

D2.2 Report on Islands requirements

engineering and Use Cases definitions

Authors: Mónica Fernandes (EDP)

H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-EC-ES-SCC EUROPEAN COMMISSION Innovation and Networks Executive Agency Grant agreement no. 957810

PROJECT CONTRACTUAL DETAILS

Project title	IntegrAted SolutioNs for the DecarbOnization and Smartification of Islands
Project acronym	IANOS
Grant agreement no.	957810
Project start date	01-10-2020
Project end date	30-09-2024
Duration	48 months
Project Coordinator	João Gonçalo Maciel (EDP) - JoaoGoncalo.Maciel@edp.com

DOCUMENT DETAILS

Deliverable no.	D2.2		
Dissemination level	Public		
Work package	WP2 - Requirements Engineering & Decarbonization Road-mapping		
Task	T2.1 - Islands requirements engineering and use case definitions		
Due date	30-04-2022		
Actual submission date	30-04-2022		
Lead beneficiary	EDP		

Version	Date	Beneficiary	Changes	
0.1	26-05-2021	EDP	First draft	
0.2	31-05-2021	SUNAMP, BEON, AME, UNINOVA, BORA-BORA	Small changes to the respective products' specifications. Ameland and Bora-Bora description updated.	
0.3	15-06-2021	CERTH, TNO	Comments on the document	
0.4	23-06-2021	UBE, AME	Official Review	
1	25-06-2021	EDP	first version	
1.1	02-03-2022	EDP	Updates according to the developments of the	

			project		
1.2	28-03-2022 EDP		Second version		
1.3	20-04-2022	0-04-2022 UBE, AME Offic			
2	21-04-2022	EDP	Final second version		

This publication reflects the author's view only and the European Commission is not responsible for any use that may be made of the information it contains.

Executive Summary

This document presents IANOS' Deliverable D2.2 - *Report on Islands requirements engineering and Use Cases definitions* developed under task T2.1 - *Islands requirements engineering and use case definitions* of Work Package 2 - *Requirements Engineering & Decarbonization Roadmapping*.

This deliverable presents a detailed definition of the 9 Technical Use Cases of IANOS project along with the identification of the requirements for each technological solution that will be demonstrated in the pilot sites of Ameland and Terceira. The information provided reflects the current status of the project and therefore, might in some cases be subject of further updates that shall be reflected in the next version of this deliverable to be submitted by month 26.

The methodology followed to define the Use Cases was the IEC 62559-2 standard, whose templates were used to describe in detail the Key Performance Indicators associated, the pre-requisites and assumptions considered, the actors involved, the relations and information exchanged between them, the scenarios that might occur and the functional, regulatory and safety requirements. Additionally, the Smart Grid Architecture Model (SGAM) was also used to facilitate the description of the different layers of interoperability of the Use Cases.

The first part of the deliverable describes demonstrator sites, where current energy systems are characterized in detail. This part also comprises product specifications and installation requirements for each hardware solution that will be installed in Terceira and Ameland islands. Moreover, it is presented a characterization of the current energy system of the Fellow Islands (Lampedusa, Bora-Bora and Nisyros) where some of the use cases will be replicated.

Finally, the second part of the deliverable presents the 9 Technical Uses Cases which are defined in detail according to the standard IEC 62559 *Use case methodology*.

The results of this deliverable, mainly the definition of the Use Cases, will be used in some future tasks such as T2.4, T2.5, T4.1, T4.3, T4.4, T5.1, T5.2, T5.3, T.5.4, T6.1, T6.2, T6.3 and T6.4.

Table of Contents

LIST OF FI	GURES	
LIST OF TA	ABLES	
ABBREVIA	ATIONS AND ACRONYMS	
1. INT	RODUCTION	
1.1 P	Purpose and Scope of the Deliverable	
1.2 S ⁻	TRUCTURE OF THE DELIVERABLE	11
1.3 R	RELATION TO OTHER DELIVERABLES	
2 USE C	CASES METHODOLOGY	
2.1 U	Jse Cases Overview	
2.2 S ⁻	TANDARDS USED	
2.2.1	SGAM	
2.2.2	IEC 62559-2	
2.3 P	ARTICIPATION AND RESPONSIBILITIES	
3 TERCE	EIRA DEMONSTRATOR	
3.1 G	GENERAL CHARACTERIZATION	
3.2 S	ITE ASSESSMENT AND EXISTING INFRASTRUCTURE	23
3.2.1	Supply and Demand	
3.2.2	Electricity Grid	
3.3 E	QUIPMENT AND SYSTEM SPECIFICATION	
3.3.1	PV panels with microinverter	
3.3.2	Electrochemical batteries	
3.3.3	Heat Batteries	
3.3.4	Electric Water heaters	
3.3.5	V2G chargers	
3.3.6	Flywheel	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N $^{\circ}$ 957810

	3.3.7	Smart Energy Router	
	3.3.8	Hybrid Transformer	
	3.3.9	FEID-PLUS	
	3.3.10	HEMS	
	3.4 List	OF STAKEHOLDERS	
4	ΔΜΕΙΔΙ	ND DEMONSTRATOR	41
-			
	4.1 Gen	IERAL CHARACTERIZATION	41
	4.2 Site	ASSESSMENT AND EXISTING INFRASTRUCTURE	
	4.2.1	Supply and Demand	
	4.2.2	Electricity Grid	
	4.2.3	Natural Gas Grid	
	4.3 Equ	IPMENT AND SYSTEM SPECIFICATION	
	4.3.1	Residential solar panels	
	4.3.2	Solar farm	
	4.3.3	Micro-CHP	
	4.3.4	Private Methane Fuel Cells	
	4.3.5	Fuel Cell	
	4.3.6	Hybrid Heat Pumps	
	4.3.7	Biobased saline batteries	
	4.3.8	Hydrogen fueled vehicles	
	4.3.9	Tidal Kite	
	4.3.10	Small-scale Auto generative High-Pressure Digester	
	4.3.11	Electrolyzer	
	4.4 List	OF STAKEHOLDERS	
_			
5	FELLOW	/ ISLANDS	
	5.1 Lan	IPEDUSA	
	5.1.1	General characterization	

6

	5.1.2	Site assessment and existing infrastructure	49
	5.1.2.1	Supply and Demand	49
	5.1.2.2	2 Electricity Grid	51
	5.2 Bor	A-BORA	54
	5.2.1	General characterization	54
	5.2.2	Site assessment and existing infrastructure	54
	5.2.2.1	Supply and Demand	54
	5.2.2.2	2 Electricity Grid	56
	5.3 Nisy	'ROS	58
	5.3.1	General characterization	58
	5.3.2	Site assessment and existing infrastructure	59
6	USE CAS	SES DEFINITION	63
	6.1 Tra	NSITION TRACK 1: USE CASES	63
	6.1.1	Use case 1: Community demand-side driven self-consumption maximization	63
	6.1.2	Use case 2: Community supply-side optimal dispatch and intra-day services provision	92
	6.1.3	Use case 3: Island-wide, any-scale storage utilization for fast response ancillary services	113
	6.1.4	Use case 4: Demand Side Management and Smart Grid methods to support Power quality and congestion	
	manage	ment services	132
	6.2 Tra	NSITION TRACK 2: USE CASES	164
	6.2.1	Use case 5: Decarbonization of transport and the role of electric mobility in stabilizing the energy system	164
	6.2.2	Use case 6: Decarbonizing large industrial continuous loads through electrification and locally induced	
	generat	ion	190
	6.2.3	Use case 7: Circular economy, utilization of waste streams and gas grid decarbonization	207
	6.2.4	Use case 8: Decarbonization of heating network	226
	6.3 Tra	NSITION TRACK 3: USE CASES	243
	6.3.1	Use case 9: Active Citizen and LEC Engagement into Decarbonization Transition	243
7	CONCLU	ISIONS AND NEXT STEPS	.250
8	REEEDE	NCES	251
-			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 957810

9	ANNEX I

List of Figures

Figure 1: Task 2.1 and the relation with other deliverables	3
Figure 2: Smart Grid Architecture Model (SGAM) dimensions: Domains, Zones and Interoperability Layers1	6
Figure 3: Terceira's location	3
Figure 4: Energy mix in Terceira in 2020	4
Figure 5: Electricity consumption in Terceira in 2020	4
Figure 6: Peak and Off-Peak Demands in Terceira, in 2020	5
Figure 7: Load Demand Curves for different seasons in Terceira, in 2020	6
Figure 8: Terceira's eletricity grid	7
Figure 9: Ameland's location	1
Figure 10: Energy consumption per sector on Ameland (2012-2019)	2
Figure 11: Energy consumption on Ameland	3
Figure 12: Power over the mainland connector on Ameland (2017)	3
Figure 13: Ameland's MV electricity grid	4
Figure 13: Ameland's MV electricity grid	
	4
Figure 14: Ameland's gas grid	4
Figure 14: Ameland's gas grid	4 0 0
Figure 14: Ameland's gas grid	4 0 1
Figure 14: Ameland's gas grid	4 0 1 2
Figure 14: Ameland's gas grid	4 0 1 2 3
Figure 14: Ameland's gas grid. 4 Figure 15: Electricity generation mix in Lampedusa, in 2020 54 Figure 16: Typical Load Demand Curve for Lampedusa island 54 Figure 17: Energy consumption per sector in Lampedusa 54 Figure 18: Lampedusa's electricity grid 54 Figure 19: Lampedusa's generators 54	4 0 1 2 3
Figure 14: Ameland's gas grid4Figure 15: Electricity generation mix in Lampedusa, in 202050Figure 16: Typical Load Demand Curve for Lampedusa island50Figure 17: Energy consumption per sector in Lampedusa5Figure 18: Lampedusa's electricity grid5Figure 19: Lampedusa's generators5Figure 20: Nisyro's villages50	4 0 1 2 3 9
Figure 14: Ameland's gas grid4Figure 15: Electricity generation mix in Lampedusa, in 202050Figure 16: Typical Load Demand Curve for Lampedusa island50Figure 17: Energy consumption per sector in Lampedusa5Figure 18: Lampedusa's electricity grid50Figure 19: Lampedusa's generators50Figure 20: Nisyro's villages50Figure 21: Autonomous microgrid of Kos-Kalymnos-Nisyros-Tilos.60	4 0 1 2 3 9 0

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N $^{\circ}$ 957810

List of Tables

Table 1: Use Cases overview	
Table 2: Partners' participations on the Use Cases	
Table 3: Use Case Owners	
Table 4: Terceira's power plants	
Table 5: Terceira's substations	
Table 6: Energy Losses in Terceira's power system, in 2020	
Table 7: Technical specifications of SUNAMP'S Heat Batteries	
Table 8: Technical specifications of TERALOOP's flywheel	
Table 9: Technical Specifications of UNINOVA'S Smart Energy Router	
Table 10: CLEANWATTS' HEMS for the Residential Sector.	
Table 11: List of stakeholders for the hardware solutions demonstrated in Terceira	
Table 12: Electricity consumers in Bora-Bora island	
Table 13: Bora-Bora's distribution grid	
Table 14: Diesel Generators of Bora-Bora	
Table 15: Energy losses in Bora-Bora's island	

Abbreviations and Acronyms

SG-CG	Smart Grid Coordination Group	
СНР	Combined Heat and Power	
DER	Distributed Energy Resources	
DSO	Distribution System Operator	
FEID	Fog-Enabled Intelligent Device	
HEMS	Home Energy Management System	
ICT	Information and Communication Technologies	
IEC	International Electrotechnical Commission	
KPI	Key Performance Indicators	
LEC	Local Energy Communities	
LH	Lighthouse	
LV	Low Voltage	
MV	Medium voltage	
PV	Photovoltaic	
RES	Renewable Energy Sources	
SCADA	Supervisory Control and Data Acquisition	
SGAM	Smart Grids Architecture Model	
TSO	Transmission System Operator	
Π	Transition Track	
UC	Use Case	
UML	Unified Modelling Language	
V2G	Vehicle-to-Grid	
iVPP	Intelligent Virtual Power Plant	
WP	Work Package	

1. Introduction

1.1 Purpose and Scope of the Deliverable

IANOS project aims to decarbonize the energy systems of the Lighthouse Islands (Ameland and Terceira) and explore the possibility of replication in the Fellow Islands (Bora-Bora, Lampedusa, Nisyros). For this purpose, the project will demonstrate, under real-life operational conditions, a group of both technological and non-technological solutions adapted to harsh islandic conditions that are described in 9 Use Cases.

The Deliverable 2.2 - *Report on Islands requirements engineering and UCs definitions* developed under task T2.1 - *Islands requirements engineering and use case definitions* presents a characterization and identification of the Lighthouse Islands' requirements for each hardware solution that will be deployed in the demonstrator sites. Accordingly, this deliverable comprises a characterization of the current energy system of the islands (both Lighthouse and Fellow Islands) and a description of the product and technical specifications as well as installation requirements of the hardware solutions that will be demonstrated. Moreover, the Deliverable 2.2 also presents a detailed definition of the 9 Use Cases of IANOS project where it is presented information concerning various scopes such as the possible scenarios along with the information exchanged between the different actors of the Use Case and the list of requirements.

1.2 Structure of the Deliverable

Deliverable D2.2 is structured as follows:

- Chapter 2: Use Cases Methodology is presented, comprising the overview of the Use Cases in respect to the transition tracks and demonstrator sites of the project, the standards used for the definition of the Use Cases and the participation of the partners in each Use Case.
- Chapter 3: Terceira Demonstrator is characterized. This chapter contains a general characterization
 of Terceira, followed by a characterization of the current energy system of the island. Additionally,
 this chapter comprises the specifications and installation requirements for all the solutions that
 will be implemented in Terceira followed by the list of stakeholders where the solutions will be
 installed.
- Chapter 4: Ameland Demonstrator is characterized. This chapter contains a general characterization of Ameland, followed by a characterization of the current energy system of the island. Additionally, this chapter comprises the specifications and installation requirements for all

the solutions that will be implemented in Ameland followed by the list of stakeholders where the solutions will be installed.

- Chapter 5: Fellow Islands characterization is presented where a general characterization of the island and the assessment of the current energy system are described for each Fellow Island.
- Chapter 6: Use Cases Definition is presented and is divided according to the 3 Transition Tracks of the project.
- Chapter 7: Conclusions and Next Steps.

1.3 Relation to other deliverables

Task 2.1 is strongly related with several tasks of IANOS project since it defines in detail the Use Cases implemented in the Lighthouse Islands and identifies the requirements to demonstrate all the solutions in the pilot sites. Therefore, the results and conclusions from this task will be used in the subsequent tasks, mainly in the ones related with Requirements Engineering & Decarbonization Roadmapping (WP2), IANOS Multi-Layer VPP Operational Framework (WP4) and Deployment, Use Cases Realization and Monitoring at LH (WP5, WP6).

In order to define specifications and descriptions of the hardware technological solutions that will be demonstrated in the pilot sites, some inputs from Task 1.2 were needed.

Furthermore, Task 2.1 provides inputs regarding information and communication protocols of hardware solutions and the list of stakeholders to Task 2.3 and receives the KPIs to address to each one of the Use Cases. Additionally, Task 2.1 provides inputs to Task 2.4 and Task 2.5 mainly related with the requirements identified. This task is also connected to Task 4.1, 4.3 and 4.4 since the development of the ICT components of the iVPP platform will need the requirements and the detailed definition of the Use Cases. Finally, Task 2.1 will provide inputs for Task 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3 and 6.4 since these tasks will comprise Use Cases realization and deployment, as well as, inputs for Task 7.1 to perform the technical impact assessment as it is illustrated in Figure 1.

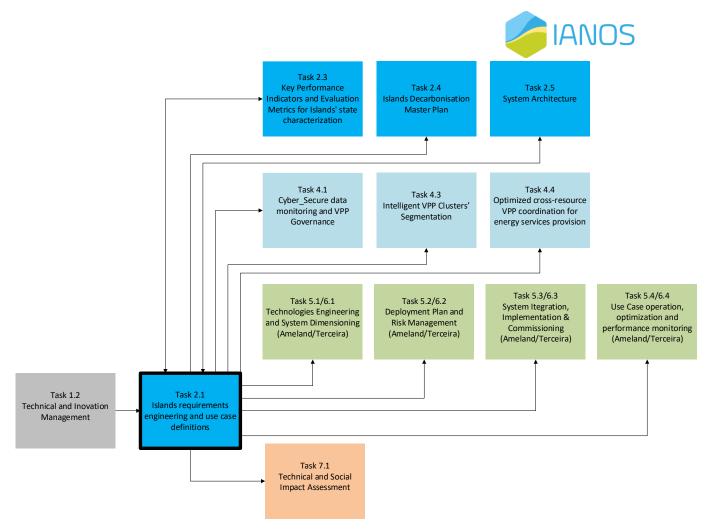


Figure 1: Task 2.1 and the relation with other deliverables

2 Use Cases Methodology

2.1 Use Cases Overview

Use Cases allow to identify, clarify and organize system requirements since they are made up of a set of possible sequences of interactions between different actors in a particular environment and related to a particular goal. The Use Cases that will be demonstrated in IANOS project are technical Use Cases which describe the functionality level of the system and therefore specify functions or services that the system provides to the user. Furthermore, these Use Cases intend to be generic about the technological implementation in order to ensure replicability.

Except Use Case 9, all Use Cases are connected with the intelligent Virtual Power Plant (iVPP) and basically describe the interaction between the different actors (iVPP platform included) in order to meet its aim.

The 9 Use Cases, that will be demonstrated in Terceira and Ameland pilots and replicated in the Fellow Islands, are clustered into 3 Energy Transition Tracks (TT) according to the challenges addressed and exploited opportunities. The Energy Transition Tracks are the following:

-**TT#1** - Energy efficiency and grid support for extremely high RES penetration – which comprises UC1, UC2, UC3, UC4. This TT utilizes the iVPP logic to reduce energy curtailment and enabling a high RES penetration in the energy system.

-TT#2 - Decarbonization through electrification and support from non-emitting fuels – which comprises UC5, UC6, UC7, UC8. This TT demonstrates the potential of electrification as a mean to decarbonize relevant sectors along with non-emitting fuels utilization for cross-resource integration and circular economy.

-**TT#3: Empowered Local Energy Communities** – that includes only UC9 and aims to engage and involve citizens into the decarbonization transition of the islands.

Furthermore, the Use Cases of IANOS project will be demonstrated (D) in at least one of the Lighthouse Islands during the course of the project and replicated (R) in the Fellow Islands.

Table 1 presents an updated overview of the Use Cases of IANOS project regarding the Transition Track associated and their demonstrator and replication sites.

Table 1: Use Cases overview

Use Case	Use Case Name	Ameland	Terceira	Bora-Bora	Lampedusa	Nisyros
Number						
#TT1: Energy effic	iency and grid support fo	or extremely hi	gh RES penetra	ation		
UC1	Community demand-side driven self-consumption maximization	D	D	-	-	R
UC2	Community supply-side optimal dispatch and intra- day services provision	D	D	-	R	-
UC3	Island-wide, any-scale storage utilization for fast response ancillary services	D	D	R	R	-
UC4	Demand Side Management and Smart Grid methods to support Power quality and congestion management services	D	D	-	R	R
#TT2: Decarboniza	ation through electrificat	ion and suppo	rt from non-en	nitting fuels		
UC5	Decarbonization of transport and the role of electric mobility in stabilizing the energy system	D	D	R	R	R
UC6	Decarbonizing large industrial continuous loads through electrification and locally induced generation	D	-	-	-	R
UC7	Circular economy, utilization of waste streams and gas grid decarbonization	D	-	R	R	R
UC8	Decarbonization of heating network	D	-	R	-	R
#TT3: Empowered	l Local Energy Communit	ies				
UC9	Active Citizen and LEC Engagement into Decarbonization Transition	D	D	R	R	R

D: Demonstration / R: Replication

2.2 Standards used

In order to guarantee harmonisations and replicability of the use cases, standardized methodologies were used such as the Smart Grid Architecture Model (SGAM) and the IEC 62559-2 standard.

2.2.1 SGAM

The Smart Grid Architecture Model (SGAM) is a unified standard for smart grid use-cases and architecture design defined by the CEN-CENELEC-ETSI Smart Grid Coordination Group (SG-CG) [1]. This model enables to provide a global and clear view of smart grid projects by mapping the different actors and devices considering 3 dimensions. The first dimension describes the domains which range from generation through transmission and distribution to end-consumers. The second dimension corresponds to the zones of operation from the processes through field, station and operation to enterprise and market zones. Finally, the third dimension describes the interoperability layers that range from the component layer to the business layer.

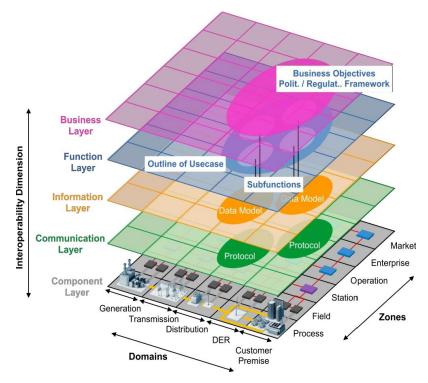


Figure 2: Smart Grid Architecture Model (SGAM) dimensions: Domains, Zones and Interoperability Layers

As it is shown in Figure 2, according to the SGAM, there are 5 interoperability layers:

• The Business Layer which represents the business view of the smart grid model. The business layer can be used to map different stakeholders within the zones and domains and also to map their roles and responsibilities.

- The Function Layer which comprises functions and services independent from actors and physical implementations in applications, systems and components. These functions reveal the functionalities of the Use Case.
- The Information Layer which contains the information exchanged between the actors involved in the Use Case. This layer comprises information objects and the underlying canonical data models.
- The Communication Layer which describes protocols and mechanisms for the interoperable exchange of information between components.
- The Component Layer represents the physical distribution of all the components (e.g. system actors, applications, power system equipment, smart meters, etc).

For each interoperability layer, there is a 2-Dimensional plane characterized by Domains and Zones. **Domains** cover the complete electrical energy conversion chain:

- The Generation includes generation of electrical energy in bulk quantities (fossil, nuclear, hydropower plants, offshore wind farms, large-scale solar power plants), normally connected to the transmission system.
- The Transmission includes all the infrastructure responsible for transporting electricity over long distances.
- The Distribution represents the infrastructure responsible for distributing electricity to the customers.
- The Distributed Energy Resources (DER) include any distributed technologies of small-scale power generation (from 3 kW to 10.000 kW) directly connected to the distribution grid.
- The Customer Premises host consumers but also prosumers which apart from consuming electricity are also able to generate electricity through solar PV panels, micro turbines, electric vehicles storage, etc. The premises can be industrial, commercial and home facilities such as airports, shopping centres and homes.

Finally, **Zones** represent the hierarchical levels of power system management:

- The Process includes all the physical, chemical or spatial transformations of energy and the equipment directly involved such as generators, transformers, cables, sensors, etc.
- The Field includes all the equipment to protect, control and monitor the power system such as protection relays, intelligent electronic devices, etc.
- The Station which represents the aggregation of field zones such as local SCADA systems, data concentration, etc

- The Operation which hosts power system control operation in the respective domain such as distribution management system, energy management system, etc
- The Enterprise which includes commercial and organizational processes, services and infrastructures for enterprises such as asset management, logistics, work force management, customer relation management, etc
- The Market which reflects the market operations possible along the energy conversion path such as energy trading or retail market.

In Chapter 6 - *Use Cases Definition*, each Use Case is defined according to the IEC 62559-2 standard and in Section 1.4 (Narrative of the Use Case – Complete Description) of this template is presented a characterization of the SGAM layers that are applicable to the Use Case. For each interoperability layer, actors are mapped into Domains and Zones. All Use Cases, except UC 9, have the Function and Information Layer characterized. Only UC1, UC4 and UC5 present the Communication Layer due to the absence of information regarding communication and information protocols from its actors. Moreover, since IANOS' Use Cases are technical Use Cases, the Business and Component Layer are not characterized.

2.2.2 IEC 62559-2

The Use Cases are described according to the IEC 62559-2 standards, thereby the standard IEC 62559 *Use case methodology* (Annex I) is the template used for the description of the 9 Use Cases of IANOS project. This template contains 7 Sections:

- Section 1: Description of the Use Case
 - 1.1 Name of the Use Case: Use Case identification, transition track and name

1.2 **Version Management**: History of updates, contributions and comments from project partners to the use case definition

1.3 Scope and Objectives of Use Case: Boundaries and the listed objectives

1.4 **Narrative of Use Case:** Short and complete description of the use case. The complete description describes what occurs when, why, with what expectation, and under what conditions. In this section, it is included the characterization of SGAM layers that are applicable to the Use Case. Additionally, it is presented a table that describes the information and communication protocols for the hardware technological solutions that will be implemented within the scope of

the Use Case along with the respective demonstrator sites where they will be demonstrated

1.5 **Key Performance Indicators (KPI):** KPIs from the D2.8 - *IANOS KPIs and evaluation metrics*. Due to the technical nature of the Use Cases, only part of the KPIs were chosen (e.g KPIs in economic domain were not considered). The KPI identification number corresponds to the number defined in D2.8. KPI's are linked to the objectives defined in section 1.3. Nevertheless, 5 new KPIs (2,3,4,5,6) were added which are not part of D2.8, and several KPIs were removed from each Use Case. This was done in coordination with the Consortium partners and Task 2.3, where an evaluation of each Use Case led the partners to specify in more detail how they would be measured, adapting the KPIs to the Use Case reality and adding or removing KPIs.

