

components, external components, and field devices. The data transfer/collection role is played by 

the iVPP secured Enterprise Service Bus (ESB), focusing specifically on cyber-security aspects. 

Within IANOS, the ESB will be the tool that all the components integrated within the iVPP platform 

will utilize to collect data of all the energy assets that are distributed in different geographical 

locations by communicating with it. ESB will provide specified methods to exchange the contextual 

data from the field components to the iVPP platform. For the collection of the data, secure password 

protected connection to the database is required. Finally, in order to retrieve external data, namely 

price data and weather predictions, on-line connections with external databases will be established 

through Application Programming Interfaces (API).  

Finally, it must be mentioned that Task 4.1 “Cyber-Secure data monitoring and VPP Governance” 

will be responsible for highlight all the cybersecurity issues regarding the transactions through the 

ESB. 

5.2 Data preprocessing and outliers detection methods 

After the acquisition of the raw data from a database or an API, the next step of the IANOS 

Forecasting Engine’s methodology is the preprocess of the data. The raw data can be inaccurate or 
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corrupted, with several missing values or outliers. This introduces unacceptable errors in the 

forecasting methodology and may result in inaccurate forecasting. Therefore, the module firstly 

checks the data for missing values and then replaces them using interpolation strategies that best 

fit to the form of the time series. Additionally, the module utilizes the z-score [41] function in order to 

remove the outlier points of the time series, to eliminate the bias. Finally, when needed, the dataset 

is scaled and normalized using the most common techniques, namely MinMaxScaler [42] or 

StandardScaler [43]. 

5.3 Load forecasting 

5.3.1 Data exploration 

In the current state of the pilot islands, there are no datasets available for load forecasting. Thus, 

the dataset used for the first version of load forecasting is a private electricity consumption dataset 

from a residential user in Thessaloniki, Greece. The measurement unit of dataset is Watt (W) and 

the resolution of measurements is quarterly. Additionally, numerical weather prediction that 

correspond to the time and place of consumption measurements are utilized as features. In the 

following figure Figure 5.3, there is an example plot of the energy consumption data of the residential 

user.  

 
Figure 5.3: Energy consumption example plot for residential user. 

The following table Table 5.1 provides necessary statistics for the final dataset used for the electricity 

load of the residential user.  

Table 5.1: Load dataset's statistics 

 Load dataset 

Count 19257 

Mean 14.19 

Std. Deviation 7.24 

Min -4.4 

Max 35.6 

Start Date 2020-08-30 00:00:00 
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End Date 2021-03-18 12:30:00 

 

5.3.2 Load forecasting strategy and feature creation 

The module is able to provide multi-step forecasts with configurable horizons, in order to make day-

ahead and intra-day forecasts. For these multi-step forecasts, separate models that are created to 

predict each time step of the horizon. The horizon of the forecast depends on the requested target, 

which within the IANOS project corresponds to intra-day and day-ahead forecasts. This direct 

strategy for multi-step forecasts and the corresponding features used are highlighted in Figure 5.4: 

Load forecasting strategy. 

 

Figure 5.4: Load forecasting strategy 

The features utilized as input to the data-driven models can be separated into three main categories, 

namely energy based features, which are the historical consumption values gathered from the 

energy smart meters, weather features, which are retrieved from an external API, and temporal 

features to capture the season periodicity.  

More specifically, the energy based features consist of past load values within a previously specified 

time window, named history. Thus, in order to predict the t+1 load, the models utilize previous load 

values from t timestep to t-(history-1) timestep. In IANOS forecasting module, the history is set to 24 

hours or 96 quarters depending on the resolution of the time series. 

The weather features used for the load consist of only the temperature feature, as this is the only 

feature proven useful in experimentations. For the multi-step forecast, the temperature of each time-

step is used in the corresponding model. 
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Lastly, the time features are used with the same logic as the weather features. In order to capture 

the time seasonality of the load time series, temporal cyclical features are used through the following 

equations: 

 

𝑠𝑖𝑛𝑚𝑖𝑛 = 𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
𝑚𝑖𝑛𝑢𝑡𝑒𝑠

60
) (1) 

 
 

𝑐𝑜𝑠𝑚𝑖𝑛 = 𝑐𝑜𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
𝑚𝑖𝑛𝑢𝑡𝑒𝑠

60
) (2) 

 
 

𝑠𝑖𝑛ℎ𝑜𝑢𝑟 = 𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
ℎ𝑜𝑢𝑟

24
) (3) 

 
 

𝑐𝑜𝑠ℎ𝑜𝑢𝑟 = 𝑐𝑜𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
ℎ𝑜𝑢𝑟

24
) (4) 

 
 

𝑠𝑖𝑛𝑤𝑑𝑎𝑦 = 𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
𝑑𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘

6
) (5) 

 
 

𝑐𝑜𝑠𝑤𝑑𝑎𝑦 = 𝑐𝑜𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
𝑑𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘

6
) (6) 

 
 

𝑠𝑖𝑛𝑦𝑤𝑒𝑒𝑘 = 𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
𝑤𝑒𝑒𝑘_𝑜𝑓_𝑦𝑒𝑎𝑟

54
) (7) 

 
 

𝑐𝑜𝑠𝑦𝑤𝑒𝑒𝑘 = 𝑐𝑜𝑠𝑖𝑛𝑢𝑠 (2𝜋 ∗
𝑤𝑒𝑒𝑘_𝑜𝑓_𝑦𝑒𝑎𝑟

54
) (8) 

 
 

In addition to the temporal cyclical feature, categorical features indicating the part of the day (e.g. 

morning, noon, etc), Function 9, and part of the week (e.g. workday, weekend), Function 10, were 

extracted from each timestamp of the time series.  

𝑑𝑎𝑦_𝑝𝑎𝑟𝑡 =

{
 
 

 
 

𝑑𝑎𝑤𝑛, 𝑖𝑓(ℎ𝑜𝑢𝑟 ≥    2)  𝐴𝑁𝐷 (ℎ𝑜𝑢𝑟 ≤    5)  

𝑚𝑜𝑟𝑛𝑖𝑛𝑔, 𝑖𝑓(ℎ𝑜𝑢𝑟 ≥    6)  𝐴𝑁𝐷 (ℎ𝑜𝑢𝑟 ≤    9)

𝑛𝑜𝑜𝑛, 𝑖𝑓(ℎ𝑜𝑢𝑟 ≥  10)  𝐴𝑁𝐷 (ℎ𝑜𝑢𝑟 ≤  13)

𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛, 𝑖𝑓(ℎ𝑜𝑢𝑟 ≥  14)  𝐴𝑁𝐷 (ℎ𝑜𝑢𝑟 ≤  17)                (9)

𝑒𝑣𝑒𝑛𝑖𝑛𝑔, 𝑖𝑓(ℎ𝑜𝑢𝑟 ≥  18)  𝐴𝑁𝐷 (ℎ𝑜𝑢𝑟 ≤  21)

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑖𝑓(ℎ𝑜𝑢𝑟 ≥  22)  𝑂𝑅     (ℎ𝑜𝑢𝑟 ≤    1)

 

 

𝑖𝑠_𝑤𝑒𝑒𝑘𝑒𝑛𝑑 = {
1, 𝑤ℎ𝑒𝑟𝑒 ((𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 =  5)   𝑂𝑅  (𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 =  6)

0, 𝑤ℎ𝑒𝑟𝑒 ((𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 ≠  5) 𝐴𝑁𝐷 (𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 ≠  6)
    (10) 

 

5.3.3 Prediction Models 

Many data-driven models were performed in order to find the most efficient in both forecast accuracy 

and time complexity. More specifically, the models utilized can be classified into the following 

categories, as shown in the Table 5.2: 

Table 5.2: IANOS Forecasting Engine's prediction models 

Category Prediction model 

Bagging trees 
ensemble 

● Random Forests (RF) 

Boosting trees ensembles 
● Gradient Boosting Regressor (GBR) 
● eXtreme Gradient Boosting (XGBoost) 
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● Light Gradient Boosting Machine 
(LightGBM) 

Support Vector Machines (SVM) ● Support Vector Regressor (SVR) 

Artificial Neural Nerworks (ANN) 
● Multi-Layer Perceptron (MLP) 
● Long-short Term Memory Recurrent NN 

(LSTM RNN) 

 

The aforementioned models are also employed in the generation and energy market forecast 

modules, with parameters set according to the problem. In generation forecasting, physical models 

for both PV and wind generation are going to be implemented, in the following version of the 

deliverable. 

5.4 PV forecasting 

5.4.1 PV analytical/physical model 

The physical model used in the IANOS Forecasting Engine for solar power forecasting is based on 

the open-source software that models the behavior of PV systems, PVlib[44]. PVlib is a procedural 

Python library used to simulate the performance of PV systems, using a set of functions and classes. 

The tool helps users model the outputs of a PV system by using different models and customizable 

PV system parameters that include location and time, PV system configuration characteristics and 

forecasted weather data, relevant to the solar power modeling. 

As mentioned previously, the physical model is going to be developed in the second version of the 

deliverable due to the current lack of data. 

5.4.2 PV data driven approach 

In the data-driven approach for PV generation forecast, there are no requirements for the physical 

characteristics of the photovoltaic system, and only past values of the PV generation are used, 

together with time and weather features. 

5.4.2.1 Data exploration 

For the PV generation forecasting with data-driven models one dataset was used for the Ameland 

pilot island. In this first version of the deliverable there was a lack of data for the Terceira pilot. 

Additionally, weather forecast data were collected from external APIs that correspond to the 

respective time periods, for the pilot island. 