1.6 Use Case Conditions: Assumptions and Pre-requisites for each use case

1.7 Further Information for classification / mapping

Relation to other use cases: IANOS' Use Cases are strongly related with each other, mainly the ones that belong to the same Transition Track.

Level of depth: All Use Cases, except UC9 which is a high-level use case, are specialized use cases since they use specific technological solutions/implementations

Prioritisation: All Use Cases have a high priority since all have the same level of importance for the project

Generic, regional or national relation: All Use Cases are generic because they will be demonstrated in more than one country

Nature of the use case: All Use Cases have a technical nature, except UC9 which has a social nature

Further Keyword for classification: List of keywords related to the Use Case

1.8 **General Remarks:** Any other important details related to the Use Case that were not referred in other sections.

• Section 2: Diagrams

UML Use Case diagrams where objectives and actors are presented; activity diagrams where different tasks of the use case are described; and sequence diagrams where the information exchanged between actors is presented

- Section 3: Technical Details
 - 3.1 Actors: List of actors involved in the use case
 - 3.2 References: Any documents or standards that are important for the Use Case
- Section 4: Step by step analysis of use case

4.1 **Overview of scenarios:** A scenario describes a situation that might occur in the Use Case. A short description, the responsible actor, the triggering event, the pre-conditions and post-conditions are presented.

4.2 **Steps – Scenarios:** For each scenario the succession of events described. The information flows presented in the sequence diagrams correspond to the steps of the scenario

- Section 5: Information Exchanged
 Describes the information exchanged between actors in specific scenarios
- Section 6: Requirements
 Describes the necessary requirements (functional, data privacy, cybersecurity, etc) for the implementation of the Use Cases
- Section 7: Common Terms and Definitions
 Glossary

2.3 Participation and responsibilities

Each Use Case has the contribution of different partners of the project:

- Technological Providers (T): Partners which provide technological hardware solutions to be demonstrated in the Lighthouse Islands.
- Local Partners (L): Partners located in the LH (e.g. municipalities).
- Lighthouse island system's integrators (LH): Partners that cope with LH integration and operation and performance monitoring. Additionally, partners that are involved in the development of the iVPP platform.
- People Engagement Partners (P): Partners which are responsible for citizens or stakeholder's engagement in LH islands.
- Replication Activities Partners (R): Partners that will support Fellow Islands in the replication of the Use Cases.

Table 2 presents the participants for each Use Case as well as the characterization of the type of contribution to the Use Case according to the groups of partners described above:

Table 2: Partners' participations on the Use Cases

Partners	UC1	UC2	UC3	UC4	UC5	UC6	UC7	UC8	UC9
EDP NEW	LH T	LH	LH	LH	LH				LH
Uninova	ТР			ТР					Ρ

Efacec Energia				т					
EDA	L LH	L LH	L LH	L LH	L LH				
Efacec Electic Mobility					T LH				
Governo Regional dos Açores	L	L	L	L	L				L
Virtual Power Solutions	LH T	LH T	LH T	LH T	LH T				
Teraloop			Т						
Sunamp	Т								
BeOn	т								
Municipality of Ameland	L	L	L	L	L	L	L	L	L
New Energy Coalition							Р		Р
TNO	LH	LH	LH	LH	LH	LH	LH	LH	
Alliander	L	L	L	L	L	L	L	L	
Amelander Energie Coöperatie	Р			Ρ					Р
SuWoTec	Т			Т					
Hanze University									Р
Neroa	LH	LH	LH	LH	LH	LH	LH	LH	
Repowered B.V.	LH	LH	LH	LH	LH	LH	LH	LH	
SeaQurrent Holding B.V.						т			
GasTerra B.V.							т		
Municipality of Lampedusa and Linosa			L	L	L		L		L
CNR-IIA			R	R	R		R		R
Commune de Bora-Bora		L	L		L		L	L	L
Akuo Energy		R	R		R		R	R	R
Municipality of Nisyros	L			L	L	L	L	L	L
CERTH	LH T	LH	LH	LH	LH	LH	LH	LH	
ETRA	LH	LH	LH	LH	LH	LH	LH	LH	LH
Engineering-Ingegneria Informatica SpA	LH								
RINA			R	R	R		R		R
EREF									Р
UBITECH ENERGY	LH	LH	LH	LH	LH	LH	LH	LH	

T: Hardware Technology Provider L: Local Partners LH: Lighthouses' System Integration P: People Engagement Partners R: Replication Activities Partners

Each Use Case will be assigned to a Use Case Owner which will be the responsible for the implementation of the Use Case. Use Case owners assure the objectives of the Use Case defined in this deliverable are met, assure KPIs results are obtained and also monitor UC development. Table 3 presents the Use Case owners for each Use Case in the 2 Lighthouse Islands.

Table 3: Use Case Owners

	Use Case	Use Case Owners			
Use Case	Terceira	Ameland			
UC1	EDP NEW/EDA	NEROA			
UC2	EDP NEW/EDA	REPOWERED			
UC3	EDP NEW/EDA	REPOWERED			
UC4	EDP NEW/EDA	ALLIANDER			
UC5	EDP NEW/EDA	AMELAND			
UC6	-	AMELAND			
UC7	-	AMELAND			
UC8	-	AEC			
UC9	RGA	AEC			

3 Terceira Demonstrator

3.1 General characterization

Terceira is the third largest island in the Azores archipelago, with an area of 402.2 km². Terceira is a volcanic island located in the middle of the north Atlantic Ocean 1,600 km West of Portugal and its population is 55,300 inhabitants. Its economy is mostly based on the raising of livestock, production of dairy-based products and, recently, tourism. Between 2010-2018 the tourism in Terceira has grown 230%, reaching in 2018 137,920 tourists. Angra do Heroísmo, the historical capital of the archipelago and part of Terceira, is classified as UNESCO World Heritage Site. Terceira has a subtropical climate with mild annual oscillations. Given its volcanic origin, geothermal surfaces allow the use of geothermal resources for power generation.

Figure 3: Terceira's location

3.2 Site assessment and existing infrastructure

Terceira's current energy system state is described addressing the current energy supply and demand as well as a detailed description of the electricity grid of the island.

3.2.1 Supply and Demand

In 2020, 184.6 GWh of electricity were generated in Terceira, where approximately 38% were from renewable energy sources as it is shown in Figure 4. The fuel oil is still the dominant energy source in the island.

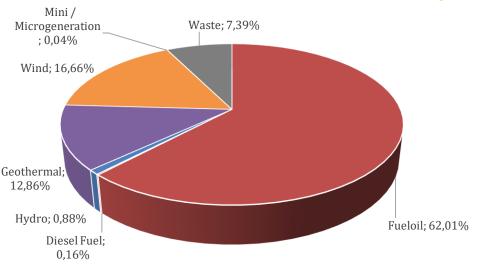
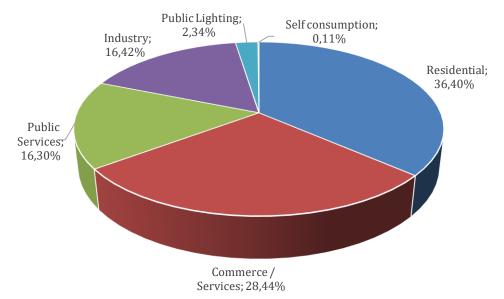



Figure 4: Energy mix in Terceira in 2020

Regarding the electricity consumption in 2020, 170.7 GWh were consumed in the island: 101,1 from Low Voltage and 69.6 GWh from Medium Voltage. According to Figure 5, the Residential Sector is the one who represents the most significant consumption.

Figure 5: Electricity consumption in Terceira in 2020

As illustrated in Figure 6, the annual peak demand in 2020 was in 29 December at 7:30 PM. while the annual off-peak demand was in 7 May at 04:45 PM.

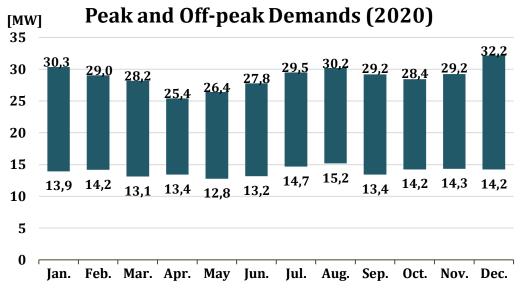


Figure 6: Peak and Off-Peak Demands in Terceira, in 2020

The typical load demand curve obviously varies according to the seasons of the year as it can be observed in Figure 7. Accordingly, the highest rise in consumption happens in the morning, certainly driven by the beginning of activity from commercial and residential sectors. The peak consumption depends on the season: while in Winter and Autumn is around 08:00 PM, in Spring and Summer is in the morning at 10:00 AM and 12.00 AM, respectively.

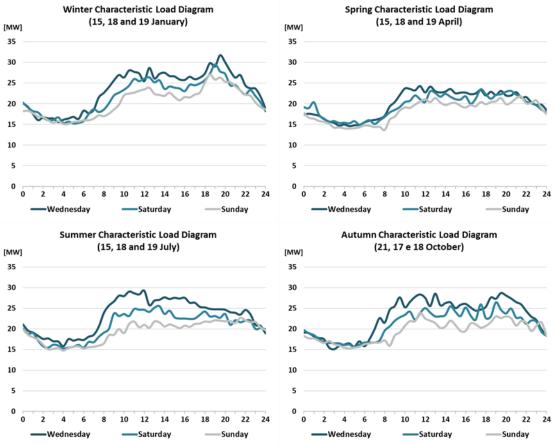


Figure 7: Load Demand Curves for different seasons in Terceira, in 2020

3.2.2 Electricity Grid

The electric system of Terceira is composed of 8 power plants and 6 substations. It has a MV transmission line at 30 kV, MV distribution lines at 15 kV and LV distribution lines at 0.4 kV as displayed in Figure 8. The distribution grid has a total of 1490 km of network extension: 1,092 aerial cables and 398 underground cables. 358 km correspond to 15 kV lines, 0.74 correspond to 30 kV while 1,131 km are LV lines. On the other hand, the transmission grid has only 79 km of extension: 67 aerial and 12 underground cables.

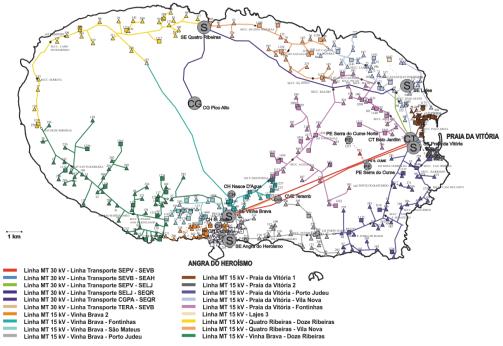


Figure 8: Terceira's electricity grid

Table 4 presents the 8 power plants of Terceira. The island has 79.5 MW of capacity installed with a diverse portfolio of power plants: thermal, hydro, wind, waste and geothermal. Hydropower plants are the oldest with more than 60 years and the geothermal power plant the newest, which is in operation only since 2017. The plant which generates more electricity is undoubtedly Belo Jardim power plant, followed by the geothermal plant Pico Alto and wind park Serra do Cume.

	In	Type of	(Generator	Groups	Electricity
Name	operation since (*)	production	Voltage level [kV]	Units	Installed Capacity [kW]	Production [MWh]
Belo Jardim	1983	Diesel Fuel	6.6	3	9,116	255.2
		Fueloil	6	6	49,000	120,029.8
Cidade	1955	Hydro	0.4	1	264	376.7
Nasce d'Água	1955	Hydro	0.4	1	720	852.1
São João de Deus	1955	Hydro	0.4	1	448	400.2
Serra do Cume	2008	Wind	0.4	10	9,000	23,192.5

Table 4: Terceira's power plants

Serra do Cume Norte	2012	Wind	0.4	4	3,600	7,555.8
TERAMB	2016	Waste	6	1	2,720	13,651.1
Pico Alto	2017	Geothermal	11	1	4,675	23,741.7
			-	28	79,543	190,055.2

* Date referring to the start of operation of the system and not including subsequent refurbishments or expansions.

The electricity grid is composed of 6 substations: 1 for the Belo Jardim power plant and other 5 in the MV transmission line at 30 kV. Table 5 presents information regarding the 6 substations of Terceira.

Table 5: Terceira's substations

Name	Abbreviation	In operation since (*)	Transformation Ratio	Installed Capacity [MVA]
Belo Jardim	SEBJ	1983	30/15 kV	10.00
Praia da Vitória	SEPV	2016	30/15 kV	20.00
Vinha Brava	SEVB	1990	30/15 kV	20.00
Angra do Heroísmo	SEAH	2003	30/15 kV	10.00
Quatro Ribeiras	SEQR	2010	30/15 kV	10.00
Lajes	SELJ	2004	30/6,9 kV	12.50
			30/15 kV	1.00
	-	-	Total	83.50

* Date referring to the start of operation of the system and not including subsequent refurbishments or expansions.

Concerning energy losses, analysing the year 2020, Table 6 illustrates that there were around 13.9 GWh of energy losses corresponding to 7.52% of grid losses. Isolated systems, like Terceira Island, are subject to frequency and voltage fluctuations caused by power deviations of independent generation (wind, waste and geothermal generation) and load demand. The autonomous and decentralized frequency and voltage control system is done by each diesel generators connected to the grid in Belo Jardim Power Station, with conventional droop control methods implemented on individual speed and voltage regulators and based on droop characteristic.

Energy [kWh]	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total
Production	46,137,524	42,770,054	47,801,179	47,900,405	184,609,162
Consumption	43,022,677	39,993,438	44,081,395	43,622,254	170,719,763
Grid Losses	3,114,847	2,776,616	3,719,783	4,278,152	13,889,399
	6.75%	6.49%	7.78%	8.93%	7.52%

Table 6: Energy Losses in Terceira's power system, in 2020

3.3 Equipment and system specification

In Terceira, several hardware solutions will be installed in certain stakeholders. In this subchapter, a description of the technical and product specifications and the installation requirements of the hardware solutions are presented.

3.3.1 PV panels with microinverter

Product Specifications

Nominal power for each installation: 1,500W (5x300W) Dimensions: 10m² (around 2m² per panel) Maximum voltage: 49V DC, 230V AC

Installation Requirements

Requires 10m² for the installation.

3.3.2 Electrochemical batteries

Sixteen distributed electrochemical batteries will be installed in customer premises in Terceira. These batteries will be standard batteries, with no innovation feature associated. Therefore, it is not necessary to identify the specifications and installation requirements.

3.3.3 Heat Batteries

Twenty-four heat batteries developed by SUNAMP (UniQ eHW 3 +iPV) will enable to produce domestic hot water heating by using grid electricity and surplus PV energy. These batteries allow to maximize the thermal power by immersing a powerful heat exchanger into the Phase Change Material used as storage medium.

Product Specifications

Technical Specifications	UniQ eHW 3 +iPV
Width x Height x Depth (mm)	575 x 440 x 365
Gross Weight (kg)	74
Net Weight (kg)	70
Volume (m3)	0.092
Heat storage capacity (kWh)	3.5
Water Content (L)	2.3
Equivalent Hot Water Cylinder Size (L)	71
V40, Volume of Hot water available at 40°C (L)	85
Standby heat loss rate (kWh / 24h (W))	0.48 / (20)
Energy efficiency rating class	С
Recommended maximum HW flow rate (L/Min)	6
Minimum mains supply pressure at inlet of Heat Battery (Bar)	1.5
Maximum working pressure (MPa / (Bar))	1.0 (10)
Hot water outlet temperature at design flow rate (°C)	45-55
Connected load at ~ 230 V, 50Hz (W)	2,800
Power supply / Standby consumption (W)	1 PH ~ 230 V / 7
Electrical efficiency (nelecwh) (%)	81.4
Annual electricity consumption (AEC) (kWh/annum)	542
Tapping cycle	S

Table 7: Technical specifications of SUNAMP'S Heat Batteries

Installation Requirements

- The Heat Battery is suitable for indoor use only;
- Due to the weight of the Heat Battery, ensure the floor is level, sound and capable of supporting its weight;
- Allow for space of 150mm around the Heat Battery (i.e. to view LED lights), and space of 450mm above it (i.e. to remove the lid if necessary).

3.3.4 Electric Water heaters

The solution developed by UNINOVA allows the non-intrusive characterization and use of energy flexibility provided by existing electric water heaters. Nevertheless, at the first stage of the project, the solution will be tested in new electric water heaters in order to validate all the models and the innovative solution.

The solution comprises a set of sensors coupled and installed in a non-intrusive manner (there is no need to change or modify a classical water heater) to individual water heaters. Sensors collect information from the water heater. Collected information is then passed through a microcontroller and communicated wirelessly to UNINOVA's servers and through them to the iVPP. The iVPP will provide high level instructions on the grid's flexibility requirements; these instructions will be translated to specific actions on the cloud, at UNINOVA's servers, and communicated wirelessly to the on-site microcontroller which will in turn control individual water heaters.

In more detail, the system is composed of:

- A set of sensors to acquire temperature and power data, which are installed on existing electric water heaters with minimum impact on consumers' equipment and comfort (non-intrusive approach);
- A microcontroller with Wi-Fi communication capabilities to collect and send data, while also receiving the control signals that define the state of the heating element (on or off);
- An actuator that enables the supply of power to the heating element;
- A remote-control system where the energy flexibility characterization and control strategy are computed, which also ensures communication with the iVPP.

There will be five electric water heaters deployed in Terceira in the context of IANOS.

Moreover, it is being analyzed the possibility of implementing an intrusive solution to certain electric water heaters to enable the measurement of water temperature in order to validate the development of the non-intrusive solution.

Product specifications

This solution is to be applied to 1.5 kW power electric water heaters (230 V), with a maximum capacity of 150 I. A cubic space with 30X30X30 (in cm) is needed at the water heater electric socket. Additionally, a cubic space with 20X20X20 (in cm) is needed at the water heater's hot water output. These cubic spaces should be available to IANOS personnel. Moreover, local Wi-Fi connection is required.

Installation Requirements

In order to install the components for the non-intrusive characterization and use of energy flexibility provided by Electric Water Heaters, as referred in the previous point, a cubic space with 30X30X30 (in cm) is needed at the water heater electric socket. Additionally, a cubic space with 20X20X20 (in cm) is needed at the water heater's hot water output. These cubic spaces must be accessible at all times.

3.3.5 V2G chargers

Two V2G chargers developed by EFACEC MOBILITY will be installed in Terceira. V2G chargers are smart chargers that apart from providing energy to electric vehicles also have the capability of providing control algorithms for ancillary services and grid support.

Product specifications

Rated power: 10 kVA Grid connection: triphasic + neutral, 400 V+-10 % / 50 Hz.

Installation Requirements

The V2G chargers are wall mounted equipment. The dimensions (WxHxD) of the wall box are 740x646x415 mm (excluding the cable connection) and its weight is 60 kg. A free space around the equipment should be considered for user access and to manipulate the charging cable. Moreover, the equipment can reach IP54. The place of installation may need additional protection/filtering conditions, if necessary. Additionally, there should not be a direct exposure the sunlight and the equipment should be protected against vehicle collisions.

3.3.6 Flywheel

The Flywheel developed by Teraloop will allow to provide fast frequency regulation support and power quality, meeting the demands of unpredictable charge/discharge conditions and presenting an inertial load for the iVPP.

Product specifications

Technical Specifications	Flywheel
Max Power Rating (kW)	100
Max Energy Rating (kWh)	3
Max Energy Storage (kJ)	10,800
Efficiency (%)	95
Flywheel Type	Hubless Rotor, Magnetic Bearings, Vacuum
Operating Rotational Speed (RPM)	6,000-18,000
Flywheel Runtime (sec) [Load]	3,600 [3kW], 512 [25kW], 216 [50kW], 162 [75kW], 108 [100kW]
Flywheel Recharge Time (sec@100kW)	130
Self Discharge (h)	1
DC Link Voltage (VDC)	400-750
Duty cycling (min)	4 (minimum full cycle, discharge and recharge time combined)
Operating temperature (ºC)	-25 to 40
Cabinet Dimensions (mm)	2 x 1,000 (width), 800 (depth), 2,000 (height)
Ingress protection (IEC 60509:1989)	IP61 (flywheel with vacuum cover), IP48 (cabinets)
Grid Operating Voltage (VLL)	380/400/415 VAC 3-phase, 4-wire plus ground
Frequency (Hz)	50/60
Power Factor	0.99 at rated load and nominal voltage
Phases	3
Surge Withstand	Meets IEEE 587/ANSI C62.41
Weight (kg)	750 (flywheel only), 1,200 (20kW AC), 2,200 (100kW AC)
Audible Noise (dBA)	<75 (at 1 meter)
Operating Temperature (°C)	0 to 40 (cabinet)
Storage Temperature (ºC)	-25 to 70 (flywheel)
Humidity (%)	5 to 95 (non-condensing)
Emissions and Immunity	EN 62040-2
Connectivity	System to grid or flywheel to DC link

Table 8: Technical specifications of TERALOOP's flywheel

The combined estimated electricity consumption of the ventilation, air conditioning and the ancillary services is a maximum of continuous 4kWh.

Installation Requirements

• Concrete bed/floor and M24 bolts, anchored to the concrete foundation, that must be able to sustain 1,500 kg/m²

- Dry environment with good ventilation;
- Flywheel space requirement: 2x2x2 m (including vacuum and cooling system);
- Power electronics space requirement: 2x1x2 m;
- Flywheel and power electronics to be installed in the same facility;
- Main requirement: 400Vac 3x250A main fuse for 100 kW machine;
- Additional 230Vac 3x16A and 16A sockets required for the auxiliary systems;

3.3.7 Smart Energy Router

The Smart Energy Router developed by UNINOVA is a power electronics device that manages the energy transfer from/to different sources (distribution grid, RES-based distributed generators), loads and electricity storage systems. In IANOS project, the Smart Energy Router will be located at building level (behind the meter). The Energy Router collects data from various energy assets, like PVs (generation profile) and batteries (charge state) and will receive higher level instructions from the iVPP to control individual assets accordingly. It thus acts as an intermediary between the iVPP and individual assets at building level.

There will be 2 smart energy routers deployed in Terceira in the context of IANOS.

Product specifications

Table 9: Technical Specifications of UNINOVA'S Smart Energy Router

Technical Data	Energy Router 5.0
Input PV System (DC)	
Max. PV array power	5,000 Wp
Input voltage range	300 V to 800 V
MPP voltage range	350 V to 750 V
Rated input voltage	550 V
Max. input current input A / input B	7.5 A / 7.5 A
Max. DC short-circuit current input A / input B	12.5 A / 12.5 A
Number of independent MPP inputs	2
Input/output Grid (AC)	
Rated power (at 230 V, 50 Hz)	5,000 W
Max. apparent AC power	5,000 VA

Power factor range	0.7 lag to 0.7 lead
Nominal AC voltage	3-NPE 400 V / 230 V
Rated grid frequency / rated grid voltage	50 Hz / 230 V
Max. input/output current	3 x 7.5 A
Max. input/output overcurrent protection	12 A
Total harmonic distortion	5 %
Phases	3
General data	
Dimensions (W x H x D)	300 mm x 500 mm x 200 mm
Operating temperature	0 °C to 60 °C
Topology / cooling method	Transformerless / convection
Maximum Switching frequency	50 kHz

Installation Requirements

- Two Smart Energy Routers will be installed at residential or services buildings with three phase power supply;
- All equipment will be installed behind-the-meter;
- PV generation must be available on-site and Smart Energy Routers will substitute the existing power inverters;
- An indoor cubic space with 1x1x1 (in meters) is required for the installation. This space should be available to IANOS personnel but not for the buildings' users;
- · Local Wi-Fi connection is required;

3.3.8 Hybrid Transformer

The hybrid transformer developed by EFACEC ENERGIA incorporates two technologies, electrical and electronic, operating simultaneously. These combined technologies will allow the stepless, phase by phase, voltage regulations at the LV side with power factor control and monitoring.

Product specifications

Rated power: 400kVA

Rated voltage: 15,000 V ± 2 x 2,5%/420 V/242 V ± 12%.

Installation Requirements

- 2.3 m³ (1.5x1.7x0.9) of space required for the transformer itself and 2 m³ for the regulator block;
- Cellular signal for communication between the hybrid transformer and EFACEC platform;
- Industrial low voltage supply for auxiliary systems (e.g. 400Vac 3~).

3.3.9 FEID-PLUS

The FEID-Plus developed by CERTH is a fog-enabled computing device equipped with special functions to control I/O, phase width modulation and analog signals. It employs enough processing capacity for applying distributed computing such as information capturing and storing, algorithms execution and control over the installation. Additionally, it also has the capacity to interface with several field elements for instance controllable building loads, storage and EV charging stations through appropriate protocols.

Product specifications:

Power management

FEID-PLUS is equipped with a dual step-down current-mode DC-DC converter (PAM2306) for the purposes of the power management and it converts the 5V input voltage to two outputs of 3.3V and 1.8V.

Processing

The main processing module for the FEID-PLUS is the Raspberry Pi Compute Module 3+ (CM3+). The module is equipped with a BCM2837B0 processor, 1Gbyte LPDDR2 RAM and eMMC Flash and supporting power circuitry.

Operating characteristics of FEID-PLUS

- FEID-PLUS power consumption measured @ 5V DC
- · Boot 0.25A
- · Idle 0.45A/network connection
- Full 1.2A

- FEID-PLUS max voltage 5.5V
- FEID-PLUS
- Max current 1.5V

Dimensions

- FEID-PLUS PCB dimensions: 87 x 68 x 35mm
- FEID-PLUS enclosure dimensions: 96 x 72 x 50 (4 DIN positions)
- 1x Pluggable terminal blocks 2P: 5mm
- 1x Pluggable terminal blocks 6P: 5mm
- 1x Pluggable terminal blocks 7P: 3.5mm
- 1x 5V 2.4A power supply (1 DIN position): 90 x 17.5 x 54 mm

<u>PSU</u>

- Max supply voltage of PSU: 264V AC/370V DC
- Max power supply of PSU: 12W

Installation requirements:

- Indoor installation, since the FEID-PLUS does not have the necessary protection from weather and therefore it is not suitable for outdoor areas;
- Power supply 5 VDC;
- Ethernet (connection to the local network for the configuration of the device);

3.3.10 HEMS

The HEMS developed by CLEANWATTS will allow to remotely monitor, manage and control the technological solutions that will be installed within the customer premises.

The system is composed by the hardware (Smart Meters, Sensors and Actuators), Data Management (Communication, Data Processing and other modules) and User Interfaces.

Product specifications:

The CLEANWATTS HEMS platform has the capacity to remotely control the loads with the characteristics referred on the following table. Much more devices can be and will be

integrated (some during the IANOS project implementation), however Table 10 shows the generic values for the most common energy assets.

Asset Type	Maximum Limit Capacity			
	Monitor / Device	Manage / Device		
Loads (sockets) – using Wi-Fi Plug	16A 3kW	16A 3kW		
Loads (generic) – using DIN-rail Zigbee devices installed on distribution boards	From 16A to 32A	From 16A to 32A		
Loads (generic) – using devices (meters and I/O + Contactors) installed on distribution boards	Direct measurement: 100A AC (1 Phase); 65A AC (3 Phase)	Control: 25A (1 Phase); 25A to 63A (3 Phase), others on request		
Loads (smart appliances) – using Wi-Fi integration	Depend on appliance, typical: 2 kW	Depend on appliance, typical: 2 kW		
Loads (HVAC) – using devices (meters and I/O) installed on distribution boards	Direct measurement: 100A AC (1 Phase); 65A AC (3 Phase)	Control: using digital output signal.		
Loads (water heater)	16A 3kW	16A 3kW		
Generation (solar PV) - using integration with inverter	Dependent on individual inverter rated capacity: (from 1.5 kW to 50 k Capacity can be increased by grouping inverters.			
Storage (batteries) - using integration with inverter	Dependent on individual inverter rate Capacity can be increased by grouping			

Installation Requirements

The HEMS platform will be installed on a cloud-based platform that will collect data from the local energy assets and then store it and provide it to the Enterprise Service Bus (ESB). It will communicate with the equipment's through a central local unit (Gateway) that must be connected to an ethernet cable, which can communicate with local devices thought Zigbee or MODBUS TCP.

The HEMS kit to be installed in Terceira Pilot is composed by:

- 1 x Cloogy Gateway/Hub;
- 2 x Smart Plugs;
- 1 x WiFi Energy Meter.

Concerning the hardware equipment installation requirements, these are as follows:

• The CLEANWATTS Gateway is much smaller than a common household internet router. It must be connected to a common household plug and to the internet through an ethernet cable. This operation must be performed by a qualified electrician;

• CLEANWATTS Smart Plugs have no special requirements in terms of installation procedures, it is a plug and play device that will automatically pair with the Gateway;

• CLEANWATTS WiFi Smart Meters will need to be installed by a qualified electrician on the switch board and will need to be configured locally to have access to the WiFi network. After the initial WiFi connection procedure, it will automatically be paired with the Gateway. The end-users will have access to an Android/iOS App that will give them information regarding their total energy consumption and individual load consumption connected to the smart plugs, which can also be controlled (e.g., On/Off).

3.4 List of stakeholders

As it is displayed in Table 11, the majority of the technological solutions described in the previous subchapter will be installed in Terra Chã social neighbourhood. This neighbourhood has 250 houses and is located in Angra do Heroísmo county in an area of 10km². Terra Chã perfectly fits in IANOS project since it has enough population to engage and involve in Terceira's energy transition.

The flywheel will be installed in the dairy factory Pronicol, also located in Angra do Heroísmo. Pronicol usually has some consecutive power failures that force the factory to stop producing the dairy products which have a great economic impact. Thereby, the flywheel will play an important role by being able to regulate the voltage and providing flexibility to the system.

Due to the fact that EDA is both the DSO and TSO, it is the obvious stakeholder for the hybrid transformer. The V2G chargers will be installed in one of EDA's powerplants since they already have 2 EVs.

The stakeholders of smart energy routers and FEID-PLUS are still being defined.

			Number of units	Stakeholder
PV	Panels	with	40	Terra Chã
microinverters				
Electrochemical Batteries		16	Terra Chã	
Heat Batteries		eat Batteries 24		Terra Chã

Electric Water Heaters	5	To be defined
V2G chargers	2	EDA (Pico Alto geothermal power
		plant and EDA headquarters)
Flywheel	1	Pronicol
Smart Energy Router	2	To be defined
Hybrid Transformer	1	EDA (distribution grid in Terra Chã)
FEID-PLUS	1	To be defined
HEMS	40	Terra Chã

4 Ameland Demonstrator

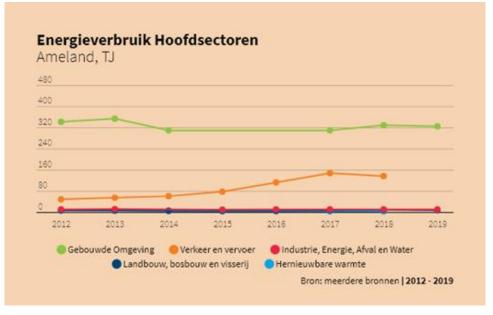
4.1 General characterization

Ameland is one of the 5 inhabited Waddeneilanden (Wadden sea islands). The islands' total size is 58.83 km² and consists mostly of sand dunes. It is the third major island of the West Frisians. Ameland is connected to the mainland electrical grid and to the mainland natural gas grid. There are four villages in Ameland: Hollum, Ballum, Nes and Buren with a total population of 3,673.

Figure 9: Ameland's location

Ameland has its own Energy Community: Amelander Energie Coöperatie (AEC) which delivers clean energy to its customers. Currently, AEC has 286 members and 993 customers being the main organization to participate in Renewable Energy projects as well as in Energy Savings projects.

The larger part of Ameland consists of nature with an immerse variety of landscapes. Because of this variety there's an abundance of plants, but also many animals like over 60 different species of birds.


4.2 Site assessment and existing infrastructure

Ameland's current energy system state is described addressing the current energy supply and demand as well as a detailed description of the electricity and natural gas grid of the island.

4.2.1 Supply and Demand

The total energy usage in Ameland is approximately 490 TJ per year, excluding the NAMplatform. The NAM-platform now uses the gas it produces for gas compression which amounts up to 410 TJ/year. In 2022 the compressor will be replaced by an electrical compressor which increases the energy flow to the island with approximately 180 TJ/year.

The energy consumption fluctuates significantly every year and has been increasing in the past years. Figure 10 shows the energy usage per sector where it can be observed that the building environment sector (in green) has always been the largest consumer, while the transport sector (in orange) has been increasing over the years. Industry, energy, waste and water (in red), agriculture and fishing (in dark blue) and Heat (in blue) have been stable over the years and have a relatively low consumption in the island.

Figure 10: Energy consumption per sector in Ameland (2012-2019)

According to Figure 11, the majority of the energy usen in Ameland comes from the connections with the mainland, nevertheless the solar farm and the solar panels in customer premises also generate 10 TJ per year.

Import Gas 252 TJ	Huishoudens
Import Elektriciteit 68 TJ	Toerisme Elektriciteit Warliozan Gas
Zonneparken 25 TJ	Varliezan Gas Varliezan Brandstof
Import Brandstof 147 TJ	Brandstof Veer Mobiliteit

Figure 11: Energy consumption in Ameland

In most regions in the Netherlands, there is a decrease in natural gas and electricity usage in the summer, however due to the large number of tourists visiting Ameland each year, this decrease is significantly smaller in Ameland.

In Figure 12, the power over the mainland connector is shown. Peak demand is around 6 MW (from the mainland to the island), peak production (from island to mainland) is around 2.5 MW.

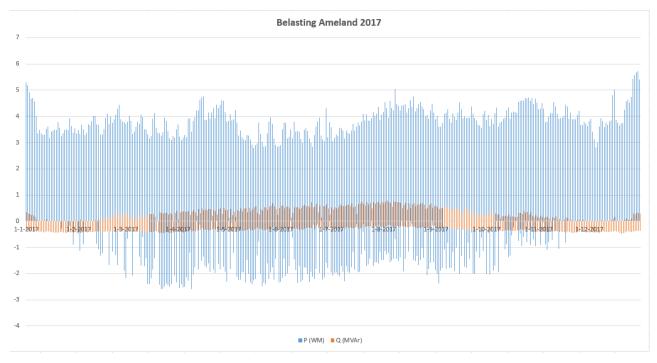


Figure 12: Power over the mainland connector in Ameland (2017)

4.2.2 Electricity Grid

In Figure 13, the midvoltage grid of Ameland is shown. The 4 parallel lines in the lower righthand corner depict the connection to the mainland. At present, there are 2 cables, during the year 2021, 2 extra cables (the blue ones) will be installed.

Figure 13: Ameland's MV electricity grid

4.2.3 Natural Gas Grid

The Natural Gas Grid of Ameland consists of an 8 bar, 3 bar and 200 millibar grid. The gas is transported from the mainland gas grid by Stedin.

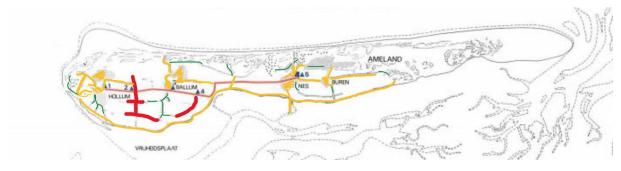


Figure 14: Ameland's gas grid

4.3 Equipment and system specification

In Ameland, most of the hardware solutions are already in operation although some solutions will still be installed. In this subchapter, a description of the technical and product specifications and the installation requirements of all the hardware solutions is presented.

4.3.1 Residential solar panels

There are several consumers which have solar panels installed on their roofs. However, it is not known which panels or inverters are installed.

4.3.2 Solar farm

In February 2016, the 6 MWp solar park started operation. In the last 5 years this solar park produced 6600 MWh per year on an average basis. This Park has 3 owners: the municipality of Ameland, Eneco and the Amelander Energy Cooperative. This was the first ground based solar park in the Netherlands. There are 23,000 REC 260PE solar panels installed together with 165 ABB TRIO 27.6 TL OUTD inverters. The electricity is transformed to 10KV by three transformers. The electricity runs from the solar park in Ballum to the distribution in Nes by a 6 km cable and distributed to the households in Ameland.

Another Solar Park is planned in the Ballumerbocht the specifiactions of this park will be defined in 2021.

4.3.3 Micro-CHP

Three houses equipped with a battery pack (3.5kWh), solar panels (1kWe) and micro-CHP (5.5kWth) will be located at multiple locations in Ameland.

4.3.4 Private Methane Fuel Cells

Thirty-five privately owned Methane Fuel Cells (2 kW_e) fed by the methane district grid on 35 individual homes are already in operation and funded by the National Project Slimme Stroom Ameland.

4.3.5 Fuel Cell

On the largest recreational park of the island, a 500 kWe Fuel Cell will be installed. This Fuel Cell will work as an innovative CHP where the heat produced by the Fuel Cell will be fed into

an already existing local heat net. Along with the 500 kWe Fuel Cell, the parc also has 2*75kWe CHPs

4.3.6 Hybrid Heat Pumps

One hundred and thirty-five hybrid heat pumps are already installed in residential houses in Ameland. These hybrid heat pumps are fitted with a 20kWth boiler and a 1.1 kWe/5 kWth heat pump. The units can switch between natural gas and electricity independently depending on weather conditions. These hybrid heat pumps are prepared to run on biogas as well.

4.3.7 Biobased saline batteries

SuWoTec will install a 120kWh (50kW charging capacity) biobased battery close to a new construction with 13 houses in the city of Nes.

Product specifications Nominal voltage: 552 V Storage capacity: 120 Ah 400 Vac Maximum charging capacity: 12 KW Maximum discharging capacity: > 15KW Load efficiency: > 97% @ 20 °C Discharge efficiency: > 96% @ 20 °C Dimensions (L x W x H): 2,170mm x 1,654mm x 1,560mm Weight: 3,600 KG

4.3.8 Hydrogen fueled vehicles

The hydrogen fueled vehicles which are planned to be developed during the IANOS project haven't been designed yet. At this moment there is no information on these vehicles.

4.3.9 Tidal Kite

The TidalKite development, installation, testing and operation will be executed in a separate project. The IANOS scope focuses on integrating the TidalKite into the Ameland grid and in the central dispatcher. The SeaQurrent TidalKite technology is developed to harness energy from tidal flows. It consists of an underwater kite that makes it possible to cover a larger energy harvesting area, perpendicular to the flow.

The TidalKite test setup near Ameland consists of a monopile mooring that anchors the TidalKite system and a grid connection cable connected to the Ameland electricity grid as operated by Liander.

The grid connection will be realized by means of an HDD (horizontally directed drilling) under the sea dike to place a tube in which the electricity cable can be placed. The offshore cable will be dug in.

The total TidalKite system is approximately 100m long.

A standard TidalKite has a capacity of 500kW and it is connected to the grid via a 10kV power cable.

4.3.10 Small-scale Auto generative High-Pressure Digester

A small-scale auto generative High-Pressure Digester will be installed in Ameland. Prerequisites for this digester are that all financial and contractual parts are ready before ordering materials for the digester.

During the writing of Deliverable D2.2, a risk related to the development of this equipment has been identified which may delay the deployment of the AHPD. Currently, the municipality of Ameland is identifying possible solutions or alternatives involving other small-scale digesters. Further information on the specific solution decided on will be included in the third version of this deliverable.

Nevertheless, the specifications expected for this solution are, to this date:

Product Specifications

The digester will produce 110,000 Nm3 of methane per year, from 300 tons of dry substance where 90% is methane.

Installation Requirements

The municipality of Ameland will provide a terrain on which the digester will be built. During the project, connections with the electricity grid and gas grid will be ordered. For the input of 150 tons/year sludge, a pipeline between the water treatment plant which sits on the terrain next to the digester and the digester will be build. After the digester is realized, the municipality will commence a project in order to collect the waste of the catering industry, some 50 tons/year, as a second input to the digester.

4.3.11 Electrolyzer

The electrolyzer will be bought via a European tender. At this moment there is no information on its installation requirements and product specifications.

4.4 List of stakeholders

At this moment the Municipality of Ameland as well as Amelander Energie Coöperatie and its customers are the main stakeholders for the new technologies.

5 Fellow Islands

5.1 Lampedusa

5.1.1 General characterization

The islands of Lampedusa and Linosa, archipelago of the Pelagie Islands, located between Sicily and North Africa about 113 km from Tunisia and 205 km from Sicily, are administered by the City of Lampedusa and Linosa. From the last census, the islands are inhabited by 5,725 residents. Since 2003, the City of Lampedusa and Linosa manages the Marine Protected Area "Pelagie". Lampedusa covers a surface of about 20.2 km2 and a coastline of about 26 km.

5.1.2 Site assessment and existing infrastructure

5.1.2.1 Supply and Demand

Energy consumption on the island is strongly influenced by its socio-economic system. The weather and climate conditions, the resident population, the fluctuating tourist population, the working activities and the use of the territory itself are the main factors that influence the hourly demand curve. The local power plant is significantly oversized to have enough backup power in the case of failure. The energy demand varies considerably during the year, due to arrivals in the touristic season. The small size of the power system increases the cost of fuel transportation and the operative and maintenance costs. With the liberalization of the Italian energy sector in 2009, an incentive UC4 (now collapsed inside the incentive Arim) was introduced in the electricity bills to cover the higher costs for the electricity production in small islands. In this way, whoever lives in small islands purchases electricity at the same price as the mainland.

In 2020, the 24 installed photovoltaic systems fed 229,953 kWh (11.5%) into the island's grid out of a total of 26,398,415 kWh of distributed electricity generated by the diesel thermoelectric power plant, as it is shown in Figure 15. The renewable energy sources are extremely underdeveloped in this territory, as the environmental constraints hamper its use, like wind or photovoltaic panels (except the installation in an integrated solution with

buildings). The fossil fuel is regularly transported by boat from Sicily, so prolonged adverse weather conditions represent an important risk for the energy supply of the island.

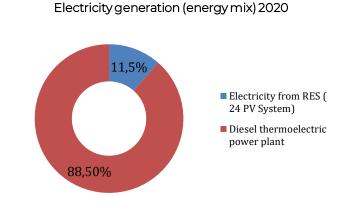


Figure 15: Electricity generation mix in Lampedusa, in 2020

The total electricity demand for the entire year is 32,871 MWh; the lowest peak is 2,012 MW and occurs on March 8 at 4:00 a.m; the maximum peak is 8,864 MW and occurs on August 14 at 9:00 pm. As expected, the minimum peak is when neither heating nor cooling is needed and the tourist season has not yet begun. Differently the maximum peak is in the evening of August in which the island has the greatest number of tourists and the demand for air conditioning is at its peak. Between the winter period and the summer period the monthly value doubles, thus it is possible to affirm that the electric energy in summer is 4 times higher compared to the spring period.

The typical load demand curve is shown in Figure 16:

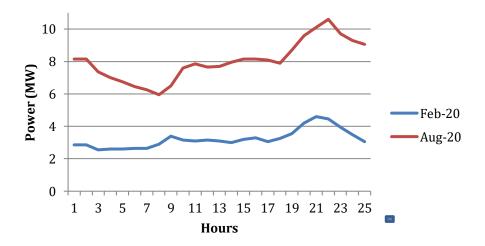


Figure 16: Typical Load Demand Curve for Lampedusa island

Regarding energy consumption, in Figure 17, it can be observed the consumption per sector. The greatest weight corresponds to the residential load, which accounts for 29% of the total load, followed by hotels, which, if added to that of residences intended for tourist accommodation, affects about 15% of the total load.

Energy Consumers	Electricity Demand (MWh)	%	
Public lighting	855	3%	
Residents	9438	29%	
Non-resident	1403	4%	
Tourist establishments	3302	10%	
Tertiary activities	3084	9%	
Tertiary activities such as bars, pizzerias and	1596	5%	
restaurants	1230	5%	
Industries	1975	6%	
Municipal users	322	1%	
Water plant and sewage plant	366	1%	
Desalination plant	3509	11%	
Hospital	313	1%	
Airport	1865	6%	
Military areas and barracks	2453	7%	
Self-consumption power plant	2389	7%	

Figure 17: Energy consumption per sector in Lampedusa

5.1.2.2 Electricity Grid

The power system of Lampedusa is isolated from the main national grid. The local Medium Voltage network is composed of 69 nodes, 39 kiosk and 13 pole-mounted (10 kV/400 V) substations as shown in Figure 18.

The electricity grid is composed of 5 main medium-voltage lines through which are distributed about 60 electrical conversion substation/cabins from medium to low voltage, which supply low voltage electricity to public and private users. The medium voltage network is realized with a ramified structure that allows, in case of accidental blackout, to isolate the fault avoiding current interruption of the current on the whole island.

Map 1 Medium voltage power grid

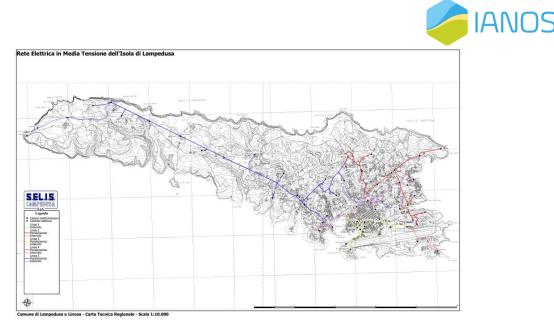


Figure 18: Lampedusa's electricity grid

The distribution chain of electrical energy on the island is produced by the alternators at 50 Hz. At a voltage between 400 V and 5,000 V, energy is transformed and introduced in the net at 10,000 V, medium voltage, and so transported to the distribution substation/cabins where it is transformed to the national voltages of 220 V and 380 V, low voltage, and finally supplied to the users.

The current electrical network of the island of Lampedusa is designed so that the flow of energy moves in a unidirectional way, from the production place to the consumption one and, in this context the final user is only and exclusively a passive load. The implementation of new large-scale electricity production plants requires the modification of the electrical network of the island for the transition from passive to active. Moreover, since the locations identified for the installation are located in areas currently not reached by the medium voltage distribution network, for their connection it will be necessary to provide the realization of special underground cables connected to the power plant.

The supply of energy, since there is no direct connection with the mainland, is provided through a diesel thermoelectric power plant managed by the company S.EL.IS. Lampedusa s.p.a. The company has a power plant located close to the town centre, in the district of Pisana and consists of 8 generators coupled to equal number of diesel engines of a total power of 22.5 MVA. The generators work with different scheduling according to the hourly electrical load and the engines work alternating between the primary energy production system and

the storage system. The operational behaviour of the power plant engines are managed in a way that as soon as a motor runs for 10 minutes at 80% of its nominal power, a second motor is switched on and the power is distributed according to distribution algorithms of the management system adopted by the company SELIS SpA. It is worth to consider that the fuel (diesel) needed for the regular operation of the plant is brought to the island by tankers from the mainland; since the plant is not located near the port, the fuel is then transported by road to the Port. Obviously, this solution is not sustainable from an environmental point of view, because of the emission of CO2 and pollutants due to the diesel combustion in the local power plant. At present, the installed generators group are the following:

GR.	MOTORI	ALTERNATORI	POTENZA KW
1	MAN 18V28/32S - Matr. 40157 02 52	AVK - 750 g/1' - 11000 V DIG 156 N/8 - Matr. 8425109 B101	4100
2	MAN G8V 30/45ATL - Matr. 413746	GARBE LAHMEYER - 500 g/1' - 5000 V Smh 12/140-52 Matr. 4101415012 003	1328
3	WARTSILA NOHAB 6R25 - Matr. 3674	GARBE LAHMEYER - 1000 g/1' - 5000 V PA 1004115-80/6 R 9602 201	1470
4	WARTSILA NOHAB 16V25 - Matr. 3607	LEROY SOMER - 750 g/1' - 5000 V LSA 56L8/8P Matr. 159143/1	2800
5	MAN 9L 25/30 - Matr. 1040253	RELIANCE ELECTRIC - 1000 g/1' - 5000 V SDGB 6302-6 Matr. 185092 RR	1893
6	MAN 12V 32/36 - Matr. 1055000 (collaudo 4412 KW; targa 4440 kW)	UNELEC - 750 g/1' - 5000 V PA 160 G 95-65-8P Matr. 154/191/1	2998
7	WARTSILA NSD 16V25 - Matr. 4322	LEROY SOMER - 750 g/1' - 5000 V LSA 56 UL9/8P Matr. 166869/1	2935
8	WARTSILA 12V32 - Matr. 22360	ABB - 750 g/1' - 11000 V AMG 0900LR08 DSE - Matr. 4575070	5040

S.EL.I.S. LA	MPEDUSA S.p.A.
--------------	----------------

Figure 19: Lampedusa's generators

All generators sets are equipped with a modern SCR - "Selective Catalytic Reduction" - type catalyst system for the reduction of pollutants /exhaust gases in particular NOx.

In Lampedusa, there is no gas grid. The heating of the houses is electric as for the hot water heating. Gas cylinders are used for the kitchens, transported by ship from mainland Porto Empedocle.

All electric generators are equipped with both primary and secondary frequency control. The primary frequency/active power control keeps the frequency/active power stable according to a droop percentage, while the secondary frequency/active power system intervenes to keep the frequency within predetermined parameters, and if necessary to correct the load distribution. The secondary frequency system distributes the active power in proportion to the rated power. For voltage regulation there is both a primary and secondary

voltage/reactive power control. The primary voltage regulation/breakdown is done by voltage regulators working in droop, while the secondary one distributes the reactive power in proportion to the generator size.

Concerning energy losses in the grid, in 2020 there were 15.69% of energy losses in the island. In terms of network congestion, no episodes were reported in the previous years.

5.2 Bora-Bora

5.2.1 General characterization

Bora Bora is a small island located in the South Pacific Ocean in the Society's Archipelago in French Polynesia (270 km northwest of Tahiti, Oceania). This archipelago contains 14 islands and is divided into two groups, the Windward Islands (207,333 inhabitants) and the Leeward Islands (35,393 inhabitants), where Bora Bora is located. Bora Bora had a population of 10,605 in 2017 and covers 29 km², plus some 10 km² of islets adjacent to the coral reef, forming a lagoon. Bora Bora has a relatively temperate climate. Bora Bora is the most visited island after Tahiti (125,000 visitors/y). The island also contains a dormant volcano.