The PV generation dataset used in generation forecasting for Ameland pilot island correspond to 

the solar power production of the installed 6MWp community owned solar farm. The overall 

production of the solar farm can be visualized in [45], while the data were retrieved from the source 

API url using a python script. The measurements come in 5-minute resolution, and were resampled 

in quarters, from 2020-11-30 to 2021-07-21, which corresponds to 22364 entries, with a few missing 

values that were interpolated. The measurement unit of the data is kW. An example of the dataset 

is shown on the following Figure 5.5. 
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Figure 5.5: PV generation example plot for one week [Ameland] 

The following table provides necessary statistics for the final dataset used for the PV generation 

forecasting for Ameland. 

Table 5.3: PV generation dataset's statistics [Ameland] 

 PV generation dataset 

Count 22364 

Mean 740.185 

Std. Deviation 1276.384 

Min 0.0 

Max 4806.436 

Start Date 2020-11-30 

End Date 2021-07-21 

5.4.2.2 PV forecasting strategy and feature creation 

With the same logic as the load forecasting sub-module, the direct strategy of the multi-step PV 

forecast can be viewed in the Figure 5.6. The different forecast horizons correspond to intra-day and 

day-ahead PV generation forecasting.  
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Figure 5.6: PV generation forecasting strategy 

The main difference between PV and load forecast is the features used in each occasion. In PV 

generation forecasts, the past values of the PV farm generation  are utilized as energy based 

features in a predefined time window. As far as weather features go, the ambient temperature, the 

cloud coverage and the solar irradiance are used. The time features used are the same as in load 

forecasting. 

5.5 Wind forecasting 

5.5.1 Wind analytical method 

As mentioned previously, in the IANOS Forecasting Engine, both physical and data driven models 

are used for generation forecasting. More specifically, the physical model used for wind power 

forecasting is the open-source library Windpowerlib [46]. 

In the analytical method approach, the entire system is modeled with the use of equations that derive 

from wind turbine mechanics. The contributing factors that the wind power output is depended on 

can be grouped into two main categories:  

• Weather variables: temperature, pressure, wind speed and wind direction 

• Technical characteristics of the turbine: coefficient curves provided by the manufacturer, 

nominal power, rotor diameter and hub height. 

These factors are required by the Windpowerlib for the calculation of the wind turbine’s power output. 

The library defines the wind power [W] output using Function 11, in which 𝜐𝑤𝑖𝑛𝑑
  corresponds to the 
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wind speed [m/s] at the hub height,  𝑑𝑟𝑜𝑡𝑜𝑟
   is the rotor diameter [m] of the wind power, 𝜌ℎ𝑢𝑏 stands 

for the air density [kg/m3] at hub height and 𝑐𝑝(𝜐𝑤𝑖𝑛𝑑) are the coefficient curves:  

 P = 
1

8
∙ 𝜌ℎ𝑢𝑏 ∙ 𝑑𝑟𝑜𝑡𝑜𝑟

2 ∙ 𝜋 ∙ 𝜐𝑤𝑖𝑛𝑑
3 ∙ 𝑐𝑝(𝜐𝑤𝑖𝑛𝑑)     (11)  

In the same manner as for the PV forecasting, the physical model for wind forecasting is going to 

be developed in the second version of the deliverable due to the current lack of data. 

5.5.2 Wind data driven approach 

In the same manner as the PV data driven approach, in wind data driven approach there is no need 

for the physical characteristics of the wind farms, only the past generation values and additional 

features, namely weather and time features.  

5.5.2.1 Data exploration 

The wind power generation forecasting sub-component will be deployed in Terceira Pilot Island. 

Currently there are no available data for wind power modeling, thus a public dataset is used for the 

version of the deliverable. The dataset can be found in Kaggle [47]. It contains wind power 

measurements from a wind park together with weather forecasts, namely wind velocity in 10m and 

100m above the ground. The wind power output is normalized by the maximum output of the wind 

farm. In the dataset there are close to two years of hourly wind power data. In Figure 5.7, there is 

an example plot of the dataset.  

 
Figure 5.7: Wind power generation example plot 

Additionally, in Table 5.4, the necessary statistics of the dataset are provided. 

Table 5.4: Wind generation dataset's statistics 

 Wind generation dataset 

Count 16765 

Mean 0.303 

Std. Deviation 0.290 

Min 0 

Max 1.0 

Start Date 2012-01-01 01:00:00 

End Date 2013-11-30 00:00:00 
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5.5.2.2 Wind forecasting strategy and feature creation 

In the data driven approach of wind generation the different forecast horizons correspond to intra-

day and day-ahead wind generation forecasting. The strategy of the forecast is similar to load and 

PV generation forecast, as shown in the Figure 5.6 

 

Figure 5.8: Wind generation forecasting strategy 

The energy based features used in wind generation forecasts are the previous values of the wind 

generation of the wind farm in a previously specified time window. The weather features are the 

ambient temperature and the speed and direction of the wind. The time features used are the same 

as in load and PV generation forecasting. 

5.6 Energy Market forecasting 

The energy market forecasting tool developed within the IANOS project provides forecasts for the 

main components of the energy market. More specifically, forecasts for the day-ahead price, the 

intra-day price, the imbalance price and finally for the frequency containment reserve (FCR) are 

provided by the energy forecasting sub-module. The energy market forecasting tool will be applied 

in electricity prices and FCR concerning the energy market of the Netherlands. 

5.6.1 Data exploration 

The day-ahead, imbalance and FCR data utilized in the training of the energy market forecasting 

sub-module are collected via the ENTSO-E online platform [7]. European Network of Transmission 

System Operators (ENTSO-E). It represents 42 electricity TSOs from 35 countries across Europe. 
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The platform provides various energy related data, varying from country load or generation profiles 

to energy market prices, utilized in this sub-module. The datasets provided by the ENTSO-E are 

usually relatively clean and have great quality overall. 

Currently there is no available dataset for intra-day price forecasting, as ENTSO-E platform does 

not provide them. For this deliverable intra-day price dataset for the UK market is used, only for the 

initial experimentation due to lack of intra-day price data from Netherlands, which can be retrieved 

from [48]. 

In addition to the day-ahead electricity prices data, ENTSO-E provides day-ahead generation 

forecast data and day-ahead load forecast data for the whole country of the Netherlands. These 

datasets were also retrieved in order to be used as features for the energy market forecast, as they 

play a significant role in the fluctuations of the prices. These features are used in all of the sub-

components of energy market forecasting. 

5.6.1.1 Day-ahead price 

The day-ahead price data for the Netherlands were collected during a one-year period, from 2020-

08-31 to 2021-09-05, and the data are reported in EUR/kWh. The measurements come in hourly 

resolution, which make the total count of entries 8880, without any missing values. In the following 

figure, there is an example of Day-ahead price dataset. 

 

Figure 5.9: Day-ahead price example plot. 

Table 5.5 provides necessary statistics for the final dataset used for the day-ahead price forecasting.  

Table 5.5: Day-ahead price dataset's statistics. 

 Day-ahead price dataset 

Count 8880 

Mean 0.058 

Std. Deviation 0.024 

Min -0.066 

Max 0.20 

Start Date 2020-08-31 22:00:00 
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End Date 2021-09-05 21:00:00 

5.6.1.2 Intra-day price 

As mentioned previously the intra-day price dataset used in this deliverable correspond to UK intra-

day prices. The measurement unit is EUR/kWh and the data have half-hourly resolution. In the 

following figure, there is an example of the intra-day price dataset, while the dataset’s statistics are 

presented in Table 5.6.   

 

Figure 5.10: UK intra-day price example plot. 

Table 5.6: UK intra-day price dataset's statistics. 

 Intra-day price dataset 

Count 7920 

Mean 0.063 

Std. Deviation 0.027 

Min -0.043 

Max 0.373 

Start Date 2021-01-01 00:00:00 

End Date 2021-06-14 23:30:00 

5.6.1.3 Imbalance price 

In the same manner as the day-ahead prices, the imbalance price data are collected in the span of 

one year, from 2020-08-31 to 2021-09-05. The measurement unit of the data is EUR/MWh. The 

measurements come in quarterly resolution, which make the total count of entries 35516, without 

any missing values. In Figure 5.11 there is an example of imbalance prices. 
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Figure 5.11: Imbalance price example plot. 

In Table 5.7, necessary statistics for the final dataset used for the imbalance price forecasting are 

presented.  

Table 5.7: Imbalance price dataset's statistics. 

 Imbalance price dataset 

Count 35516 

Mean 0.056 

Std. Deviation 0.072 

Min -2.198 

Max 3.964 

Start Date 2020-08-31 22:00:00 

End Date 2021-09-05 20:45:00 

 

5.6.1.4 FCR 

The FCR dataset for Netherlands was collected between 2021-06-30 and 2021-10-01. The data 

available in ENTSO-E has resampled from daily prices to 4-hourly prices in May 2020 and the prices 

in the Netherlands were unusually high from mid 2020 to early 2021. However, in the three month 

time period that was elected, the prices for the FCR in the Netherlands have stabilized to the 

European level, which is the reason why this period was elected. The regulation price of FCR is 

estimated in EUR/MW/ISP, where ISP stands for imbalance settlement period. The measurements 

from the ENTSO-E come in hourly resolution, but they are the same for four hours, which makes 

the total count of entries 2232, without any missing values. In the following figure there is an example 

of the FCR dataset for August 2021. 
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Figure 5.12: FCR example plot for one month. 

Important statistics for the final dataset used for the FCR forecasting, are presented in the following 

table.  

 

Table 5.8: FCR dataset's statistics. 