5.2.2 Site assessment and existing infrastructure

5.2.2.1 Supply and Demand

The total electricity produced in 2020 was 35.6 GWh, where 33.7 GWh was correspondent to thermal electricity. Most of the electricity production still comes from fossil fuels (94.6%). The small part that is generated from renewable energy sources is due to PV panels.

There are 3,198 clients on the island being the low voltage for social use the sector that consumes the most, as it can be observed in Table 12.

Table 12: Electricity consumers in Bora-Bora island	
---	--

	Low					
Number		Low Voltage	Low Voltage	Low Voltage	Medium	
	Voltage					TOTAL
of clients		Home	industries	EP	Voltage	
	social use					

						IANC)S
2020	1,811	975	347	34	31	3,198	

The annual peak demands use to be around 6 or 7 MW.

Figure 20 and Figure 21 show the typical demand curves for weekdays and weekends, respectively.

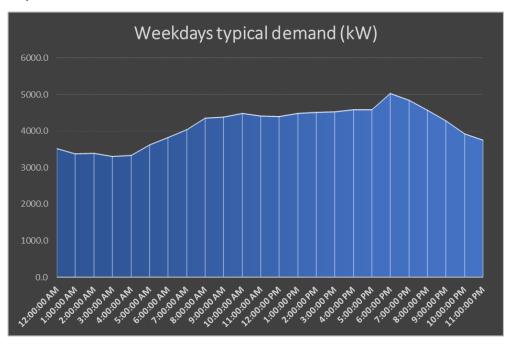


Figure 20: Typical demand curve for weekdays in Bora-Bora island

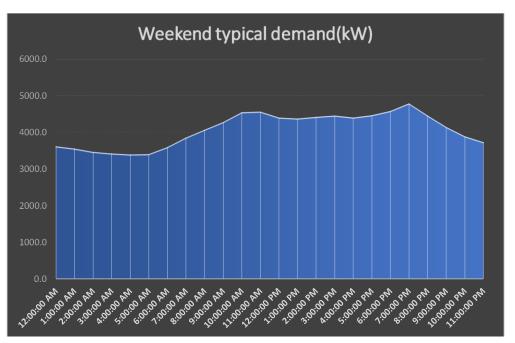


Figure 21: Typical demand curve for weekends in Bora-Bora island

5.2.2.2 Electricity Grid

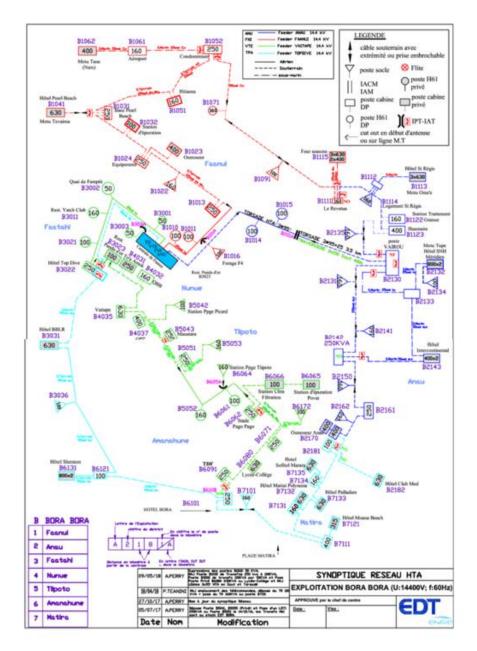


Figure 22 illustrates the map of the power grid lines of Bora-Bora island.

Figure 22: Bora-Bora's power grid

Table 13 displays the characterization of the distribution grid of Bora-Bora which has a total of 160 km. There is no transmission grid on the island.

Table 13: Bora-Bora's distribution grid

Distribution	Length of networks (km) Distribution					Frequency
	Aerial	Buried	Sub-marine	Total	-	

HT	8.0	44.1	18.5	70.7	14,400 V	
LT	26.0	64.1	0.0	90.1	220 - 380 V	60 Hz
Total	34.0	108.2	18.5	160.7		

Concerning power plants, the island has 8 generators with different nominal powers and installed in different years as displayed in Table 14.

Table 14: Diesel Generators of Bora-Bora

Diesel generators	Name	Brand	Nominal power (kW)	Continuous service power (kW)	Year of install
G1	G051	CUMMINS KTA50	1,000	640	1996
G3	G106	WARTSILA W200 V12	2,000	1,800	2001
G4	G224	WARTSILA W9L32	3,880	3,880	2011
G6	G074	WARTSILA 6R32	2,150	2,000	1998
G7	G110	WARTSILA W200	2,000	1,800	2002
G10	G064	WARTSILA 8R32	2,850	2,850	1997
G12	G094	WARTSILA W200	2,000	1,800	2000
G13	G225	WARTSILA W9L32	3,880	3,880	2011

The power grid of Bora-Bora has energy losses around 3% as shown in Table 15.

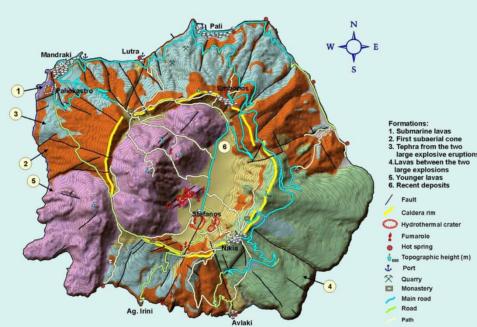
Voltage and frequency fluctuation are usually controlled with diesel production and spinning reserve.

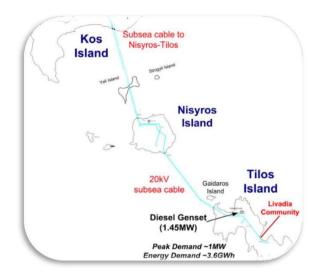
	Gross	AUX				
Production	genset	consumption	Max	Consumption	Production	Network
Froduction	production		(kW)	(m³)	yield	yield
	(GWh)	(%)				
2017	45.556	2.98	7,330	11,591	97.0%	97.2%
2018	44.758	2.62	7,680	11,408	97.4%	95.4%
2019	46.146	2.08	6,950	11,870	97.9%	96.6%
2020	34.678	2.73	6,860	9,098	97.3%	97.0%

5.3 Nisyros

5.3.1 General characterization

Nisyros Island is composed of 4 villages: Mandraki (The biggest village), Nikeia, Emporeios and Paloi as described in Figure 23. These villages are connected with specific electric cables and, in the villages there are some stations for interconnection and distribution of the energy inside the villages and between them.




Figure 23: Nisyro's villages

5.3.2 Site assessment and existing infrastructure

Nisyros island belongs to the island complex of Dodecanese and covers its electricity needs as part of the "Kos-Kalymnos" autonomous microgrid as shown in Figure 24. Two oil-based APS (the first one operating in Kos island with rated power 102 MW and the second operating in Kalymnos island with rated power 18 MW) feed the autonomous microgrid and provide electrical energy to Nisyros through two Medium Voltage (MV) subsea cables that are terminated at the north part of the island (near the Mandraki village), through the Yali islet. Thereby, the electrical energy is fed through the power distribution overhead lines to other parts of the island, while from the south part of the island (near the Avlaki region), two independent MV subsea cables are feeding electricity to the south part of the specific microgrid (Tilos island).

Figure 24: Autonomous microgrid of Kos-Kalymnos-Nisyros-Tilos.

The extensive and complex configuration of the "Kos-Kalymnos" autonomous microgrid has substantial repercussions on the quality of the electricity fed to Nisyros island, with frequent black-outs occurring mainly at the microgrid's south part (which is comprised of Nisyros and Tilos), as also voltage and frequency stability issues.

Unfortunately, there does not exist a dedicated energy meter installed at the entry point of electricity at Nisyros island. As a result, a general overview of the island's total electrical energy needs is not directly available.

Based on previous years' historical data, Nisyros peak power demand is estimated at 1.2 MW. In addition, the desalination units, comprising a main component of the load demand, operate on a constant water provision policy and, as a consequence, have constant power requirements and therefore do not affect the peak power demand. In order to visualize the aforementioned, Figure 25 presents the load demand measurements carried out for Tilos island during the time period 2015 - 2018. Thus, the load demand for Nisyros island will have an analogous profile, with its peak being multiplied by a factor of 1.5 or 1.7.

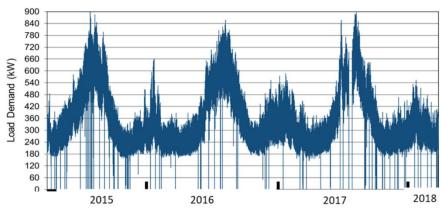
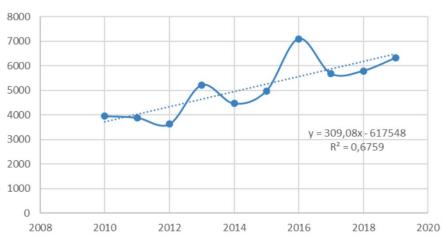



Figure 25: Electrical energy demand for Tilos island

Based on the available official data for the energy consumption of Nisyros island during the past decade (Figure 26), a significant fluctuation is noted, which is smoothed out the last three years (2017 – 2019). More precisely, the load demand was 4,000 MWh_☉/year for 2010, while it surpasses 6,200 MWh_☉/year for 2019, presenting a constantly increasing tendency.

ELECTRICITY CONSUMPTION OF NISYROS ISLAND

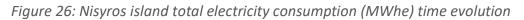
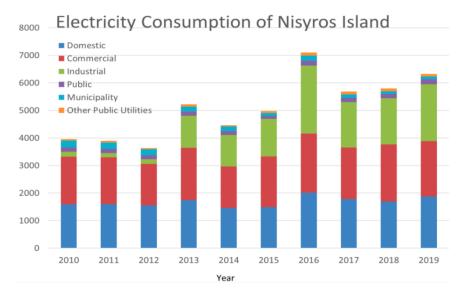



Figure 27 describes the electricity consumption of Nisyros island for the different sectors. Accordingly, the main constituents of the electrical energy consumption are the domestic and the commercial sectors. The desalination units play a crucial role on the island's energy demand, as the electrical consumption was increased approximately by 1,000 MWhe when the first unit begun to operate at 2013 and doubled at 2016, when the second unit was integrated. Following, a variation exists depending on the operational status of the two units. The third unit begun its operation at 2019 to replace the problematic first unit. Moreover, the

lighting contribution is more than halved during the past decade and along with the public buildings and the public entities represent a small percentage of 6 - 7% of the island's total annual energy requirements.

Figure 27: Electricity consumption of Nisyros per sector (2010-2019)

Finally, it can be stated that the electrical energy demand of Nisyros island presents the typical seasonal profile of all Greek islands located in the Aegean Archipelagos, with a peak power demand occurring during the summer (approximately during mid-August) and being equal to 1.5 MW. The greatest percentage of the electrical energy demand is due to the Mandraki region and is around 6,000 MWh_e, presenting a constantly increasing tendency, which is expected to be terminated the following years due to the pandemic impact on the economy. The whole electrical energy consumption is covered by the (double) subsea connection with the "Kos- Kalymnos" autonomous microgrid, that is characterized by the dominant presence of diesel oil-based power stations (at a percentage of 85%) and the pertinent environmental and macro-economic issues.

Consequently, any intervention for energy saving and rational use scopes as also the installation of RES-based and environmentally friendly power stations will enhance the energy security of the local habitants and alleviate from both the direct and indirect environmental impacts as also from the macro-economic charges on the Greek economy. Finally, in such a case, economic benefit could also be attained. The island does not have any power plants or substations for production of electricity.

6 Use Cases Definition

6.1 Transition Track 1: Use Cases

Transition Track 1 comprises all the Use Cases that utilize high renewable energy penetration to provide energy services to the power system. The main aims of these Use Cases focus on reducing energy curtailment and on providing stability to the grid by avoiding challenges such as congestion and voltage variations. For this purpose, self-consumption maximization (UC1), use of flexibility from generation side (UC2) and provision of fast (UC3) and slow grid services (UC4) are demonstrated in four Use Cases.

6.1.1 Use case 1: Community demand-side driven self-consumption

maximization

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case			
	Energy efficiency and grid support for	Community	demand-side	driven	self-
	extremely high RES penetration	consumption	maximization		

1.2 Version management

		Version Mana	igement
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	Mónica Fernandes (EDP NEW)	First draft version
2	05.02.2021	Nikolaos Nikolopoulos (CERTH), Dionisios Stefanitsis (CERTH)	Comments and inputs on Diagrams, Actors, Scenarios, Information Exchanged. Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture
3	10.02.2021	Carlos Patrão (CLEANWATTS)	Comments on Use Case conditions, Actors, References, Scenarios, Information Exchanged
4	23.02.2021	Rui Lopes (UNINOVA)	Comments on Use Case conditions, Diagrams
5	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version.

			Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios
6	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
7	21.04.2021	Denisa Ziu (ENGINEERING)	Scenario 2 – Self-consumption maximization through P2P energy trading based on DLT; Pure P2P approach
8	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
9	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version
10	01.04.2022	Mónica Fernandes (EDP NEW)	Minor updates on the actor of the Use Case

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
Scope	The scope of this Use Case is the optimization of behind-the-meter assets at residential consumer premises to maximize self-consumption from RES and thereby reducing energy curtailment. The ability of monitoring and control loads, PV generation and storage can allow consumers to explore the potential of self-consumption and electricity cost minimization. This Use Case is demonstrated in Local Energy Communities (if LEC already exist in the island) and the optimization of the assets will be performed in a local and a neighbourhood-level.
Objective(s)	 This Use Case orients at optimizing and controlling the energy consumption in the local and neighbourhood level to achieve the following objectives: 1. Maximize self-consumption from renewable energy sources to allow the users (Terceira) or community (Ameland) level better exploit their assets, to avoid future grid transport costs to the mainland and to alleviate the grid in periods of excess of renewable generation 2. Reduce energy curtailment by achieving a maximum renewable penetration possible 3. Avoid grid challenges such as congestion and voltage variations

1.4 Narrative of use case

Narrative of Use Case

Short description

This Use Case occurs in a Local Energy Community (LEC) and focuses on controlling and optimizing energy assets with the main purpose of matching the energy generation from PV panels and small wind turbines and storage with the consumption of end-user or community level assets including i) electrochemical and heat batteries, ii) electric water heaters, iii) heat pumps andiv) micro-CHP through an intelligent virtual power plant (iVPP). The iVPP computes the optimization of behind-the-meter assets based on several information-sources provided by localized energy management systems (Home Energy Management Systems and Fog-Enabled Intelligent devices). Thereby, the iVPP is capable of controlling storage and demand-side assets by, for instance, shifting demand for periods of renewable generation surplus.

Additionally, this use case comprises the details regarding peer-to-peer energy trading schemes.

Complete description

The present Use Case describes the methods to control and optimize the consumption of the behindthe-meter assets in a Local Energy Community (LEC) through an intelligent virtual power plant (iVPP). The controlled and optimized assets will be: i) electrochemical and heat batteries, ii) electric water heaters, iii) heat pumps, iv) micro-CHP, v) EVs, vi) smart home appliances and smart plugs, vii) fuel cells, viii) hybrid heat pumps and ix) biobased saline batteries.

This optimization will be local and in the neighbourhood level with the goal of maximizing renewable energy sources (RES) self-consumption from PV panels and small wind turbines. The local optimization will consist of controlling the building loads and storage systems while the neighbourhood level optimization, either locally (in the case of Terceira) or centrally (in the case of Ameland), will allow to take advantage of load heterogeneity and enable to supply the generation surplus from certain buildings to buildings with higher energy demand at a specific time period.

The iVPP will be able to perform the global control and energy dispatch while considering the comfort requirements of the energy users. For this purpose, the iVPP will be interfaced with localized energy management systems such as residential Home Management Systems (HMS) and Fog-Enabled Intelligent Devices (FEID-plus) in residential and other local Building Management Systems (BMS) in tertiary buildings.

The localized energy management systems will provide real-time data to the iVPP such as energy consumption, energy generation, batteries' state of charge, temperature and others. These data will be obtained through smart sensors, smart plugs, field-level interfaces or other well-known sources such as weather forecast websites.

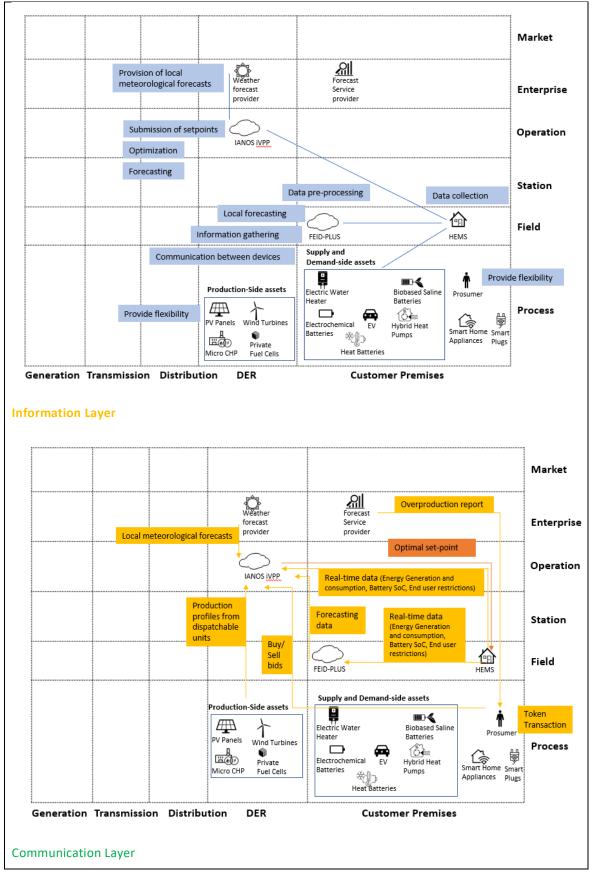
Thereby, the iVPP will shift demand to periods where there is excess of renewable energy through the development of control algorithms. These algorithms will be based on several data such as: i) forecasted PV generation, ii) non-controllable and critical load which operation cannot be altered

significantly and iii) controllable loads, such as electric water heaters or heat pumps, with flexibility margins depending on comfort restrictions and operation settings imposed by the users.

This optimization process will also contemplate any type of distributed storage such as batteries along with novel Phase Change Material thermal storage, fuel cells and electric charging stations, always with the aim of achieving the maximum economic and environmental benefit for the enduser. For this purpose, an external forecast provider will supply production forecasts based on local meteorological forecasts while the iVPP, through its forecasting engine, aggregation & classification and centralized dispatcher modules, will utilize the following data: i) energy consumption forecasts based on historical load consumption and real-time measurements, ii) historical generation data, iii) artificial intelligence-based clustering of assets and iii) dispatching of evaluated flexibility strategies to optimize self-consumption on the community which will depend on the profile of the assets athand and the future time-slots' energy prices.

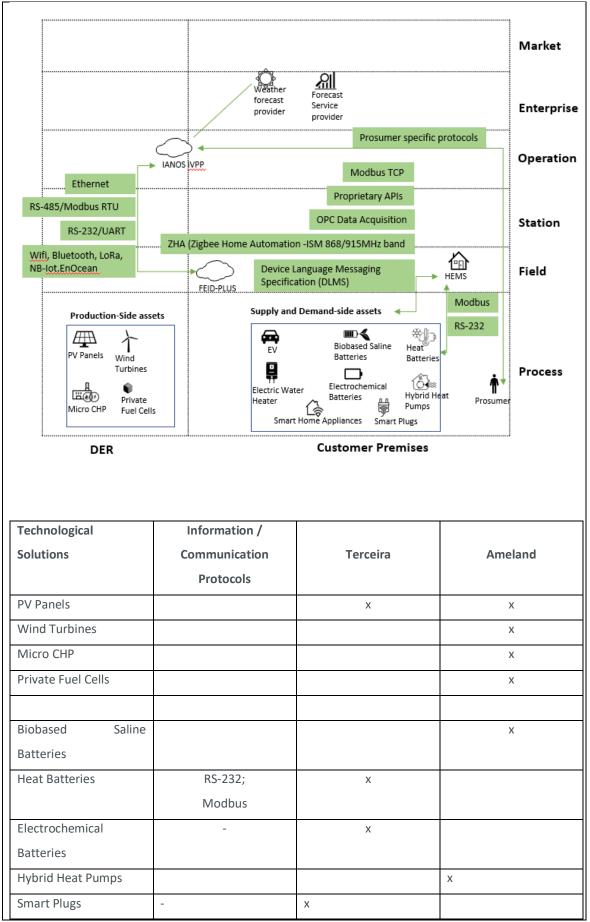
Moreover, this use case also includes the peer-to-peer energy transactive framework, which aims at promoting self-consumption. This trading allows users to exchange flexible energy products with other prosumers and assets thereby contributing to maximize the penetration of renewables and avoid future grid transport costs.

In this case, prosumers sell the excess energy in a P2P market. The market will leverage on self-enforcing smart contracts to manage, in a programmatic manner, the P2P energy-trading between prosumers. Direct energy transactions in the community will be facilitated through the Distributed Ledger Technologies (DLT)-transactive logic implemented into the iVPP intelligence. The iVPP will realize the energy flexibility tokenization, through the implemented DLT-based energy credits' application mechanism through Smart Contracts.


This part of the Use Case is described in more detail in D4.9 - iVPP P2P transactive energy framework.

SGAM LAYERS:

Function Layer



Electric Water Heaters	The protocol used can	х	
	be adjusted according		
	to the needs and		
	specifications of the		
	iVPP as long as it is		
	supported by a Wi-Fi		
	connection at the		
	installation site.		
HEMS	•DLMS – (Device	х	
	Language Messaging		
	Specification) a		
	protocol that is		
	emerging as the		
	worldwide standard of		
	choice among smart		
	meter designers for		
	interoperability among		
	all metering systems,		
	including all energy		
	types (electricity, gas,		
	heat and water);		
	•Modbus TCP –		
	Modbus version over		
	TCP/IP;		
	•Proprietary APIs –		
	proprietary APIs.		
FEID-PLUS	Wired communication	Х	х
	protocols:Ethernet, RS-		
	232/UART, RS-		
	485/Modbus RTU		
	Wireless		
	communication		
	protocols: WiFi,		
	Bluetooth, LoRa, NB-		
	lot, EnOcean		
L	1	l	1

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.4	Energy Savings	Calculates the reduction of the energy consumption to reach the same services (e.g. Comfort levels) after the interventions, taking into consideration the energy consumption from the reference period.	1
1.8	Peak Load Reduction	Calculates the peak load reduction before the IANOS implementation (baseline) and after its interventions (DSM programs and storage system management)	3
1.10	Storage capacity of the island's energy grid per total island energy consumption	Compares the storage capacity with the total energy consumption of the island	1,2,3
1.12	Kwp photovoltaic installed per 100 inhabitants	Measures the installed capacity of photovoltaic interpolated to 100 inhabitants. To be assessed per sector (residential, tertiary, industrial and public)	1
2.1	Reduced fossil fuel consumption	Measures the amount of fossil fuels which is now not consumed because of IANOS demonstrated solutions (e.g. Electrification of transport, RES penetration)	1,2
3.11	Energy Poverty	Assesses the change in percentage points of (gross) household income spent on energy bills since the beginning until the end of the project. Calculation of the reduction in consumer's electricity bill	1,3
4.4	Increased hosting capacity for RES, electric vehicles and other new loads	Gives a statement about the additional loads and RES that can be installed in the system, when innovative solutions and energy management techniques are applied (e.g. VPP platform). The calculation is realized by comparing the network capacity before and after IANOS implementation	1,2,3

5.1	People Reached	Percentage of people in the target group that have	1
J.1	reopie reactieu		1
		been reached and/or are activated by the project	
7.1	Social Compatibility	Refers to the extent to which the project's solution	1
		fits with people's 'frame of mind' and does not	
		negatively challenge people's values or the ways they	
		are used to do things	
7.2	Technical	Examines the extent to which the smart grid	1
	compatibility	solutions fit with the current existing technological	
		standards/infrastructures	
2	Increase on energy	$PE_{BTM:}$ Measures the increase on the percentage of	1
	consumption from	energy consumption (kWh) from behind-the meter	
	behind-the-meter	assets of the LEC or the target residential area	
	assets	$E_{BTM} = \frac{\textit{Energy Consumption from behind the meter assets}}{\textit{Total energy consumption}}$	
		$PE_{BTM} {=} E_{BTM} {}_{after} {-} E_{BTM} {}_{before}$	
		$E_{\mbox{\scriptsize BTM}}$: Share of energy consumption from behind the meter assets	
		(%)	
		$PE_{\mathtt{BTM}}$: Increase on percentage of energy consumption from	
		behind-the-meter assets (%)	
		$E_{\mbox{\scriptsize BTM before}}$. Share of energy consumption from behind the meter	
		assets before IANOS project (%)	
		$E_{\text{BTM after}}$. Share of energy consumption from behind the meter	
		assets after IANOS project (%)	

1.6 Use case conditions

Use case conditions Assumptions		
Prereq	uisites	
•	Availability of real time data from localized energy management systems. Availability of forecasting data to the iVPP: Solar Irradiation, Wind Potential, loads (heating, cooling, DHW, electricity) consumption profiles, including historical data. Definition of end-user levels of comfort. Definition of end-user critical loads.	