 FCR dataset 

Count 2232 

Mean 4.186 

Std. Deviation 1.625 

Min 1.13 

Max 14.27 

Start Date 2021-06-30 22:00:00 

End Date 2021-10-01 21:00:00 

 

5.6.2 Energy market forecasting strategy and feature creation 

In the same manner as in the aforementioned forecasting sub-modules the direct strategy of the 

energy market forecasting is adopted and illustrated on the following figure. The horizons of the 

forecasts are 24 hours for day-ahead price, 1 hour for intra-day price and FCR forecasting, and 1 

quarter for imbalance price forecasting. The additional features used in energy market forecasts are, 

as mentioned previously, day-ahead generation forecast data and day-ahead load forecast data for 

the whole country of the Netherlands. 
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Figure 5.13: Wind market forecasting strategy 
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6 Forecasting evaluation and results 

6.1 Evaluation metrics 

There were five different metrics used for the evaluation of the implemented methods. Table 6.1 

presents the metrics and their respective formula, where, in each formula, A represents the actual 

value and F represents the forecasted value, their difference represents the error, and n represents 

the number of observations. Together with the following evaluation metrics, the execution time of 

the training procedure was estimated in each experiment.  

Table 6.1: Evaluation metrics' formulas 

Evaluation Metrics Formulas 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 = 
∑ |𝐴𝑖 − 𝐹𝑖|
𝑛
𝑖=1

𝑛
(12) 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 =  √
∑ (𝐴𝑖 − 𝐹𝑖)

2𝑛
𝑖=1

𝑛
(13) 

Mean Absolute Percentage Error 
(MAPE) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐴𝑖 − 𝐹𝑖
𝐴𝑖

| ∗ 100%
𝑛

𝑖=1
(14) 

symmetric Mean Absolute Percentage 
Error (sMAPE) 

𝑠𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝐴𝑖 − 𝐹𝑖|

|𝐴𝑖| + |𝐹𝑖|

𝑛

𝑖=1
∗ 100% (15) 

MAD/Mean Ration (MMR) 𝑀𝑀𝑅 = 
∑ |𝐴𝑖 − 𝐹𝑖|
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

∗ 100% (16) 

 

Initially the most common metrics for regression problems, which are Mean Absolute Error (MAE) 

(Function 12), and Root Mean Square Error (RMSE) (Function 13), were used. MAE, also called 

Mean Absolute Deviation (MAD), is the sum of the absolute errors of each observation divided by 

the number of observations. Mean Square Error is, respectively, the arithmetic average of the 

squared errors of each observation, and RMSE is simply the square root of MSE. Their definition 

makes it clear that the smaller these metrics are, the smaller the error is, and the better the forecast 

is. Those metrics must be compared to the dataset’s mean and standard deviation in order to have 

qualitative importance. 

Additionally, percentage error metrics are used, namely the Mean Absolute Percentage Error 

(MAPE) (Function 14), the symmetric Mean Absolute Percentage Error (sMAPE) (Function 15) and 

the MAD/Mean Ratio (MMR) (Function 16). In MAPE the error for each observation is divided by the 

actual value and then, their sum divided by the number of observations. In sMAPE the absolute 

difference of the predicted and actual values is divided by the absolute sum of their values. 

Specifically, for MAPE it should be emphasized that it is not suitable for the evaluation of the 

forecasts of the specific data sets, as it does not handle zero values properly, which constitute a 

large percentage of the datasets. Nevertheless, it is very often used in energy forecasting 
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applications, so a reference is made here as well, although it is not the primary metric for evaluating 

the results. Finally, MMR, also called weighted MAPE in literature, is the MAD metric divided by the 

arithmetical average of the observations. It is proven in many situations to be more robust, and thus 

more useful, than regular MAPE. [49] 

6.2 Evaluation results 

In this section, the preliminary results of IANOS Forecasting Engine are going to be presented. For 

each submodule, a table with evaluation results in terms of forecasting accuracy is going to be 

presented together with the informative plot for the results of the best forecasters in each situation. 

In each table, the metrics of the algorithms performing the best are highlighted by bold.  

6.2.1 Load forecasting results 

For the load forecasting sub-module, forecasts were made for the entire next day corresponding to 

96 time-steps ahead, along with short-term forecasts (4 steps ahead). The size of the test set was 

set to 5000 time-steps, which represents the 25.96% of the dataset (19257 time-steps).  

6.2.1.1 Short-term load forecasting 

For short-term load forecasting the best were achieved by the Random Forest Regressor, with Light 

Gradient Boosting Machine being a close second, while providing the fastest results. 

Table 6.2: Short-term load forecasting results 

Prediction Model MAE (W) RMSE (W) MMR (%) MAPE (%) 
sMAPE 

(%) 
Time (s) 

Random Forest 
(RF) 

163.23 296.41 26.51 27.62 12.04 162.83 

Gradient Boosting 
Regressor (GBR) 

171.48 301.14 27.84 30.34 12.52 255.14 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

185.39 314.65 30.1 32.72 13.48 37.45 

Light Gradient 
Boosting Machine 

(LightGBM) 
165.88 295.56 26.94 28.27 12.16 22.59 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

172.34 323.98 27.98 27.66 12.97 159.95 

Multilayer 
Perceptron (MLP) 

206.61 363.68 33.95 37.03 16.68 42.87 

Long short-term 
memory RNN 
(LSTM RNN) 

167.39 322.18 27.58 26.59 12.69 53.29 
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Figure 6.1: Random Forecast Regressor results for short-term load forecasting. 

6.2.1.2 Long-term load forecasting 

For long-term load forecasting, based on the evaluation metrics, the best were achieved by the 

Random Forest Regressor and Light Gradient Boosting Machine, the latter of which provided the 

fastest results.  

Table 6.3: Long-term load forecasting results 

Prediction Model MAE (W) RMSE (W) MMR (%) MAPE (%) 
sMAPE 

(%) 
Time (s) 

Random Forest 
(RF) 

203.52 341.76 33.05 39.44 14.11 3829.2 

Gradient Boosting 
Regressor (GBR) 

212.45 344.8 34.5 42.01 15.8 5664.35 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

232.51 362.18 37.75 48.18 17.38 739.96 

Light Gradient 
Boosting Machine 

(LightGBM) 
203.68 340.09 33.07 39.86 14.12 505.17 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

204.72 365.34 35.59 34.54 15.42 2863.77 

Multilayer 
Perceptron (MLP) 

213.77 376.5 35.16 40.1 16.83 1056.92 
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Long short-term 
memory RNN 
(LSTM RNN) 

201.24 370.07 33.1 35.53 15.75 951.37 

 

 

Figure 6.2: LGBMRegressor results for long-term load forecasting. 

As observed by the plots the results of the residential load forecasting are not satisfactory, this is 

reasonable due to the highly unpredictable nature of the residential consumption profiles and low 

historical data availability. In the following version of the deliverable, the highest amount data that 

are going to be available will assist in delivering results that are more accurate.  Based again on the 

plots, XGBoost Regressor could be considered a more appropriate predictor for existing data. 

 

Figure 6.3: XGBoost results for long-term load forecasting. 

6.2.2 PV generation forecasting results 

With the same logic as in the load forecasting, for the PV generation forecasting sub-module day 

ahead forecasts that correspond to 96 time-steps ahead, together with short-term predictions (4 

steps ahead) were held. The size of the test set was set to 5000 time-steps, which represents the 

22.36% of the dataset (22364 time-steps).  
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6.2.2.1 Short-term PV generation forecasting 

For short-term PV generation forecasting the best were achieved by Light Gradient Boosting 

Machine, which also provided the fastest results. 

Table 6.4: Short-term PV generation forecasting results 

Prediction Model MAE (kW) 
RMSE 
(kW) 

MMR (%) 
sMAPE 

(%) 
Time (s) 

Random Forest 
(RF) 

275.68 472.79 22.33 44.15 116.53 

Gradient Boosting 
Regressor (GBR) 

357.15 555.06 28.92 45.58 147.93 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

397.0 622.73 32.15 42.1 35.6 

Light Gradient 
Boosting Machine 

(LightGBM) 
271.72 462.48 22.01 41.61 23.29 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

275.81 459.48 22.34 41.68 93.84 

Multilayer 
Perceptron (MLP) 

1184.9 1646.01 95.96 71.89 48.58 

Long short-term 
memory RNN 
(LSTM RNN) 

287.83 492.93 23.31 48.25 48.41 
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Figure 6.4: LGBMRegressor results for short-term PV generation forecasting. 

6.2.2.2 Long-term PV generation forecasting 

For long-term PV generation forecasting the best were achieved by Support Vector Regressor 

(SVR), with Light Gradient Boosting Machine providing decent and the faster results. 

Table 6.5: Long-term PV generation forecasting results 

Prediction Model MAE (kW) 
RMSE 
(kW) 

MMR (%) 
sMAPE 

(%) 
Time (s) 

Random Forest 
(RF) 

449.12 731.45 36.37 50.26 2526.15 

Gradient Boosting 
Regressor (GBR) 

521.53 817.27 42.24 50.1 3720.78 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

564.91 931.25 45.75 45.28 703.86 

Light Gradient 
Boosting Machine 

(LightGBM) 
438.09 753.9 35.48 44.56 555.20 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

425.33 717.55 34.45 45.02 2401.57 

Multilayer 
Perceptron (MLP) 

1009.51 1388.44 81.75 67.77 897.16 

Long short-term 
memory RNN 
(LSTM RNN) 

437.52 715.3 35.43 55.54 1364.83 
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Figure 6.5: RBF SVR results for long-term PV generation forecasting. 