• All available energy assets can be integrated on the iVPP platform.

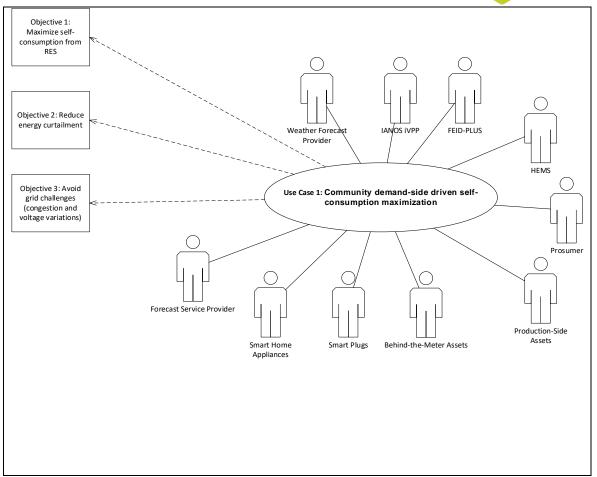
• A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information		
Relation to other use cases		
UC2: Community supply-side optimal dispatch and intra-day services provision		
UC3: Island-wide, any-scale storage utilization for fast response ancillary services		
UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion management services		
UC5: Decarbonization of transport and the role of electric mobility in stabilizing the energy system		
UC9: Active Citizen and LEC Engagement into Decarbonization Transition		
Level of depth		
Specialized use case		
Prioritisation		
High level of priority		
Generic, regional or national relation		
Generic		
Nature of the use case		
Technical use case		
Further keywords for classification		
Self-consumption, prosumers, Peer-to-peer, consumption optimization, supply and demand-side assets, iVPP, LEC		

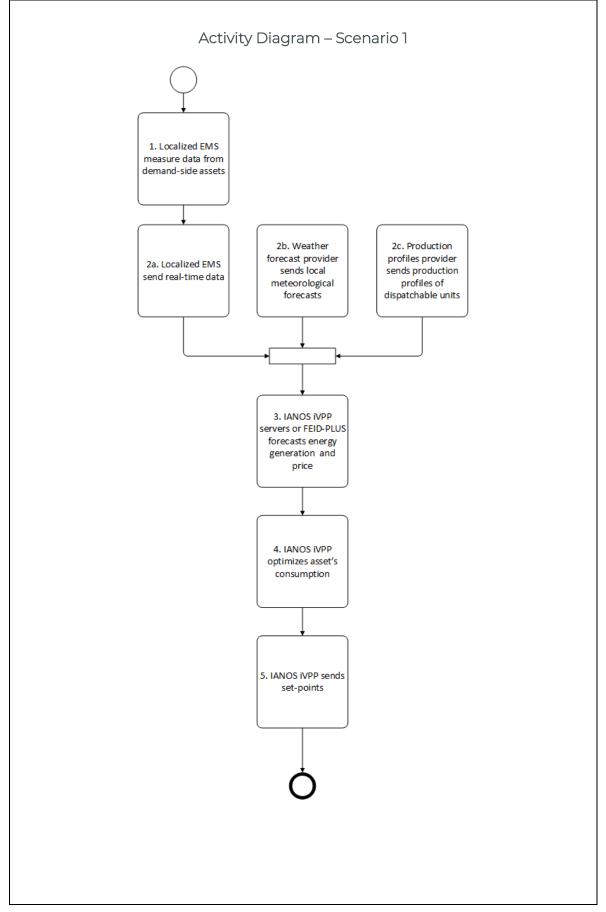
1.8 General Remarks

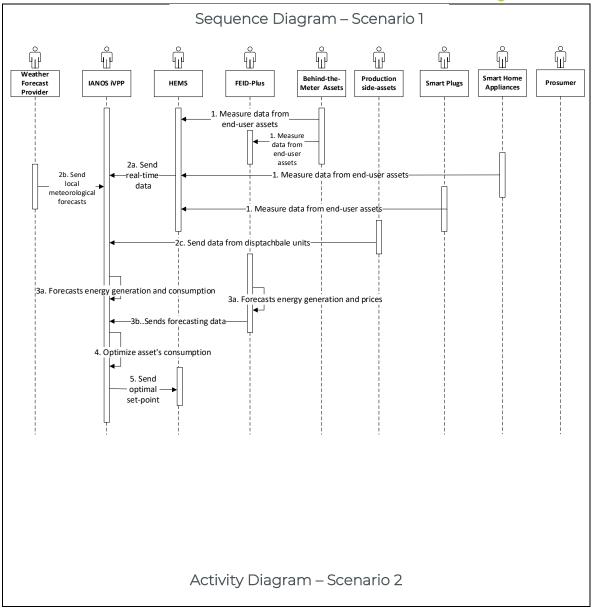
	General Remarks
-	

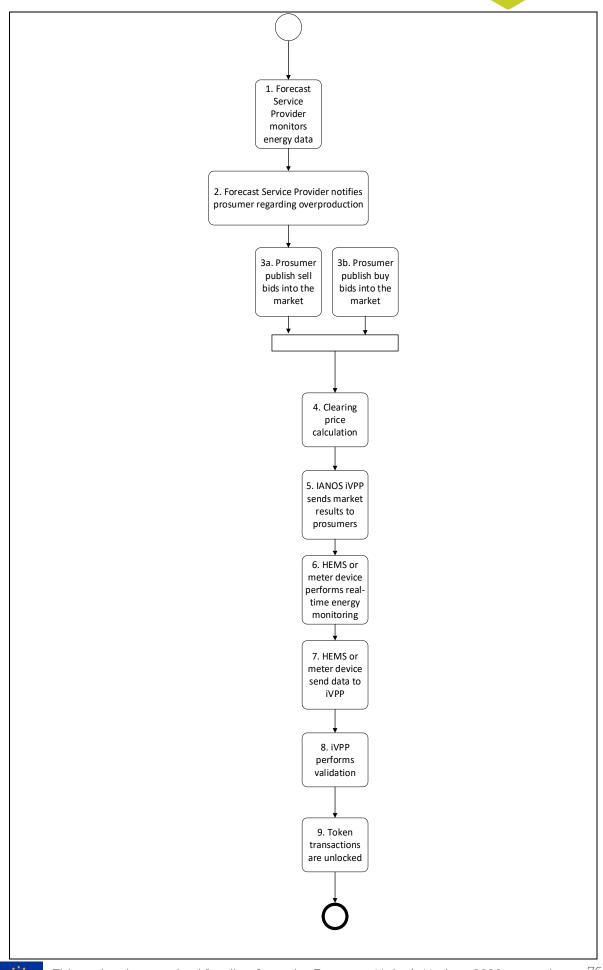

2 Diagrams of use case

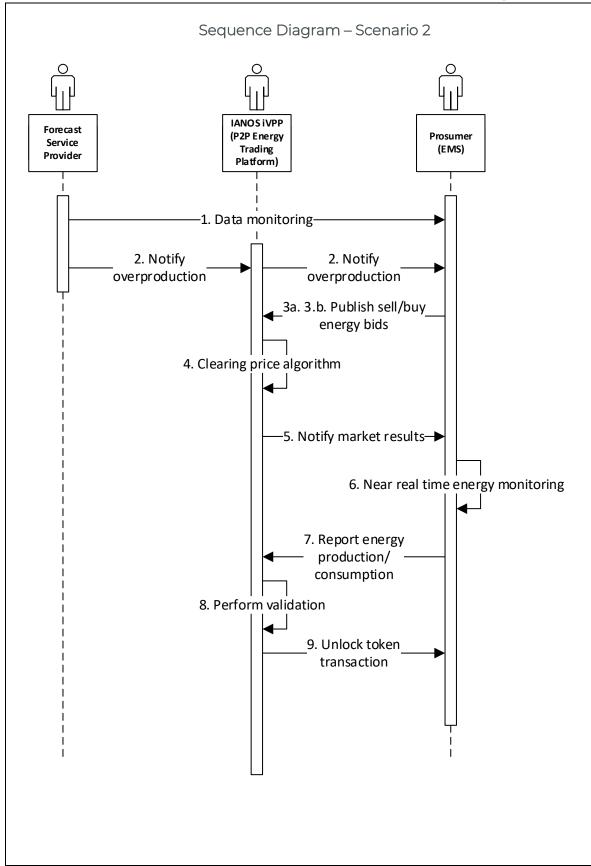
Diagram(s) of use case

Use Case Diagram – Scenario 1









76

3 Technical details

3.1 Actors

Actors		
Actor Name	Actor Type	Actor Description
		The IANOS iVPP sets up a virtual network of
		decentralized renewable energy resources, both non-
		dispatchable such as wind, solar, tidal resources and
		dispatchable ones such as geothermal and green gas
		CHP plants. Moreover, the iVPP comprises Energy
		Storage Systems (ESS), integrated as a single unit,
		providing flexibility services and fostering island
		renewable energy self-consumption.
IANOS iVPP	Suctors	The optimal, autonomous, real-time iVPP operation will
IANUS IVPP	System	be driven by multi-level decision making intelligence,
		complemented by predictive algorithms for smart
		integration of grid assets into active network
		management based on relevant energy profiles. For this
		purpose, the iVPP is composed of 6 different modules:
		aggregation & classification, forecasting engine,
		centralized dispatcher, distributed ledger-based energy
		transactions, virtual energy console and secured
		enterprise service bus.
		Device that performs resource-intensive functionalities
Fog Enabled Intelligent	Davica	such as computation, communication, storage, and
Device Plus (FEID-Plus)	Device	analytics locally next to the end-user assets instead of
		forwarding data to cloud-based servers to be processed.

		The FEID-Plus is a fog-enabled computing device
		equipped with special functions to control I/O, phase
		width modulation and analog signals. It employs enough
		processing capacity for applying distributed computing
		such as information capturing and storing, algorithms
		execution and control over the installation. Additionally,
		it also has the capacity to interface with several field
		elements for instance controllable building loads,
		storage and EV charging stations through appropriate
		protocols.
		Energy management system used for real time
		monitoring of energy consumption/generation,
		controlling domestic devices and electric circuits,
		accessing smart meter data and real time energy
Home Energy		consumptions. HEMS is responsible for gathering
Management System	System	flexibilities within the customer premises and
(HEMS)		providing them to the iVPP platform.
		Briefly, the system is composed by the hardware
		(Smart Meters, Sensors and Actuators), Data
		Management (Communication, Data Processing and
		other modules) and User Interfaces (UI).
		Devices which are interconnected through the
Smart home appliances	Device	internet, allowing the user to control functions
		remotely using a mobile or other networked device
		Plugs which can be controlled remotely through a
Smart Plugs	Device	mobile and allow to control and automate small
		appliances and home devices.

		Residential PV panels and assets from community		
Production-Side Assets	System	owned areas such as small wind turbines, fuel cells		
		and micro-CHP systems.		
		Private end-user's energy assets such as		
		electrochemical and heat batteries, electric water		
Behind-the-Meter	Device	heaters, electric vehicles, smart home appliances and		
Assets	Device	smart plugs. Additionally, it also comprises assets		
		from community owned areas, for instance hybrid		
		heat pumps and biobased saline batteries.		
Prosumer	Role	End-user of electricity, gas, water or heat that can also generate energy using a Distributed Energy Resource.		
Weather Forecast		Provides generation, consumption and weather-		
Provider	Role	related operational risks, for a given location and a specific time horizon for non-dispatchable generation assets.		
Forecast Service		Monitors energy data from prosumers and provides		
Provider	Role	an overproduction report based on forecast performed for prosumer's energy consumption and production.		

3.2 References

	References									
No	No References Referenc Status			Impact on use case	Originator /	Link				
•	Туре	е			organisation					
1	Regulation	Decreto-	Published	Approves the legal	Portuguese	https://data.dr				
		Lei n.º		regime applicable to	Government	e.pt/eli/dec-				
		162/2019		self-consumption of		lei/162/2019/				
				renewable energy,		10/25/p/dre				
				partially transposing						
				Directive 2018/2001						

4 Step by step analysis of use case

4.1 Overview of scenarios

Scena	ario conditions					
No.	Scenario	Scenario description	Primary	Triggering	Pre-	Post-
	name		actor	event	condition	condition
1	Self-	The iVPP receives	IANOS	Data	Generation/	Energy
	consumption	several real-time data	iVPP	gathering	Consumptio	assets
	maximization	coming from localized			n of supply	optimization
	through	energy management			and	for supply
	optimization	systems and the			demand-	and demand
	of behind-	weather forecast			side energy	match
	the-meter	provider. Along with its			assets is not	maximizatio
	assets	internal data, the iVPP			optimized or	n of self-
		performs optimization			controlled.	consumption
		of behind-the-meter				
		assets' consumption in				
		order to maximize self-				
		consumption. Lastly,				
		the iVPP sends the				
		setpoints to the				
		localized management				
		systems.				
2	Self-	An overproduction	IANOS	Over	The excess	The excess of
	consumption	occurs due to excess	iVPP	Production	of energy	energy
	maximization	production from		identificati	generated	generated
	through P2P	renewables. Prosumers		on	from	from
	energy trading	sell the excess energy in			renewables	renewables
	based on DLT	a P2P market. The			is fed back	is traded
		market will leverage on			into the grid.	locally

self-enforcing smart		providing
contracts to manage, in		efficiency in
a programmatic		the grid and
manner, the P2P		token-based
energy-trading		compensatio
between prosumers.		n
		among
		prosumers.

4.2 Steps – Scenarios

Scena	rio						
Scena	rio name:	No. 1 - Self-cor	umption maximization through optimization of behind-the-meter assets				
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information
No.		process/			producer	receiver (actor)	Exchanged
		activity			(actor)		(IDs)
1	Behind-the-	Measure real-	Localized energy management	GET	Supply and	HEMS, FEID-Plus	1,2,3,4
	meter assets'	time data from	systems such as FEID Plus and		demand-Side		
	data collection	supply and	HEMS (also interfacing with		Assets		
		demand-side	smart appliances and smart				
		assets	meters) collect real time data				
			from behind-the-meter assets				
			through smart sensors, smart				
			plugs, smart meters and field-				
			level interfaces				
2a	Submission of	Sends real-	HEMS or other localized energy	CREATE	HEMS	IANOS iVPP	1,2,3,4
	data	time data	management systems send real				
			time data to the iVPP				

21-	Culturations of	Canada Israel	Francisco Dura del se a del la sel	CDEATE	14/		г
2b	Submission of	Sends local	Forecast Provider sends local	CREATE	Weather	IANOS iVPP	5
	local weather	meteorological	meteorological forecasts		Forecast		
	forecasts	forecasts			Provider		
2c	Submission of	Send data from	Dispatchable units such as	GET	Production-	IANOS iVPP	6
	data from	dispatchable	micro-CHP and fuel cells send		Side Assets		
	dispatchable	units	production profiles to the iVPP				
	units						
За	Data	Forecasts	iVPP servers or the FEID-PLUS	CREATE	IANOS iVPP,	IANOS iVPP	7,8
	forecasting	energy	forecast energy generation and		FEID-PLUS		
		generation and	price				
		prices					
3b	Submission of	Sends	FEID-PLUS sends forecasting	GET	FEID-PLUS	IANOS iVPP	
	forecasting	forecasting	data to the iVPP				
	data	data					
4	Optimization	Optimizes	iVPP optimizes the	EXECUTE	IANOS iVPP	IANOS iVPP	-
	of asset's	asset's	consumption of all the demand-				
	consumption	consumption	side assets in order to minimize				
			energy curtailment, maximize				
L				l			

					·		
			self-consumption and meeting				
			end-user consumption needs				
5	Submission of	Sends setpoint	iVPP sends the optimal setpoint	CREATE	IANOS iVPP	HEMS	9
	optimal		to the HEMS or other localized				
	setpoints		management systems				

	Scenario									
Scena	rio name:	No. 2 - Self-consun	nption maximization through	P2P energy tr	ading based on DL	Т				
Step	Event	Name of process/	Description of process/	Service	Information	Information	Information			
No.		activity	activity		producer	receiver (actor)	Exchanged			
					(actor)		(IDs)			
1	Data	Data monitoring	Forecast Service Provider	EXECUTE	Forecast	Prosumer	-			
	monitoring		monitors energy data from		Service					
			prosumers		Provider					
2	Forecasting	Notify	Forecast is calculated.	REPORT	Forecast	IANOS iVPP,	10			
	and	overproduction	Overproduction is		Service	Prosumer				
	overproductio		detected and reported to		Provider					
	n detection		prosumers							

3a	Submission of	Publish sell bids into	Prosumers decide to sell	POST	Prosumer	IANOS iVPP	11
	sell bids in the	the market	their excess of energy				
	P2P market		production submitting sell				
			bids into the P2P market				
3b	Submission of	Publish buy bids	Prosumers want to buy	POST	Prosumer	IANOS iVPP	12
	buy bids in the	into the market	energy submitting sell bids				
	P2P market		into the P2P market				
4	Clearing price	A market clearing	For clearing price	CREATE	IANOS iVPP	IANOS iVPP	-
	algorithm	price mechanism	calculation, the energy				
		fixes, at the end of	supply offers are sorted in				
		the market session,	ascending order and the				
		the price of the	energy demand bids in				
		energy at which	descending order. The				
		quantity supplied is	intersection point				
		equal to quantity	between the two curves				
		demanded	gives the market-clearing				
			price				
5	Submission of	Notify market	The platform sends market	REPORT	IANOS iVPP	Prosumer	13
L	1		1	1	1		

	1						
	market results	results	results to prosumers				
6	Near real-time	Near real-time	HEMS or meter device	EXECUTE	Prosumer	Prosumer	-
	monitoring	monitoring	performs a real-time				
			energy monitoring				
7	Submission	Report energy	The platform is able to	GET	Prosumer	IANOS iVPP	1, 2
	real time data	production/consum	access consumption and				
		ption data	production data				
8	Validation	Perform validation	iVPP performs validation	EXECUTE	IANOS iVPP	IANOS iVPP	-
9	Settlement	Unlock token	The system unlocks the	EXECUTE	Prosumer	Prosumer	14
		transactions	tokens transactions				
			between prosumers at				
			delivery session end time				

5 Information exchanged

Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Energy Consumption Data	Customer's energy consumption real-time data of
		the several supply and demand-side assets
2		
2	Energy Generation Data	Amount of energy generated (MWh) by the energy
		supply assets such as PV panels, wind turbines,
		Fuel Cells and micro-CHP systems
3	Battery real-time data	State of charge and temperature of BESS
4	End-User comfort restrictions and	Restrictions imposed by the user to increase the
	operation settings	comfort regarding assets like heat pumps and
		water heaters
5	Local meteorological forecasts	Expected irradiances and wind speeds for specific
		locations
6	Production profiles	Production profiles from dispatchable units
7	Forecasted Energy	Customer's forecasted energy consumption data
	Consumption Data	of the several demand-side assets
8	Forecasted Energy Generation	Forecasted energy supply data from production-
	Data	side assets such as PV panels, wind turbines, Fuel
		Cells, micro-CHP
9	Optimal Setpoints	Optimal power dispatch computed by the iVPP for
		the supply and demand-side assets. It corresponds
		to the amount of power for each asset and the
		corresponding time when it should be dispatched
10	Overproduction Report	Overproduction report based on forecast
		performed for prosumer's energy consumption
		and production

11	Sell Bid	Sell energy bid from prosumer
12	Buy Bid	Buy energy bid from prosumer
13	Market Results	Market-clearing price
14	Token Transaction	Token Transaction

6 Requirements

Requirements			
Categories	Category name for requirements	Category description	
ID			
R-FUN	Functional Requirement	Requirements that capture the intended	
		behaviour of the system	
F-UI	User interface requirements	Requirements related with the iVPP user	
		interface	
R-COM	Communication Requirement	Requirements related	
		with communication aspects	
Requirement	Requirement name	Requirement description	
R-ID			
R-FUN1	Day-ahead load and/or generation forecast	iVPP can predict the load and/or	
		generation of its assets for the	
		following day	
R-FUN2	Intraday load and/or generation forecast	iVPP can predict the load and/or	
		generation of its assets within the day	
R-FUN3	Flexibility estimation	iVPP can estimate the	
		prosumers' flexibility	
R-FUN4	Settlements of intra-VPP energy	Energy transactions are settled through	
	transactions	Smart Contracts	

R-FUN5	Energy transactions recording	Data for Intra-VPP energy transactions are
		recorded on the blockchain
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability
R-COM2	Integration of energy assets	Communication and integrations between
		all energy assets and IVPP platform

7 Common Terms and Definitions

	Common Terms and Definitions
Term	Definition
BESS	Battery Energy Storage System
BMS	Building Management Systems
СНР	Combined Heat and Power
DER	Distributed Energy Resources
DHW	Domestic Hot Water
DLT	Distributed Ledger Technology
ESS	Energy Storage System
EV	Electric Vehicle
FEID	Fog-Enabled Intelligent Device
GPDR	General Data Protection Regulation
HEMS	Home Energy Management System
ICT	Information and Communications Technology
IEPT	IANOS Energy Planning and Transition Suite
iVPP	Intelligent Virtual Power Plant

LEC	Local Energy Communities
P2P	Peer to Peer
PCM	Phase Change Material
RES	Renewable Energy Sources
SGAM	Smart Grid Architecture Model
SoC	State of Charge
UI	User Interface
V2G	Vehicle-to-grid

6.1.2 Use case 2: Community supply-side optimal dispatch and intra-day

services provision

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and grid support	Community supply-side optimal dispatch and
	for extremely high RES penetration	intra-day services provision

1.2 Version management

		Version Mana	igement
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	EDP NEW	First draft
2	05.02.2021	Nikolaos Nikolopoulos (CERTH), Dionisios Stefanitsis (CERTH)	Comments and inputs on related UCs, narrative of use case, Diagrams, Actors, Scenarios, Information Exchanged. Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture
3	09.02.2021	Carlos Patrão (CLEANWATTS)	Comments and inputs on narrative of use case, use case conditions, references and information exchanged
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios
5	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
6	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
7	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version
8	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes on the complete description of the Use Case and update on the KPIs.

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	This Use Case utilizes the flexibility from utility-scale supply side-assets to minimize energy curtailment in periods of high renewable generation.
Scope	For this purpose, it also considers various storage systems such as electrolyzers and large- scale BESS to store the energy produced from dispatchable units and use it in periods of high demand.
Objective(s)	The main goals of this use case are the following: 1.Provide flexibility on the generation-side 2.Reduce energy curtailment 3.Avoid grid challenges

1.4 Narrative of use case

Narrative of Use Case

Short description

The present Use Case focuses on using the flexibility on the generation side, for utility-scale assets, to minimize energy curtailment in periods of renewable energy surplus. For this purpose, the intelligent Virtual Power Plant (iVPP) plans and executes the optimal day ahead dispatch and delivers intra-day services to the grid.

Accordingly, the iVPP considers three different types of utility-scale assets for this optimization: i) dispatchable assets, ii) non-dispatchable assets and iii) large-scale storage systems including both BESS and systems producing alternative fuels (electrolyzers), which support the decarbonization of islands with multi-purpose end uses.

The iVPP computes the optimal dispatch set-point through provided information and deliver it to the dispatchable assets and large-scale storage systems in order to assure the stability of the power system.

Complete description

This use case explores the potential of minimizing the energy curtailment in periods of excess of renewable energy generation by using the available flexibility on the generation side of utility-scale assets. In order to achieve this goal, the iVPP computes the optimal dispatch set-point, which aims at performing the day-ahead optimal dispatch, while providing intra-day balancing services to the power system. For this purpose, the iVPP, through its iVPP's Utility-Scale Assets Scheduler, considers three categories of utility-scale assets:

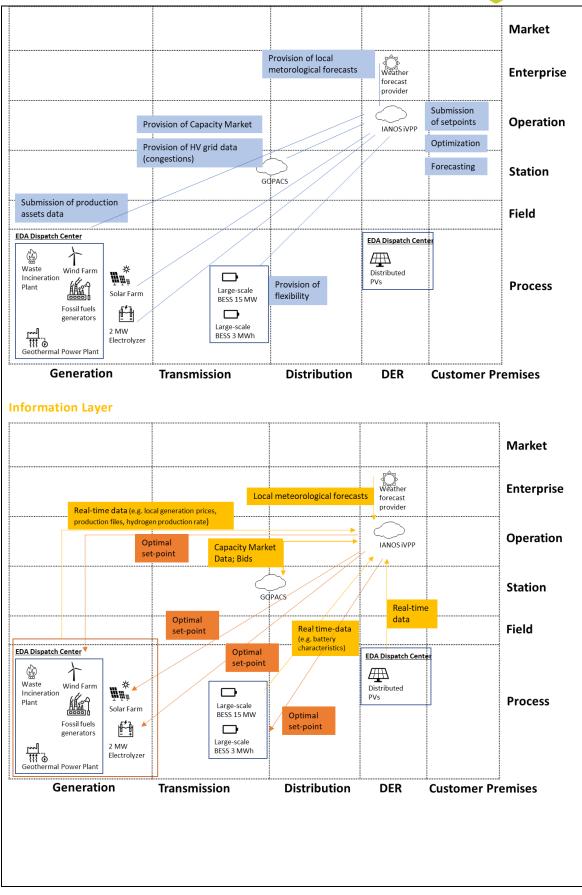
 Dispatchable assets such as diesel engines, waste incinerators, geothermal power generators of utility-scale and any other utility-scale flexibility assets available.

ii) Non-dispatchable assets as wind and solar PV generators.

iii) Large-scale BESS and Power to Fuel (H2) storage systems such as electrolyzers. The calculation of the optimal dispatch is based on several information provided by the different assets. In the case of Terceira, the Dispatch Center of EDA sends the hard-technical constraints such as batteries' State of Charge, non-variable geothermal production and information regarding the waste incineration plant to the iVPP. While in Ameland, this information is obtained directly from the solar farm since the iVPP is directly connected to it.