6.2.3 Wind generation forecasting results 

Same as in the PV generation forecasting, the wind generation forecasting sub-module provide day 

ahead forecasts that correspond to 24 time-steps ahead, together with short-term predictions (1 step 

ahead). The size of the test set was set to 3500 time-steps, which represents the 20.88% of the 

dataset (16765 time-steps).  

6.2.3.1 Short-term wind generation forecasting 

For short-term wind generation forecasting the best were achieved by Light Gradient Boosting 

Machine, which also provided the fastest results. 
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Table 6.6: Short-term wind generation forecasting results 

Prediction Model MAE  RMSE MMR (%) 
sMAPE 

(%) 
Time (s) 

Random Forest 
(RF) 

0.07 0.11 18.49 20.35 11.29 

Gradient Boosting 
Regressor (GBR) 

0.07 0.11 18.85 20.28 15.49 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

0.07 0.11 19.65 21.17 4.58 

Light Gradient 
Boosting Machine 

(LightGBM) 
0.07 0.1 18.38 20.16 3.92 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

0.07 0.11 19.77 21.12 11.73 

Multilayer 
Perceptron (MLP) 

0.14 0.19 40.66 33.87 8.73 

Long short-term 
memory RNN 
(LSTM RNN) 

0.07 0.11 20.53 24.54 13.55 

 

 

Figure 6.6: LGBMRegressor results for short-term wind generation forecasting. 

 

6.2.3.2 Long-term wind generation forecasting 

Same as in short-term, in long-term wind generation forecasting the best were achieved by Light 

Gradient Boosting Machine, which also provided the fastest results. 
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Table 6.7: Long-term wind generation forecasting results 

Prediction Model MAE  RMSE MMR (%) 
sMAPE 

(%) 
Time (s) 

Random Forest 
(RF) 

0.14 0.18 36.37 29.27 273.12 

Gradient Boosting 
Regressor (GBR) 

0.14 0.18 35.87 29.29 368.7 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

0.14 0.19 36.95 30.59 110.43 

Light Gradient 
Boosting Machine 

(LightGBM) 
0.13 0.18 34.75 28.53 93.64 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

0.2 0.26 53.22 37.64 314.19 

Multilayer 
Perceptron (MLP) 

0.19 0.26 55.8 41.4 225.95 

Long short-term 
memory RNN 
(LSTM RNN) 

0.16 0.23 47.2 39.31 448.59 

 

 

Figure 6.7: LGBMRegressor results for long-term wind generation forecasting. 

6.2.4 Energy market forecasting results 

The energy market forecasts were separated into four different forecasts each one with its separate 

forecast horizon. 
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6.2.4.1 Day-ahead price 

For the day-ahead price forecast the horizon is set to day-ahead (24 time-steps). The size of the 

test set was set to 1500 time-steps, which represents the 16.89% of the dataset (8880 time-steps). 

The best results were achieved by the Support Vector Regressor with RBF kernel. 

Table 6.8: Day-ahead price forecasting results 

Prediction Model 
MAE 

(EUR/kWh) 
RMSE 

(EUR/kWh) 
MMR (%) MAPE (%) 

sMAPE 
(%) 

Time (s) 

Random Forest 
(RF) 

0.01 0.02 15.84 339.15 9.67 148.51 

Gradient Boosting 
Regressor (GBR) 

0.01 0.02 17.02 321.38 10.4 195.25 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

0.01 0.02 16.07 229.49 9.76 64.41 

Light Gradient 
Boosting Machine 

(LightGBM) 
0.01 0.02 15.83 308.54 9.52 53.49 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

0.01 0.01 11.46 377.7 6.96 112.32 

Multilayer 
Perceptron (MLP) 

0.02 0.02 20.93 414.54 11.64 119.63 

Long short-term 
memory RNN 
(LSTM RNN) 

0.01 0.02 26.87 740.88 14.63 172.11 

 

 

Figure 6.8: RBF SVR results for day-ahead price forecasting. 
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6.2.4.2 Intra-day price 

For the intra-day price forecast, the horizon is set to next hour (2 time-steps). The size of the test 

set was set to 2000 time-steps, which represents the 25.25% of the dataset (7920 time-steps). The 

best results were achieved by the Random Forest Regressor, with Light Gradient Boosting Machine 

being the second best and fastest algorithm.  

Table 6.9: Intra-day price forecasting results 

Prediction Model 
MAE 

(EUR/kWh) 
RMSE 

(EUR/kWh) 
MMR (%) 

sMAPE 
(%) 

Time (s) 

Random Forest 
(RF) 

0.01 0.01 9.54 5.97 15.09 

Gradient Boosting 
Regressor (GBR) 

0.01 0.01 10.06 6.25 21.4 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

0.01 0.01 10.55 6.52 4.69 

Light Gradient 
Boosting Machine 

(LightGBM) 
0.01 0.01 9.65 6.0 3.75 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

0.01 0.01 11.85 7.13 7.25 

Multilayer 
Perceptron (MLP) 

0.02 0.03 34.01 20.6 7.83 

Long short-term 
memory RNN 
(LSTM RNN) 

0.01 0.01 15.03 8.46 11.72 

 

 

Figure 6.9: Random Forest Regressor results for intra-day price forecasting. 
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6.2.4.3 Imbalance price 

For the imbalance price forecast, the horizon is set to one quarter ahead (1 timestep). The size of 

the test set was set to 7000 time-steps, which represents the 19.71% of the dataset (35516 time-

steps). The best results were achieved by the RBF SVR, with Light Gradient Boosting Machine being 

the second best and fastest algorithm. 

Table 6.10: Imbalance price forecasting results 

Prediction Model 
MAE 

(EUR/kWh) 
RMSE 

(EUR/kWh) 
MMR (%) 

sMAPE 
(%) 

Time (s) 

Random Forest 
(RF) 

0.03 0.04 45.39 28.26 26.29 

Gradient Boosting 
Regressor (GBR) 

0.04 0.04 46.62 28.82 34.15 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

0.04 0.05 47.83 29.34 10.21 

Light Gradient 
Boosting Machine 

(LightGBM) 
0.03 0.04 45.47 28.28 9.17 

Support Vector 
Regressor with 

RBF kernel (RBF 
SVR) 

0.03 0.04 39.74 24.61 59.15 

Multilayer 
Perceptron (MLP) 

0.04 0.05 58.57 34.08 15.5 

Long short-term 
memory RNN 
(LSTM RNN) 

0.04 0.05 47.37 29.23 28.57 

 

 

Figure 6.10: RBF SVR results for imbalance price forecasting. 
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6.2.4.4 FCR  

For the FCR forecast, the horizon is set to next hour (1 timestep). The size of the test set was set to 

500 time-steps, which represents the 22.4% of the dataset (2232 time-steps). The best results were 

achieved by the Random Forest Regressor, with Light Gradient Boosting Machine being the second 

best and fastest algorithm. 

Table 6.11: FCR forecasting results 

Prediction Model 
MAE 

(EUR/MW/I
SP) 

RMSE 
(EUR/MW/I

SP) 
MMR (%) MAPE (%) 

sMAPE 
(%) 

Time (s) 

Random Forest 
(RF) 

0.32 0.62 7.23 6.76 3.32 1.22 

Gradient Boosting 
Regressor (GBR) 

0.36 0.7 8.08 7.27 3.58 1.37 

eXtreme Gradient 
Boosting 

(XGBoost) 
 

0.34 0.65 7.7 6.94 3.46 0.630 

Light Gradient 
Boosting Machine 

(LightGBM) 
0.33 0.59 7.41 6.8 3.4 0.55 

Support Vector 
Regressor with 

RBF kernel ( RBF 
SVR) 

0.44 0.74 9.95 8.66 4.47 0.72 

Multilayer 
Perceptron (MLP) 

0.81 1.05 20.3 21.8 10.43 1.1 

Long short-term 
memory RNN 
(LSTM RNN) 

0.34 0.64 33.83 34.24 16.22 5.17 

 

Figure 6.11: Random Forest Regressor results for FCR forecasting. 
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7 Conclusions and future steps 

The presented deliverable provides the 1st version of IANOS iVPP Forecasting Engine component 

and its functionalities. As highlighted in the document, the component is separated into different 

subcomponents, namely load, generation (PV and wind) and energy market forecasting. The 

component in its current implementation utilizes data-driven models, based on the most used 

machine learning algorithms to provide the necessary forecasts. In most of the forecasts, despite 

the lack of available data in many cases, the forecasting results can be characterized as accurate, 

compared to the commonly used techniques for energy load, generation and market forecasting.  

More specifically, for load forecasting the most appropriate models are Random Forest Regressor 

for short-term and LGBMRegressor for long-term forecasting, for PV generation forecasting 

LGBMRegressor for short-term and RBF SVR for long-term forecasting, for wind generation 

forecasting LGBMRegressor for both short- and long-term forecasting, for energy market forecasting 

and RBF SVR was the best performing model for day-ahead and imbalance price forecasting, while 

Random Forest Regressor performed best for intra-day price and FCR forecasting. It is possible that 

these results will change in the second version of the deliverable, where there will be more data 

available.  

The pending actions include the collection of all the necessary data from IANOS pilots along with 

integration with the ESB component to achieve full-scale operation, the inclusion of the physical 

models in the Forecasting Engine, further exploration of machine learning techniques for energy 

related time series forecasting, and finally the expansion of the Forecasting Engine for thermal load 

and thermal PV generation forecasting. The second and final version of the iVPP Forecasting Engine 

will be described in D4.4, which will be delivered in M30 of IANOS project.   
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