The iVPP is provided with total energy consumption forecasts on the islands, which is based on EDA's and Alliander's historical load consumption and real-time measurements; and available flexibility forecast of the dispatchable sources. Specifically, for Ameland, the iVPP will be connected with the Grid Operation Platforms for Congestion Solutions interface (GOPACS) to exchange data with the Dutch TSO through the local DSO in order to mitigate grid congestion issues offering local energy producers revenues according to their available flexibility. Thereby, the GOPACS provides a capacity market on which the iVPP can trade.

The dispatchable and non-dispatchable assets supply its local energy generation prices to the iVPP. An external forecast provider is required to provide local energy production forecasts, based on local meteorological forecasts and historical generation data.


With all these data provided to the iVPP along with its internal data, the iVPP computes the optimal power dispatch in order to assure the large-scale BESS and other storage systems have enough remaining capacity to maximize penetration of RES, to avoid energy curtailment by utilizing flexibility provided by the dispatchable assets and to procure intra-day services to the grid. Accordingly, the iVPP sends the set-points for the large-scale BESS, other storage systems and dispatchable assets.

The iVPP will not interfere with the operation of the dispatchable production units. It will only perform the optimization and send suggestions to EDA dispatch center and the solar farm.

SGAM LAYERS: Function Layer

Technological	Information /		
Solutions	Communication	Terceira	Ameland
	Protocols		
Wind Farm	-	x	
Fossil Fuel Generators	-	х	
GeothermalPlant	-	х	
Electrolyzer	-		x
Solar Farm	-		x
Waste incineration	-	x	
plant		^	
Small scale distributed	-	x	
PVs		^	
BESS 15 MW	-	х	
BESS 3 MWh	-		x
GOPACS	-		х

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.5	RES Generation	Calculates the increase of energy production from renewable energy sources integrated in the energy	2
		system compared to the baseline scenario without IANOS interventions	
1.6	Reduced energy curtailment of RES and DER	Calculates the reduction of energy curtailment due to technical/operational problems compared to the baseline scenario without IANOS interventions	2
1.7	Unbalance of the 3- phase	Examines the quality of the power supplied by measuring the supply voltage gap between the three phases which should be 120 deg	3
1.10	Storage capacity of the island's energy grid per total island energy consumption	Compares the storage capacity with the total energy consumption of the island	1

_

1.6 Use case conditions

Use cuse conultions	Use	case	conditions
---------------------	-----	------	------------

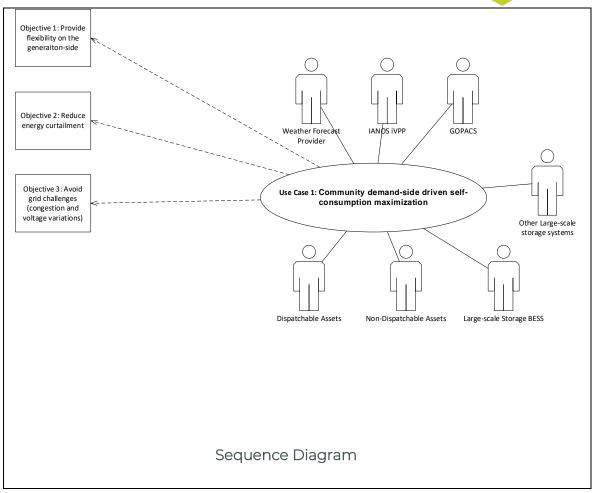
b	n Ameland the Grid Operation Platforms for Congestion Solutions interface (GOPACS,) wi
a	be integrated with the iVPP decision making logic. GOPACS is a unique initiative in Europe
c	and has resulted from active collaboration between the Dutch TSO and the DSOs. This
c	olatform is consistent with key European directives to mitigate grid congestion, while
a	offering large and small market parties an easy way to generate revenues with the
e	available flexibility and contribute to solving congestion situations
E	Existence of distributed energy assets available in the island, capable of being integrate
a	and remotely managed or controlled by the iVPP
e	Bidirectional smart meters are installed on buildings and on relevant energy assets, and the
E	readings are available for the iVPP in real-time

- Establish connection from the iVPP to the EDA's Dispatch Center (Terceira)
- Direct Connection between iVPP and solar farm (Ameland)
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification/mapping

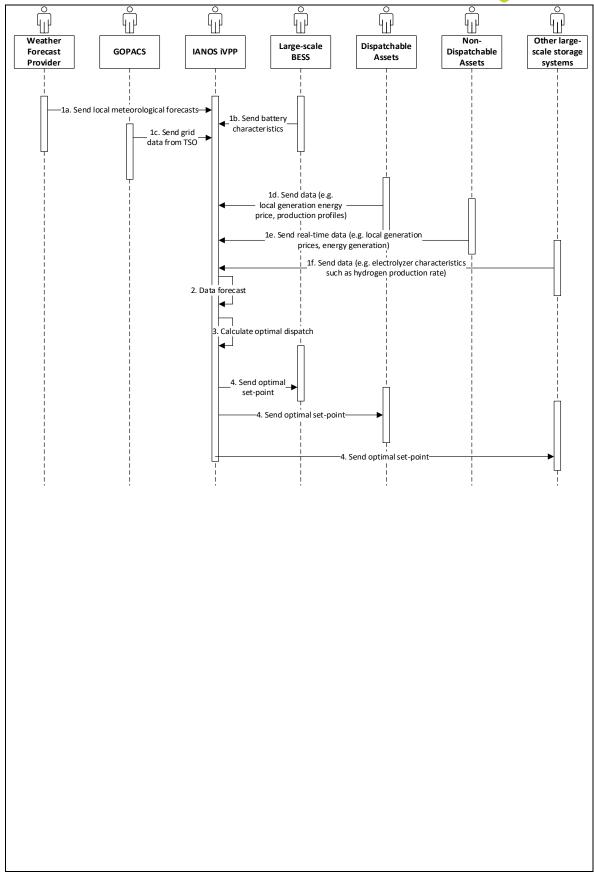
	Classification Information
Relation to other use cas	ies
UC1: Community demand	d-side driven self-consumption maximization
UC3: Island-wide, any-sca	ale storage utilization for fast response ancillary services
UC4: DSM and smart grid	d methods to support power quality optimisation and congestion management
services	
UC7: Circular economy, t	he utilization of waste streams and connection to the local gas grid
Level of depth	
Specialized use case	
Prioritisation	
High level of priority	
Generic, regional or nation	onal relation
Generic	
Nature of the use case	
Technical use case	
Further keywords for cla	issification
Large-scale storage, VPP,	optimization, optimal day-ahead dispatch, intraday balancing services, supply-
side, VPP utility scale asso	ets scheduler, flexibility, minimize curtailment

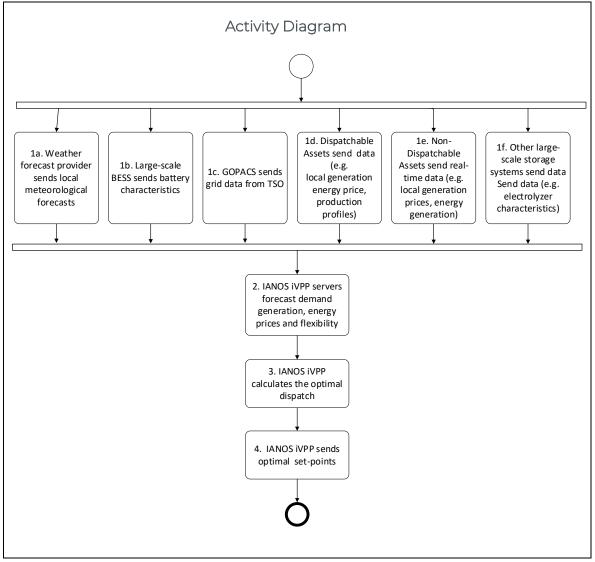
1.8 General Remarks


	General Remarks	
-		

2 Diagrams of use case

Diagram(s) of use case Use Case Diagram





3 Technical details

3.1 Actors

		Actors
Actor Name	Actor Type	Actor Description
Weather Forecast Provider	Role	Provides generation, consumption and weather-related operational risks for a given location and a specific time horizon. The IANOS iVPP sets up a virtual network of
IANOS IVPP	System	The TAROS TVPP sets up a virtual network of decentralized renewable energy resources, both non- dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and green gas CHP plants. Moreover, the iVPP comprises Energy Storage Systems (ESS), integrated as a single unit, providing flexibility services and fostering island renewable energy self-consumption. The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making intelligence, complemented by predictive algorithms for smart integration of grid assets into active network management based on relevant energy profiles. For this purpose, the iVPP is composed of 6 different modules: aggregation & classification, forecasting engine, centralized dispatcher, distributed ledger-based energy transactions, virtual energy console and secured enterprise service bus.
Large-scale BESS	System	Large-scale battery technology system (10.5MWh in Terceira and 3 MWh in Ameland) which stores energy to

		be used later. It is connected to					
		distribution/transmission networks.					
		Other large-scale storage systems such as					
Other Large-scale	System	large-scale systems producing alternative fuels					
storage systems		(electrolyzers). In Ameland, a 2MW electrolyzer is					
		connected with the 3 MWh BESS using DC grid.					
		Power generation assets (geothermal power plant,					
Dispatchable assets	System	waste incineration plant, fossil fuels generators), which					
		power can be dispatched on demand at the request of					
		grid operators when needed.					
Non Dispatabable assats	Crust and	Power generation assets (Wind and Solar Farm) which					
Non-Dispatchable assets	System	power cannot be controlled by grid operators					
		Grid Operation Platforms for Congestion Solutions					
	System	interface (GOPACS) is a unique initiative in Europe and					
		has resulted from active collaboration between the					
GOPACS		Dutch TSO and the DSOs. This platform is consistent with					
	-,	key European directives to mitigate grid congestion,					
		while offering large and small market parties an easy					
		way to generate revenues with their available flexibility					
		and contribute to solving congestion situations.					

3.2 References

	References									
No.	References Reference Status Impact on Orig			Originator /	Link					
	Туре			use case	organisation					
	Regulation	Decreto-	Published	Approves the	Portuguese	https://data.dre.pt/eli/dec-				
		Lei n.º		legal regime	Government	lei/162/2019/10/25/p/dre				
		162/2019		applicable to						

		self-		
		consumption		
		of renewable		
		energy,		
		partially		
		transposing		
		Directive		
		2018/2001		
1				

4 Step by step analysis of use case

4.1 Overview of scenarios

			Scenario	conditions		
No.	Scenario	Scenario	Primary	Triggering	Pre-condition	Post-condition
	name	description	actor	event		
1	Supply-side	Performing the	iVPP	Periodically	Power system	Optimal day-
	optimal	optimal day-			requires	ahead dispatch
	dispatch	ahead energy			balancing	calculated.
		dispatch and			services	Power system
		provision of				stable
		intra-day services				
		to the grid in				
		order to				
		minimize energy				
		curtailment and				
		integrate the				
		maximum RES by				
		using the				
		available				

flexibility on the		
generation side		

4.2 Steps – Scenarios

	Scenario								
Scena	rio name:	No. 1 - Supply-sid	optimal dispatch						
Step No.	Event	Name of process/	Description of process/	Service	Information	Information	Information		
<i>NO.</i>		activity	activity		producer (actor)	receiver (actor)	Exchanged (IDs)		
1a	Submission of local weather	Send local meteorological	Forecast Provider sends local meteorological forecasts	CREATE	Weather Forecast	IANOS iVPP	1		
	forecasts	forecasts	meteorological forecasts		provider				
1b	Submission of battery characteristics	Send battery characteristics	BESS sends battery characteristics to the iVPP	GET	Large-scale BESS	IANOS iVPP	2,3		
1c	Submission of grid data from TSO	Send grid data from TSO	GOPACS exchange high voltage grid data related to expected congestions with iVPP	REPORT	GOPACS	IANOS iVPP	4		
1d	Submission of dispatchable	Send data	Dispatchable assets send hard technical constraints and local	GET	Dispatchable Assets	IANOS iVPP	5, 6,7,8		

			1			
assets data		generation energy prices to				
		the iVPP				
Submission of	Send data	Non-Dispatchable assets send	GET	Non-	IANOS iVPP	8,9
non-		hard technical constraints and		Dispatchable		
dispatchable		local generation energy prices		Assets		
assets data		to the iVPP				
Submission of	Send data	Other large-scale storage	GET	Other large-	IANOS iVPP	10
other large-scale		systems send real-time data		scale storage		
storage systems		to the iVPP		system		
data						
Data forecast	Forecasts	iVPP servers or the FEID-PLUS	EXECUTE	IANOS iVPP,	IANOS iVPP	11,12,13
		forecasts demand generation,		FEID-PLUS		
		price and flexibility				
Optimal Dispatch	Calculate the	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-
Calculation	optimal dispatch	dispatch which aims to be the				
		optimal day-ahead energy				
		dispatch and to provide intra-				
		day balancing services to the				
	Submission of non- dispatchable assets data Submission of other large-scale data data Data forecast	SubmissionSend datanondispatchable-assets data-SubmissionofSubmissionSend dataother large-scale-data-data-Data forecastForecastsOptimal DispatchCalculate	SubmissionSend dataNon-Dispatchable assets sendnon-hard technical constraints anddispatchablelocal generation energy pricesassets datato the iVPPSubmissionSend dataOther large-scale storageother large-scalesystems send real-time datastorage systemsto the iVPPdataImage: solution of the systems send real-time dataData forecastForecastsiVPP servers or the FEID-PLUSforecasts demand generation, price and flexibilityprice and flexibilityOptimal DispatchCalculatetheCalculationoptimal dispatchdispatch which aims to be the optimal day-ahead energy dispatch and to provide intra-	Submission of southableSend dataNon-Dispatchable assets sendGETnon- dispatchableSend dataNon-Dispatchable assets sendGETassets datalocal generation energy priceslocal generation energy pricesImage: Send dataSubmission of other large-scaleSend dataOther large-scale storageGETSubmission of other large-scaleSend dataOther large-scale storageGETSubmission of other large-scaleSend dataOther large-scale storageGETother large-scaleto the iVPPImage: Send dataImage: Send dataother large-scaleForecastsivPP servers or the FEID-PLUSEXECUTEdataForecastsforecasts demand generation, price and flexibilityEXECUTEOptimal DispatchCalculatethe iVPP computes the optimalEXECUTECalculationoptimal dispatchdispatch which aims to be the optimal day-ahead energyImage: Send day-ahead energydispatch and to provide intra-Image: Send day-ahead energyImage: Send day-ahead energyImage: Send day-ahead energy	Let with the iVPPCalculateNon- Dispatchable assets sendGETNon- DispatchableSubmission of dispatchableSend dataNon-Dispatchable assets sendGETNon- Dispatchabledispatchable assets dataIocal generation energy pricesAssetsSubmission of other large-scaleSend dataOther large-scale storageGETOther large- scale storageSubmission of other large-scaleSend dataOther large-scale storageGETOther large- scale storageSubmission of other large-scaleSend dataOther large-scale storageGETOther large- scale storageSubmission of other large-scaleSend dataOther large-scale storageSecale storagestorage systems datato the iVPPEXECUTEIANOS iVPP, ForecastsData forecast CalculateForecastsIVPP computes the optimalEXECUTEIANOS iVPP, FEID-PLUSOptimal Dispatch calculationCalculate theIVPP computes the optimalEXECUTEIANOS iVPP, IANOS iVPP, dispatch which aims to be the optimal day-ahead energy dispatch and to provide intra-IANOS iVPP	Line ivPPCalculateNon-Dispatchable assets sendGETNon- DispatchableIANOS iVPPSubmission of dispatchableSend dataNon-Dispatchable assets sendGETNon- DispatchableIANOS iVPPdispatchable assets dataIocal generation energy prices to the iVPPAssetsIANOS iVPPSubmission of other large-scale storage systemsSend dataOther large-scale storage systems send real-time dataGETOther large- scale storageIANOS iVPPdataIIocal generation energy prices systems send real-time datascale storage systemIANOS iVPPIANOS iVPPdataIocal generation energy prices systems send real-time dataIocal second systemIANOS iVPPIANOS iVPPdataIocal generation price and flexibilityIANOS iVPPIANOS iVPPIANOS iVPPOptimal DispatchCalculate optimal dispatchIVPP computes the optimal dispatch and to provide intra-IANOS iVPPIANOS iVPPCalculationoptimal dispatch dispatch and to provide intra-IANOS iVPPIANOS iVPPIANOS iVPP

		grid in order to minimize				
		energy curtailment by using				
		the available flexibility on the				
		generation side				
Submission of	Send set-points	iVPP sends the optimal	CREATE	IANOS iVPP	Dispatchable	14,15,16
optimal set-		setpoint to the generation			Assets, Large	
points		and large-scale storage assets			Scale BESS,	
					Other large-	
					scale storage	
					systems	
	optimal set-	optimal set-	Submission of Send set-points iVPP sends the optimal optimal set- setpoint the generation	Submission of Send set-points iVPP sends the optimal CREATE optimal set- setpoint to the generation the optimal creation	Submission of optimal set- Send set-points iVPP sends the optimal set- CREATE IANOS iVPP Submission of set-points setpoint to the generation CREATE IANOS iVPP	Submission of optimal set- pointsSend set-pointsiVPP sends the optimal setpoint to the generation and large-scale storage assetsCREATEIANOS iVPPDispatchable Assets, Large Scale BESS, Other large- scale storage

5 Information exchanged

	Information exchanged			
Information	Name of information	Description of information exchanged		
exchanged				
(ID)				
1	Local meteorological	Expected irradiances and wind speeds for specific locations		
	forecasts			
2	Battery real time-data	SoC, temperature, etc		
3	BESS hard technical	Min and max SoC; Min and max charging and discharging		
	constraints	power,		
4	HV grid data	High voltage grid real-time data related with congestions; Bids		
5	Production profiles	Production profiles from dispatchable units		
6	Dispatchable assets	Amount of energy (MWh) being dispatched in real-time		
	real-time data			
7	Dispatchable assets	Maximum and minimum charging and discharging power		
	hard technical			
	constraints			
8	Local Generation	Price of energy generated in a specific location (€/MWh)		
	Energy Prices			
9	Non-Dispatchable	Amount of energy (MWh) generated by non-dispatchable		
	assets data	generator assets at real-time		
10	Electrolyzer	Hydrogen production rate, pressure, temperature, etc		
	characteristics			
11	Forecasted Energy	Forecasted energy supply data from production-side assets		
	Generation Data	such as PV panels, wind turbines, Fuel Cells, micro-CHP		
12	Forecasted Energy	Forecasted energy prices from the production assets		
	Prices			

13	Forecasted Flexibility	Forecasted flexibility from the several storage assets
	Data	
14	Optimal Set-points for	Optimal power dispatch computed by the iVPP for generation
	dispatchable assets	dispatchable assets. It is the amount of power that should be
		generated and supplied to the grid from the dispatchable
		assets
15	Optimal Set-points for	Optimal power dispatch computed by the iVPP for large-scale
	BESS	BESS. It is the amount of power that should be provided to the
		grid for balancing services or stored for later use
16	Optimal Set-points for	Optimal power dispatch computed by the iVPP for other large-
	other large-scale	scale storage assets such as electrolyzers. It is the amount of
	storage systems	power that should be stored to produce alternative fuels
		(hydrogen) thereafter.

6 Requirements

Requirements	
Category name for requirements	Category description
Security Requirement	Requirements related to the safety issues
User Interface Requirement	Requirements related with the iVPP user
	interface
Functional Requirement	Requirements that capture the intended
	behaviour of the system
Communication Requirement	Requirements related
	with communication aspects
Requirement name	Requirement description
	Category name for requirements Security Requirement User Interface Requirement Functional Requirement Communication Requirement

-		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its assets
		for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its assets
		within the day
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-FUN4	Dispatch prioritization	iVPP can select the most appropriate
		asset(s) to deliver the requested service
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability
R-COM2	Integration of energy assets	Communication and integrations between
		all energy assets and IVPP platform

7 Common Terms and Definitions

	Common Terms and Definitions
Term	Definition

	· · · · · · · · · · · · · · · · · · ·
BESS	Battery Energy Storage Systems
СНР	Combined Heat and Power
DSO	Distribution System Operator
GOPACS	Grid Operation Platforms for Congestion Solutions
GPDR	General Data Protection Regulation
iVPP	Intelligent Virtual Power Plant
RES	Renewable Energy Sources
SGAM	Smart Grid Architecture Model
SoC	State of Charge
TSO	Transmission System Operator
UC	Use Case
UI	User Interface

6.1.3 Use case 3: Island-wide, any-scale storage utilization for fast response

ancillary services

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and grid	Island-wide, any-scale storage utilization for fast response
	support for extremely	ancillary services
	high RES penetration	

1.2 Version management

	Version Management				
Version No.	Date	Name of Author(s)	Changes		
1	04.02.2021	EDP NEW	First draft		
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on Narrative of Use Case, Diagrams, Information Exchanged. Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture		
3	09.02.2021	Carlos Patrão (CLEANWATTS)	Comments and inputs on Related Use Cases, Use Case conditions, References		
4	19.02.2021	Philippe Pépin (Teraloop)	Add flywheel requirements, and data exchanged		
5	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios		
6	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements		
7	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback		
8	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version		
9	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs		

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	This Use Case demonstrates the provision of fast ancillary services to the grid, when grid
	reliability and safety is compromised, through storage systems of any-scale.
Scope	These storage systems help balancing the power system by either storing energy for
	later use when there are high levels of energy generation or by providing energy to the
	grid in periods of high energy demand.
	This Use Case orients at providing fast ancillary services to the grid when required to
	achieve the following objectives:
Objective(s)	1. Improve power quality and continuity of power supply
	2. Reduce energy curtailment
	3. Avoid grid challenges such as congestion and voltage variations

1.4 Narrative of use case

Narrative of Use Case

Short description

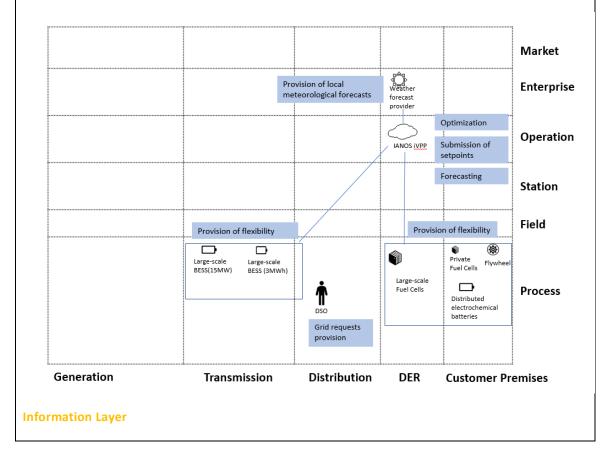
This use case focus on providing fast balancing services to the grid by capacitating the power system with storage technologies, including small and large-scale BESS, but also very fast responsive assets such as flywheels and other means of very flexible production units as those of Fuel Cells, fully dispatchable. Storage technologies allow to store energy in periods of renewable energy surplus that will be used afterwards to assist the grid by contributing to frequency and voltage control.

The intelligent Virtual Power Plant (iVPP) is responsible for coordinating the energy fluxes between the grid and the storage assets.

Complete description

The present use case describes how the iVPP manages the provision of fast ancillary services to the grid when required through various storage assets of any-scale. These storage technologies have capabilities of frequency and voltage control allowing to improve the quality and stability of the power system. The storage technologies that will be used are centralized and distributed electrochemical batteries, flywheels and fuel cells.

The iVPP aggregates the various storage systems to provide fast balancing services to the grid such as FFR (Firm Frequency Response) and voltage deviations. On the other hand, the iVPP needs to



continually ensure that there is a pre-defined capacity reserved for these services, which can vary according to the status and situation forecast of the power system in a short window of time such as one day. Accordingly, the iVPP will be provided with data from the grid in order to be able to calculate the set-point for the storage assets which will supply energy to the grid when required. This set-point will work as a suggestion in order to not interfere with assets daily operations.

Apart from the global optimization performed by the VPP, a local optimization will also be executed through locally implemented actuators placed in the storage assets which will trigger the actual service when required.

SGAM LAYERS:

Function Layer

			Market
		Weather forecast provider Real-time data	Enterprise
	Local meteorological foreca		, Grid rrent
	Optimal set-point Real-time data	Optimal Optimal set-point	Station
		set-point	Field
	arge-scale ESS(15MWh) BESS (3MWh)		ells ^{Flywheel} Process buted ochemical
Generation	Transmission Dis	tribution DER Cust	omer Premises
echnological	Information /		
	Information / Communication Protocols	Terceira	Ameland
olutions	_	Terceira	Ameland
olutions rivate Fuel Cells	Communication Protocols	Terceira	
Fechnological Solutions Private Fuel Cells arge-scale Fuel Cell BESS (3MWh)	Communication Protocols	Terceira	X
olutions rivate Fuel Cells arge-scale Fuel Cell ESS (3MWh) lywheel	Communication Protocols	x	x x x
olutions rivate Fuel Cells arge-scale Fuel Cell ESS (3MWh) lywheel istributed	Communication Protocols - - - Data collection will be achieved through a TCP/IP as a hardware layer, provided by an outsourced vendor (e.g. Siemens), enhanced with multiple possible software protocols. However, the exact definition will be done in the course of	x	x x x
rivate Fuel Cells arge-scale Fuel Cell ESS (3MWh) ywheel	Communication Protocols - - - Data collection will be achieved through a TCP/IP as a hardware layer, provided by an outsourced vendor (e.g. Siemens), enhanced with multiple possible software protocols. However, the exact definition will be done in the course of		x x x

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use
			case objectives
1.6	Reduced energy curtailment of	KPI calculates the reduction of energy	1,2,3
	RES and DER	curtailment due to technical/operational	
		problems	
1.7	Unbalance of the 3-phase	Examines the quality of the power supplied	1,3
		by measuring the supply voltage gap	
		between the three phases which should be	
		120 deg. Compares the results with the	
		scenario before IANOS interventions.	
1.8	Peak Load Reduction	Calculates the peak load reduction before the	3
		IANOS implementation (baseline) and after	
		its interventions (DSM programs and storage	
		system management)	
1.10	Storage capacity of the island's	Compares the storage capacity with the total	1,3
	energy grid per total island	energy consumption of the island	
	energy consumption		
4.5	Increased Reliability	Measures the relative improvement in the	1,3
		number of interruptions	
7.3	Ease of use for end users of the	Provides an indication of the complexity of	1,2,3
	solution	the implemented solution within the IANOS	
		project for the end-users	

1.6 Use case conditions

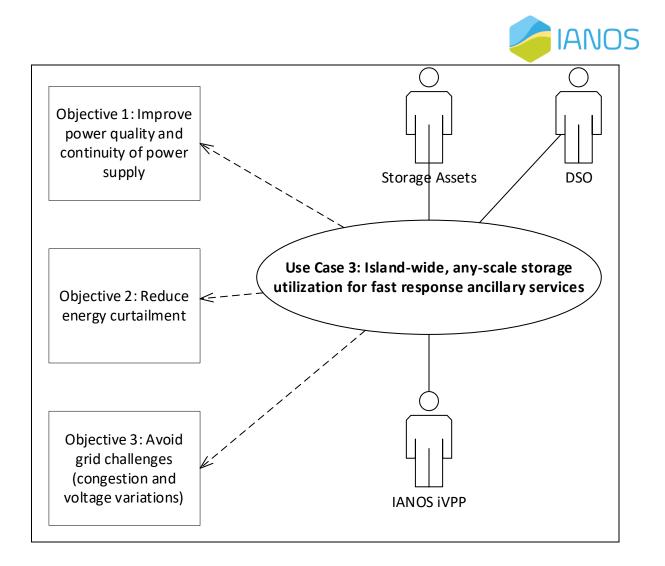
Use case conditions
Assumptions
 Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP Bidirectional smart meters capable of monitor network voltage parameters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time
Prerequisites

- Establish connection between the iVPP and storage assets (global optimization)
- Establish connection between grid and storage assets (local optimization)
- A (physical) hosting environment on which the iVPP can be established.

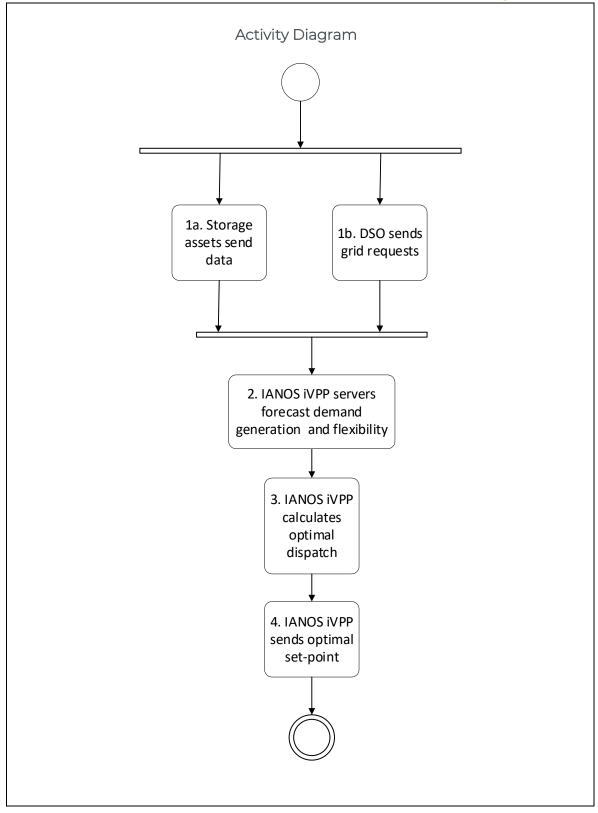
1.7 Further Information to the use case for classification / mapping

Classification Information
Relation to other use cases
UC1: Community demand-side driven self-consumption maximization
UC2: Community supply-side optimal dispatch and intra-day services provision
UC4: Demand Side Management and Smart Grid methods to support power quality and congestion
management services
Level of depth
Specialized use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case
Technical use case
Further keywords for classification
Storage, balancing services, flywheels, batteries, fast ancillary services, CH4 fuel cells, distributed storage

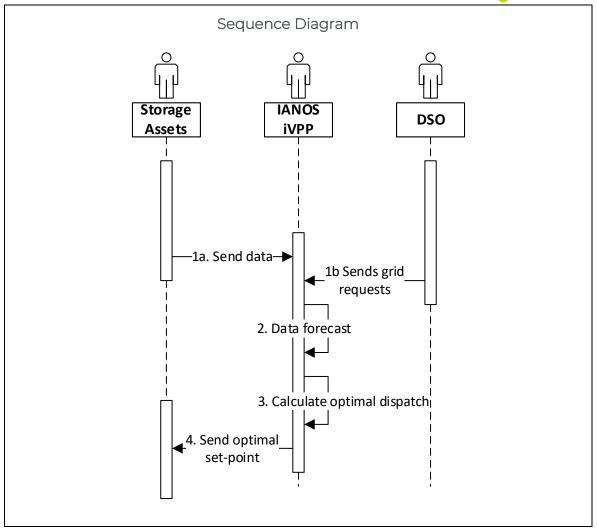
1.8 General Remarks


General Remarks				
-				

2 Diagrams of use case


Diagram(s) of use case

Use Case Diagram



3 Technical details

3.1 Actors

Actors				
Actor Name	Actor Type	Actor Description		
		Assets of any-scale that can store energy for later use such		
		as flywheels, distributed and centralized electrochemical		
Storage assets	System	batteries. Other means of very flexible production units		
		such as Fuel Cells are also included. These assets are		
		aggregated and controlled by the IANOS iVPP.		
		The IANOS iVPP sets up a virtual network of decentralized		
		renewable energy resources, both non-dispatchable such		
		as wind, solar, tidal resources and dispatchable ones such		
		as geothermal and green gas CHP plants. Moreover, the		
		iVPP comprises Energy Storage Systems (ESS), integrated		
		as a single unit, providing flexibility services and fostering		
		island renewable energy self-consumption.		
		The optimal, autonomous, real-time iVPP operation will		
IANOS iVPP	System	be driven by multi-level decision making intelligence,		
		complemented by predictive algorithms for smart		
		integration of grid assets into active network		
		management based on relevant energy profiles. For this		
		purpose, the iVPP is composed of 6 different modules:		
		aggregation & classification, forecasting engine,		
		centralized dispatcher, distributed ledger-based energy		
		transactions, virtual energy console and secured		
		enterprise service bus.		
DSO	Role	Distribution System Operator		

3.2 References

	References						
No	References	Referenc	Status	Impact on use case	Originator /	Link	
	Туре	е			organisatio		
					n		
	European	EN 50160	Revised, 1	Definition of the	CENELEC	https://www.cene	
	Standard		July 2010	voltage		lec.eu/dyn/www/	
				characteristics of		<u>f?p=104:110:9595</u>	
				electricity supplied by		<u>38371060101::::F</u>	
				public electricity		<u>SP_ORG_ID,FSP_L</u>	
				networks		ANG ID, FSP PROJ	
						ECT:1258595,25,5	
						<u>1993</u>	
	Regulation	Decreto-	Published	Approves the legal	Portuguese	https://data.dre.p	
		Lei n.º		regime applicable to	Government	t/eli/dec-	
		162/2019		self-consumption of		lei/162/2019/10/	
				renewable energy,		25/p/dre	
				partially transposing			
				Directive 2018/2001			

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions						
No.	Scenario name	Scenario	Primary	Triggeri	Pre-condition	Post-condition	
		description	actor	ng			
				event			
1	Provision of	iVPP computes the	IANOS	Periodic	Power system	Distributed storage	
	fast ancillary	optimal set-point	iVPP	ally	requires	systems allow the	

services	for distributed	balancing	provision of fast
through	storage	services.	ancillary services to
storage	technologies that	No power	the grid
systems of	provide fast	fluxes from	
any-scale	ancillary services	decentralized	
	to the grid	storage	
		systems	

4.2 Steps – Scenarios

	Scenario						
Scena	Scenario name : No. 1 - Provision of fast ancillary services through storage systems of any-scale						
Step	Event	Name of	Description of process/	Service	Information	Information	Information
No.		process/	activity		producer	receiver	Exchanged (IDs)
		activity			(actor)	(actor)	
1a	Submission of	Sends data	Storage assets send data to		Storage	IANOS iVPP	1,2,3,4,5,6
	storage assets		the iVPP	GET	assets		
	data						
1b	Submission of	Sends grid	DSO sends grid requests to the	GET	DSO	IANOS iVPP	7
	grid requests	requests	iVPP				
2	Data	Forecasts	iVPP servers forecast demand	EXECUTE	IANOS iVPP	IANOS iVPP	8,9
	forecasting		generation and flexibility				
3	Computation	Computes	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-
	of optimal	optimal	dispatch for the storage assets				
	dispatch	dispatch	in order to assure the				
			provision of fast balancing				
			services to the grid. Moreover,				

		the optimization performed				
		by the iVPP also considers that				
		must exist a pre-defined				
		capacity reserved for the				
		balancing services				
Submission of	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	Storage	10
optimal set-	points	setpoint to the storage assets			Assets	
points						
	optimal set-	optimal set- points	Submission ofSendsset-iVPP also considers thatoptimal set-pointsiVPP also considers thatmust exist a pre-definedcapacity reserved for thebalancing servicesbalancing servicessetpoint to the storage assetsiVPP	Submission of Sends set- iVPP also considers that invest exist a pre-defined Submission of Sends set- iVPP sends the optimal Submission of Sends set- iVPP sends the optimal Set point to the storage assets Set point to the storage assets ivpr set point to the storage assets ivpr set point to the storage assets	Submission of sends Sends setpoint to the storage assets CREATE IANOS iVPP Submission of set- points setpoint to the storage assets CREATE IANOS iVPP	by the iVPP also considers that by the iVPP also considers that must exist a pre-defined must exist a pre-defined capacity reserved for the capacity reserved for the balancing services balancing services Submission of Sends set- iVPP sends the optimal CREATE points setpoint to the storage assets

5 Information exchanged

	Informa	tion exchanged
Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Flywheel hard technical	Minimum and maximum power rating (kW), energy
	constraints	capacity (kWh or kJ), efficiency (%), self-discharge time
		(h), operating temperature (°C), dimensions (m),
		weight (kg), noise (dBA), connectivity, maximum
		rotational speed (rpm)
2	Fuel Cells hard technical	Minimum and maximum natural gas and hydrogen flow
	constraints	rates; temperature range, maximum total power
		output (kW)
3	BESS hard technical	Minimum and maximum SoC, and charging and
	constraints	discharging power; temperature range
4	Flywheel real-time data	Real-time Power (+/- kW) and Storage (kWh); Grid
		Voltage (Vac); Grid Current (+/- Iac); Grid Power (+/-
		kW); Flywheel System Warnings / Errors
5	Fuel Cells real-time data	Available NG flow rates; temperature at FC Anode
6	BESS real-time data	SoC, temperature
7	Grid Requests	Grid requests
8	Forecasted Energy Generation	Forecasted energy supply data from production-side
	Data	assets such Fuel Cells
9	Forecasted Flexibility Data	Forecasted flexibility from the several storage assets
10	Optimal Setpoints	Optimal power dispatch computed by the iVPP for
		storage assets. It is the amount of power from the grid
		that will be stored in the storage assets or the amount

	· · · · · · · · · · · · · · · · · · ·
	of power sent to the grid from the storage assets to
	provide balancing services

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety issues
R-BUS	Business Requirement	Business requirements to
		achieve operational state of iVPP per UC
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
R-CONF.	Configuration Requirement	Requirements applicable to the electrical,
		physical and digital configuration
		applicable to enable the asset's operation.
R-D	Data requirements and operation settings	Requirements related with data exchange
		and operation settings
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights

R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-SEC4	Network security measures for data	Establishes the ways in which
	exchange with flywheel	communication between the iVPP and the
		flywheel control system can be done safely,
		mitigating risks of external interference.
R-SEC5	Flywheel site safety	Establishes the safety guidelines applicable
		to the physical location where the flywheel
		is installed. It further establishes the safety
		guidelines applicable to all personnel in the
		local vicinity to ensure safe operation of
		the flywheel.
R-BUS1	Assets optimal location	Specification of the
		candidate assets location in pilot sites
R-BUS2	Physical installation and grid integration	The storage asset provider or operator or
		integrator will physically integrate the
		asset with the local energy system
R-BUS3	Installation of monitoring infrastructure	The necessary monitoring infrastructure
		will be installed
R-BUS4	Prequalification of asset with the	Assets should follow grid code
	transmission code requirements	requirements according to the services to
		be provided
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs

R-UI2	Reporting	iV/PR can produce reports on system
K-UIZ	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-FUN1	Receive Operator's requests	iVPP having the ability to receive requests
		for service activation (e.g. FRR) from
		System Operator (TSO or DSO)
R-FUN2	Capacity reserves allocation for fast ancillary	iVPP can allocate storage Assets into
	services (AS)	different reserves/AS
R-FUN3	Dispatch prioritization	iVPP can select the most appropriate
		asset(s) to deliver the requested service
R-FUN4	Activation of iVPP distributed storage Asset	BESS/FC/Flywheel assets can be
	to provide primary regulation	automatically triggered to provide
		Frequency Containment Reserves (FCR)
		automatically within seconds
R-FUN5	Activation of iVPP distributed storage Asset	iVPP having the ability to activate
	to provide secondary regulation	BESS/FC/Flywheel assets to provide
		Frequency Restoration Reserves (FRR)
		within 5-15 minutes
R-FUN6	Activation of flywheel to provide	Flywheel can be automatically triggered to
	voltage support	absorb/provide reactive power for voltage
		control within seconds
R-FUN7	Activation of electrochemical storage	Assets' inverters can be automatically
	inverters to provide voltage support	triggered to absorb/provide reactive power
		for voltage control within seconds
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability
R-COM2	iVPP minimum communication	Bandwidth and latency are ensured to
	requirements	follow min. requirements according to the

		level of service to be delivered (e.g. mFRR, aFRR)
R-CONF1	Flywheel electrical connection	Defines the electrical connection parameters required to integrate the flywheel to the End User and Grid's electricity network.
R-CONF2	Flywheel control communication	Defines how the iVPP communicates with the flywheel, either activating charge/discharge events, or idling mode.
R-D.1	Grid frequency and voltage real time data	Defines how the iVPP collects the electric grid's real time data.

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
BESS	Battery Energy Storage System	
FFR	Firm Frequency Response	
GPDR	General Data Protection Regulation	
IoT	Internet of Things	
IVPP	Intelligent Virtual Power Plant	
PV	Photovoltaic	
SGAM	Smart Grid Architecture Model	
SoC	State of Charge	
UC	Use Case	
UI	User Interface	
WT	Wind Turbine	

6.1.4 Use case 4: Demand Side Management and Smart Grid methods to

support Power quality and congestion management services

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and	DSM and smart grid methods to support power quality
	grid support for	optimization and congestion management services
	extremely high RES	
	penetration	

1.2 Version management

Version Management				
Version No.	Date	Name of Author(s)	Changes	
1	04.02.2021	EDP NEW	First draft	
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams, Actors, Scenarios; Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture	
3	10.02.2021	Carlos Patrão (CLEANWATTS)	Comments on Use Case conditions, References	
4	23.02.2021	Rui Lopes (UNINOVA)	Comments on the Narrative of the Use Case, Scenarios; Add assumptions and pre-requisites for the smart energy router Add information exchanged from the smart energy router	
5	23.03.2021	Andrea Soto (EFACEC Energia)	Add assumptions and pre-requisites for the hybrid transformer. Add information exchanged from the hybrid transformer	
6	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization.	

			Improve diagrams, description, information exchanged and scenarios
7	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
8	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
9	11.05.2021	Mónica Fernandes (EDP NEW	Final Version
10	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes on the description and the actors of the Use Case and updates on the KPIs

1.3 Scope and objectives of use case

Scope and Objectives of Use Case		
	The scope of this Use Case is the provision of slow ancillary services to the grid using	
	available energy flexibility from demand resources of the island. Additionally, this Use	
Scope	Case also demonstrates smart grid methods with interesting functionalities for the	
	stability of the power system such as allowing an optimised control of the user's local	
	production and storage and also the ability to regulate active and reactive power.	
	This Use Case is crucial when the optimal dispatch is not enough to assure the stability	
	of the power system. The main objectives are the following:	
Objective(s)	1. Ensure stability of the power system	
0.0,00000(0)	2. Minimize energy curtailment	
	3. Support congestion management services by utilizing demand flexibility as a mean to	
	provide slow ancillary services to the grid.	

1.4 Narrative of use case

Narrative of Use Case
Short description
This use case reports the methods to provide slow ancillary services to the power system through demand-side management and smart grid methods.

The intelligent Virtual Power Plant (iVPP) performs a global optimization which will consider the 4 following assets: storage assets, fuel cells, hybrid transformer and smart energy router. For each one of these assets, the iVPP computes an optimal setpoint in order to ensure the stability and quality of the power system.

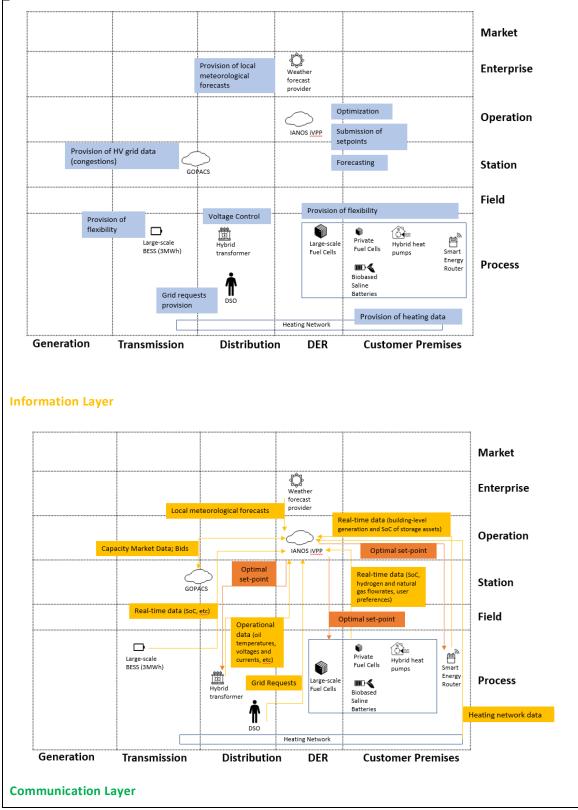
Complete description

The present use case describes the methods to support power quality optimization and congestion management services through demand-side management. For this purpose, the iVPP performs an optimization that considers 4 different types of assets: i) storage assets, not only electrochemical but also Power-to-X, (ii) other means of very flexible electric production units as those of Fuel Cells, fully dispatchable iii) hybrid transformer and iv) smart energy router. Accordingly, the iVPP computes the optimal dispatch for each one of these assets and delivers the respective set-point in order to ensure the stability and quality of the power system.

The electrochemical storage assets considered are battery storage systems and biobased batterieswhile the Power-to-X ones are hybrid heat pumps. On top of those, fuel cells (both distributed of small-scale, but also centralized of large-scale) will offer slow ancillary services to the electricity grid.

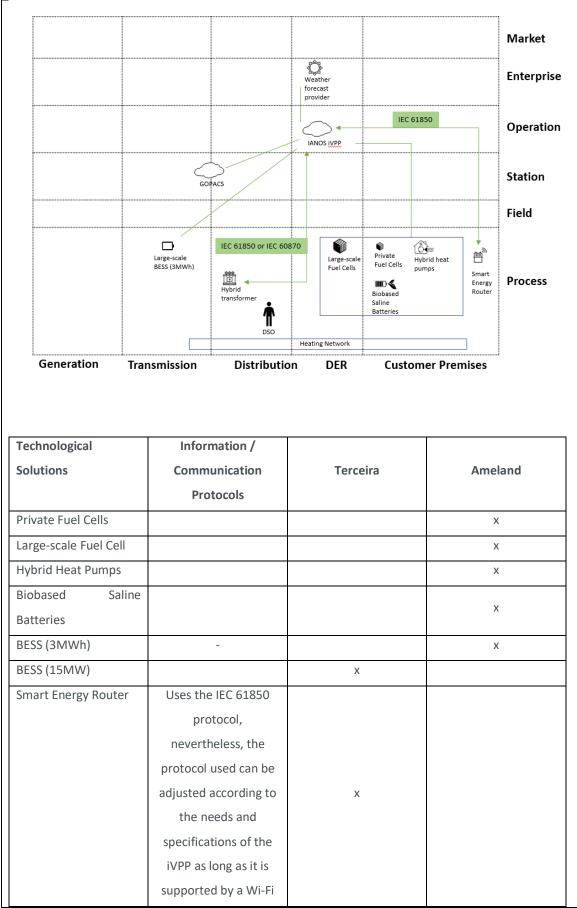
The optimization is performed by the iVPP through its DSM modules to optimize the energy dispatch of each client based on a certain criteria (e.g. minimization of RES curtailment or reduction of system's operation cost) which must be defined by the system operator since the beginning of the implementation of the Use Case. DSM modules use: i) energy consumption forecasts based on historical load consumption and real time measurements, ii) energy production forecasts based on local meteorological forecasts provided by an external forecast provider and iii) historical generation data from the available RES assets.

The hybrid transformer allows to fix the voltage between phases and thereby complies with the voltage setpoint computed by the iVPP.


The smart energy router controls power flows between the grid and its storage assets and enables the possibility of providing balancing services to the grid taking into consideration local restrictions from storage assets. The iVPP calculates the optimal dispatch for the smart energy router in order to manage the energy services provided to the grid and the consumer.

SGAM LAYERS:

Function Layer



	connection at the		
	installation site.		
Hybrid Transformer	Based in substation		
	automation protocols		
		х	
	(IEC 61850 or IEC		
	60870).		

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned use
			case objectives
1.1	System Average	Calculates the annual average number of	1
	Interruption Frequency	power interruptions encountered by each	
	Index	end-user	
1.2	System Average	Calculates the average time duration of the	1
	Interruption Duration	power interruptions encountered by the end-	
	Index	users each year	
1.6	Reduced energy	Calculates the reduction of energy curtailment	2
	curtailment of RES and	due to technical/operational problems	
	DER		
1.7	Unbalance of the 3-	Examines the quality of the power supplied by	1,3
	phase	measuring the supply voltage gap between the	
		three phases which should be 120 deg	
1.8	Peak Load Reduction	Calculates the peak load reduction before the	3
		IANOS implementation (baseline) and after its	
		interventions (DSM programs and storage	
		system management)	
4.1	Increased system	Indication of the ability of the system to	3
	flexibility for energy	respond to supply and demand in real time, as	
	players	a measure of the demand side participation in	
		energy markets and in energy efficiency	

		intervention since the beginning until the end	_
		of the project	
4.5	Increased Reliability	Measures the relative improvement in the	3
		number of interruptions	
5.1	People Reached	Percentage of people in the target group that	1,2,3
		have been reached and/or are activated by the	
		project	
7.1	Social Compatibility	Refers to the extent to which the project's	1,2,3
		solution fits with people's 'frame of mind' and	
		does not negatively challenge people's values or	
		the ways they are used to do things	
7.2	Technical compatibility	Examines the extent to which the smart grid	1,2,3
		solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end	Provides an indication of the complexity of the	1,2,3
	users of the solution	implemented solution within the IANOS project	
		for the end-users	

1.6 Use case conditions

Use case conditions

Assum	ptions
71550111	pulons

- Access to DSO's energy data or retailer's smart meters capable of monitor network voltage parameters according to the EN 50160 standard
- Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP
- End-user's permission to shift demand periods
- In Ameland the Grid Operation Platforms for Congestion Solutions interface (GOPACS,) will be
 integrated with the iVPP decision making logic. GOPACS is a unique initiative in Europe and has
 resulted from active collaboration between the Dutch TSO and the DSOs. This platform is
 consistent with key European directives to mitigate grid congestion, while offering large and
 small market parties an easy way to generate revenues with their available flexibility and
 contribute to solving congestion situations.
- PV systems' power, voltage and current respect Smart Energy Router specifications.
- Appliances and other loads to be managed by the Smart Energy Router have communication and interaction capabilities (e.g., REST API) so monitoring and control activities can be conducted.

- iVPP set-points to Smart Energy Router take into consideration local restrictions such as storage devices' state of charge or maximum and minimum charging/discharging power.
- Close surveillance of the hybrid transformer during operation on the grid.

Prerequisites

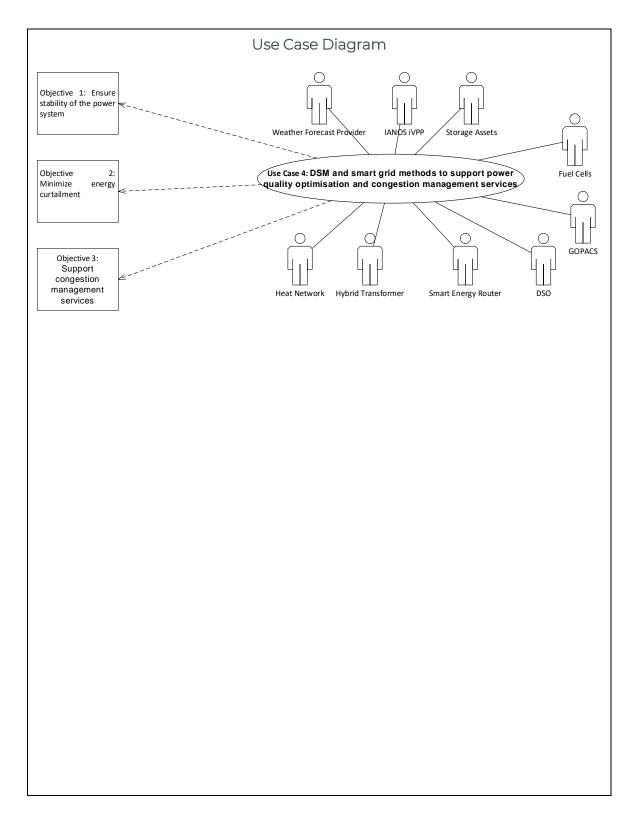
- The criteria for optimization must be defined by the system operator for each island
- Connection from the VPP to storage assets and power production units (hybrid heat pumps, fuel cells, BESS and biobased batteries) in Ameland
- Hybrid Transformer is connected to the iVPP
- Smart Energy Router is connected to the iVPP
- Acceptance and/or certification by the corresponding authority for the installation on the electric distribution grid of the hybrid transformer.
- Hybrid transformer monitoring system communicates with EFACEC asset management platform with cellular communication connection.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

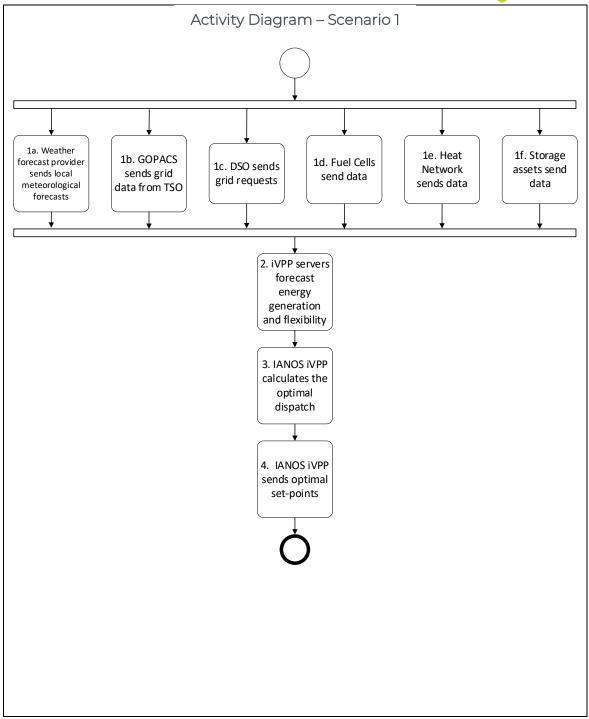
Classification Information
Relation to other use cases
UC1: Community demand-side driven self-consumption maximization
UC2: Community supply-side optimal dispatch and intra-day services provision
UC3: Island-wide, any-scale storage utilization for fast response ancillary services
distributed storage technologies to help balancing the grid; flywheels, batteries
UC5: Decarbonisation of transport and the role of electric mobility in stabilizing the energy system
UC9: Active Citizen and LEC Engagement into Decarbonization Transition
Level of depth
Specialized use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case
Technical use case
Further keywords for classification

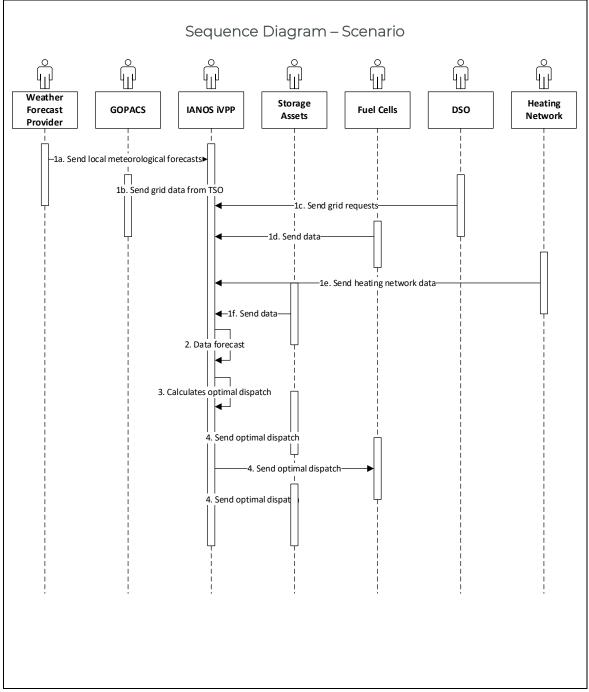
Demand side management, smart grids, smart energy router, hybrid transformer, ancillary services, demand flexibility

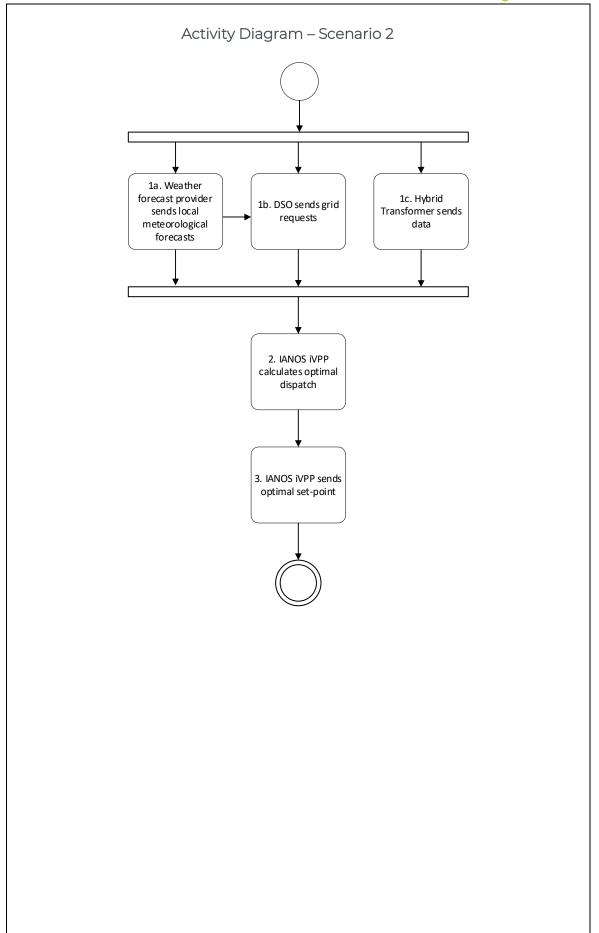
1.8 General Remarks

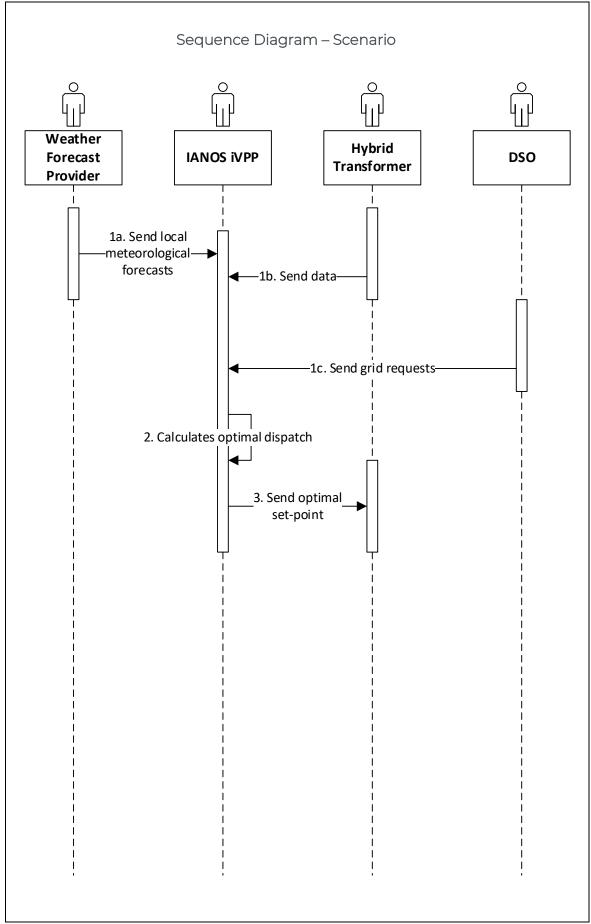

General Remarks

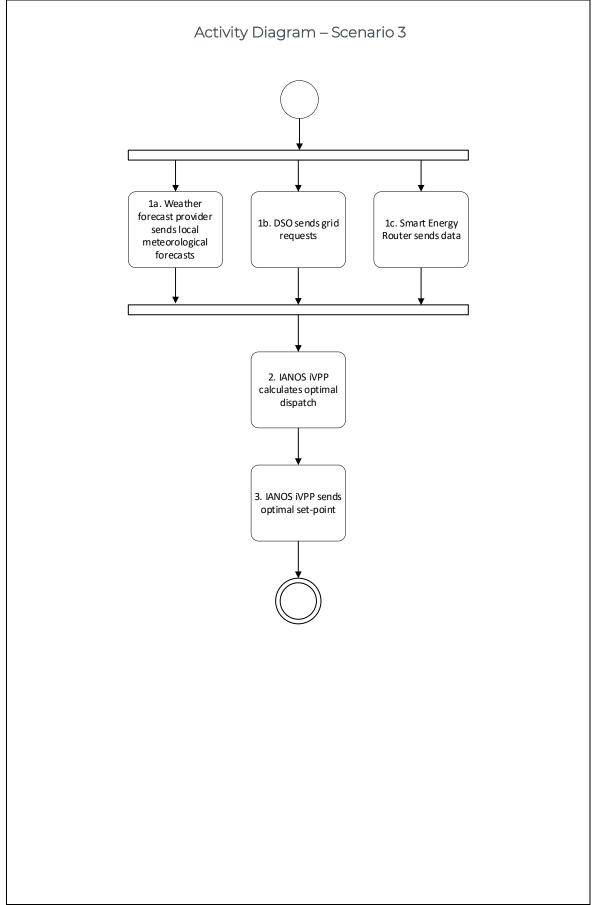
2 Diagrams of use case

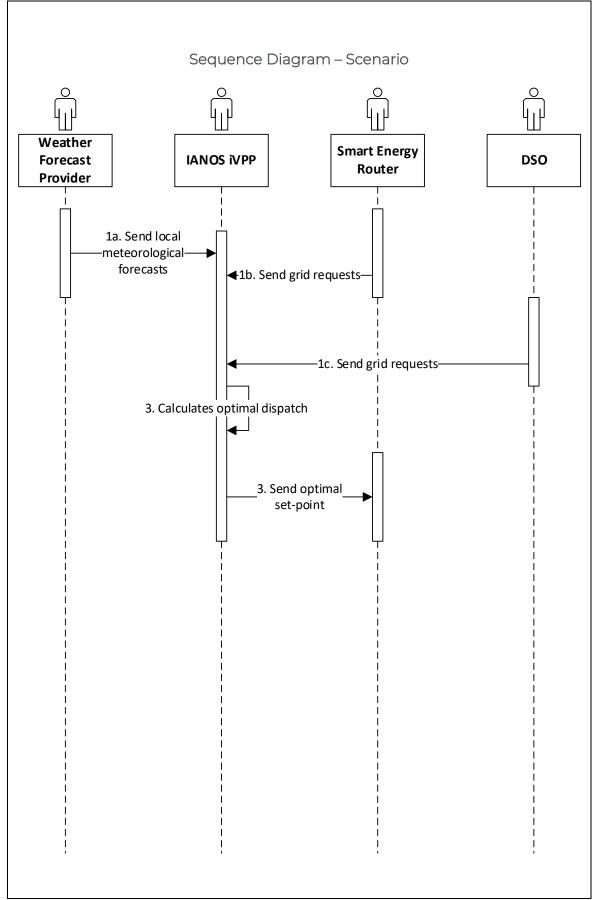

Diagram(s) of use case











3 Technical details

3.1 Actors

		Actors
Actor Name	Actor Type	Actor Description
Weather Forecast		Provides generation, consumption and weather-related
Provider	Role	operational risks, for a given location and a specific time
Tiovider		horizon.
		The IANOS iVPP sets up a virtual network of
		decentralized renewable energy resources, both non-
		dispatchable such as wind, solar, tidal resources and
		dispatchable ones such as geothermal and green gas
		CHP plants. Moreover, the iVPP comprises Energy
		Storage Systems (ESS), integrated as a single unit,
		providing flexibility services and fostering island
		renewable energy self-consumption.
IANOS iVPP	System	The optimal, autonomous, real-time iVPP operation will
	o you chi	be driven by multi-level decision making intelligence,
		complemented by predictive algorithms for smart
		integration of grid assets into active network
		management based on relevant energy profiles. For this
		purpose, the iVPP is composed of 6 different modules:
		aggregation & classification, forecasting engine,
		centralized dispatcher, distributed ledger-based energy
		transactions, virtual energy console and secured
		enterprise service bus.

Storage Assets	System	Assets with the ability of storing energy to be used later				
		such as hybrid heat pumps, BESS and biobased batteries.				
		Assets with the ability of offering electricity, when				
Fuel Cells	System	necessary, while also supporting the synergy between				
		energy grids (NG and electricity in the specific case).				
		Device with the capability of regulating voltage during				
		operation. This hybrid transformer employs				
		independent control of each phase and features such				
		as reactive power or unbalance compensation, which				
		cannot be provided by conventional transformers.				
Hybrid Transformer	Device	It is able to implement a dynamic voltage regulation				
		actuation, in each phase, with unlimited number of				
		operations and with the addition of other features				
		such as the contribution to reactive power				
		compensation, unbalance correction and				
		improvement in the voltage profile quality.				
		Power electronic device that provides grid-to-grid				
		communication, load management and integration of				
Smart Energy Router	Device	multiple generation & storage units, heterogeneous				
		appliances and existing distribution grid. Moreover, it				
		also allows to provide ancillary services to the grid.				
DSO	Role	Distribution System Operator				
		System which distributes centralized heat to consumers				
Heat Network	System	through a system of insulated pipes carrying hot water.				
		Grid Operation Platforms for Congestion Solutions				
GOPACS	System	interface (GOPACS) is an unique initiative in Europe and				
	System	has resulted from active collaboration between the				
		Dutch TSO and the DSOs. This platform is consistent with				
	1	1				

	key European directives to mitigate grid congestion,
	while offering large and small market parties an easy
	way to generate revenues with their available flexibility
	and contribute to solving congestion situations.

3.2 References

				References		
No.	Reference	Reference	Status	Impact on use	Originator /	Link
	s Type			case	organisatio	
					n	
1	European	EN 50160	Revised, 1	Definition of the	CENELEC	https://www.cenel
	Standard		July 2010	voltage		<u>ec.eu/dyn/www/f</u>
				characteristics of		<u>?p=104:110:95953</u>
				electricity		8371060101::::FSP
				supplied by public		ORG ID,FSP LAN
				electricity		G ID, FSP PROJECT
				networks		<u>:1258595,25,5199</u>
						<u>3</u>
2	Internatio	IEC 60076-		Power	Internationa	https://webstore.i
	nal	1:2011		transformers -	I	ec.ch/publication/
	Standard			Part 1: General	Electrotechn	<u>588</u>
					ical	
					Commission	
					(IEC)	
3	Commissi	No		Commission		https://ec.europa.
	on	548/2014		regulation (EU)		eu/growth/single-
	regulation	of 21 May		No 548/2014 of		<u>market/european-</u>
	(EU)	2014		21 May 2014		<u>standards/harmon</u>

				implementing		<u>ised-</u>
				Directive		<u>standards/ecodesi</u>
				2009/125/EC of		<u>gn/transformers</u>
				the European		<u>n</u>
				Parliament and of		
				the Council with		
				regard to small,		
				medium and		
				large power		
				transformers.		
4	Internatio	IEC 60076-	Edition	Power	Internationa	https://webstore.i
	nal	24	1.0,	transformers –	I	ec.ch/publication/
	Standard		2020-07	Part 24:	Electrotechn	<u>30367</u>
				Specification of	ical	
				voltage	Commission	
				regulating	(IEC)	
				distribution		
				transformers		
				(VRDT)		
L	I		1	1	1	

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions									
No	Scenario name	Scenario description	Primary	Triggeri	Pre-condition	Post-				
•			actor	ng		condition				
				event						

1	Demand-side	The iVPP computes	IANOS iVPP	Periodic	Power system	Power system
	management	the optimal set-		ally	requires	is stable and
	capable of	point which allows			balancing	controlled
	providing slow	to provide slow			services.	
	ancillary	balancing services to			No power	
	services	the grid through			fluxes from or	
		storage assets by			to storage	
		using demand-side			assets	
		flexibility				
2	Voltage control	The hybrid	Hybrid	Periodic	Power system	Voltage is
	to support	transformer	Transforme	ally	requires	regulated
	power quality	complies with the	r		voltage	
	optimisation	voltage setpoint			control	
	and congestion	computed by the				
	management	iVPP in order to				
	services	ensure a continuous				
		power				
3	Localized	iVPP calculates the	Smart	Periodic	Power system	Smart Energy
	energy routing	optimal dispatch to	Energy	ally	requires	Router
	management	the smart energy	Router		balancing	contributes
	capable of	router which			services. No	to stabilize
	providing	manages the energy			power fluxes	and control
	ancillary	transfer from and to			from or to	the power
	services	different sources			storage	system
		(RES generators and			assets	
		distribution grid),				
		loads and storage				
		systems in order to				

provide services to		
the grid and the		
consumer		

4.2 Steps – Scenarios

	Scenario										
Scenario name : No. 1 - Demand-side management capable of providing slow ancillary services											
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Information producer	Information receiver	Informatio n	Requirement, R-IDs			
					(actor)	(actor)	Exchanged (IDs)				
1a	Submission of local weather	Sends local meteorological	Weather forecast provider sends local meteorological	CREATE	Weather forecast	IANOS iVPP	1				
	forecasts	forecasts	forecasts		provider						
1b	Submission of grid data from TSO	Send grid data from TSO	GOPACS exchange high voltage grid data related to congestions with iVPP	REPORT	GOPACS	IANOS iVPP	2				
1c	Submission of grid requests	Sends data	DSO sends grid requests to the	GET	DSO	IANOS iVPP	3				
1d	Submission of fuel cell's data	Sends data	Fuel Cells send its data to the	GET	Fuel Cells	IANOS iVPP	4,5				
1e	Submission of	Sends data	Heat Network sends its data to	GET	Heat	IANOS iVPP	6				

	heat network		the iVPP		Network			
	data							
1f	Submission of	Sends data	Storage assets send data to		Storage	IANOS iVPP	7,8	
	storage		the iVPP	GET	assets			
	asset's data							
2	Data	Forecasts energy	iVPP servers forecast energy	EXECUTE	IANOS iVPP	IANOS iVPP	9,10	
	Forecasting	generation and	generation from production-					
		flexibility	side assets such as fuel cells					
			and flexibility forecasts from					
			storage assets					
3	Calculation of	Calculates optimal	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-	
	optimal	dispatch	dispatch for the storage assets					
	dispatch		considering the provision of					
			slow balancing services to the					
			grid					
4	Submission of	Sends set-points	iVPP sends the optimal	CREATE	IANOS iVPP	Storage	11,12	
	optimal set-		setpoint to storage assets and			Assets, Fuel		
	points		fuel cells			Cells		

	isation and co	ngestion
Informatio	Informatio	Informa
n producer	n receiver	tion
(actor)	(actor)	Exchang
		ed (IDs)
Forecast	IANOS iVPP	1
provider		
DSO	IANOS iVPP	3
Hybrid	IANOS iVPP	13
Transform		
er		
IANOS iVPP	IANOS iVPP	-
	(actor) Forecast provider DSO Hybrid Transform er	n producern receiver(actor)(actor)ForecastIANOS iVPPproviderIANOS iVPPDSOIANOS iVPPHybridIANOS iVPPrransformIANOS iVPP

			voltage in the				
			power system				
3	Submission	Sends set-	iVPP sends the	CREATE	IANOS iVPP	Hybrid	14
	of optimal	points	optimal setpoint			Transform	
	set-points		to the hybrid			er	
			transformer				

	Scenario						
Scenario name :		No. 3 - Localized energy routing management capable of providing ancillary services					
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Informatio n producer (actor)	Informati on receiver (actor)	Informa tion Exchang ed (IDs)
1a	Submission of local weather forecasts	Sends local meteorolo gical forecasts	Forecast Provider sends local meteorological forecasts	CREATE	Forecast provider	IANOS iVPP	1
1b	Submission of grid requests	Sends grid requests	DSO sends grid requests to the iVPP	GET	DSO	IANOS iVPP	3
1c	Submission of smart energy router data	Sends data	Smart Energy Router sends data to the iVPP	CREATE	Smart Energy Router	IANOS iVPP	15
2	Calculation of optimal dispatch	Calculates optimal dispatch	iVPP computes the optimal dispatch for the smart energy	EXECUT	IANOS iVPP	IANOS iVPP	-

							IANC)S
			router					
3	Submission of	Sends set-	iVPP sends the	CREATE	IANOS iVPP	Smart	16	
	optimal set-	point	optimal setpoint			Energy		
	point		to the smart			Router		
			energy router					

5 Information exchanged

Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Local meteorological forecasts	Expected irradiances and wind speeds for specific
		locations
2	HV grid data	High voltage grid real-time data related with
		congestions; Bids.
3	Grid Requests	Grid requests
4	Fuel Cells hard technical	Minimum and maximum natural gas and hydrogen
	constraints	flow rates; temperature range, maximum total
		power output (kW)
5	Fuel Cells real-time data	Available NG flow rates; temperature at FC Anode
6	Heating Network Data	Heating network status, real-time data
7	Storage Assets hard technical	Minimum and maximum SoC and charging and
	constraints	discharging power; User preferences
8	Storage Assets real-time data	SoC, temperature, etc
9	Forecasted Energy Generation	Forecasted energy supply data from production-
	Data	side assets such as Fuel Cells
10	Forecasted Flexibility Data	Forecasted flexibility from the several storage
		assets

		· · · · · · · · · · · · · · · · · · ·
11	Optimal Set-points for storage	Optimal power dispatch computed by the iVPP for
	assets	storage assets. It is the amount of power from the
		grid that will be stored in the storage assets or the
		amount of power sent to the grid from the storage
		assets to provide slow balancing services
12	Optimal Set-points for fuel cells	Optimal power dispatch computed by the iVPP for
		fuel cells. It is the amount of power sent to the grid
		from fuel cells to provide balancing services
13	Hybrid Transformer real-time data	Operational data (oil temperatures and dissolved
		moisture; voltages and currents measured on LV
		side) and ambient related operational data
		(temperature and humidity; noise and vibration)
		from transformer to iVPP.
14	Optimal Set-point for hybrid	Optimal voltage dispatch computed by the iVPP for
	transformer	the hybrid transformer. It corresponds to the
		voltage required to fix the voltage between phases
15	Smart Energy Router Data	Real-time building-level generation and local
		storage state of charge data
16	Optimal Set-point for Smart	Optimal energy dispatch computed by the iVPP for
	Energy Router	the smart energy router. It corresponds to the
		amount of power that will be provided to the grid
		or to the loads or storage systems
L		

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety issues

R-BUS	Business Requirement	Business requirements to
11-005	business requirement	business requirements to
		achieve operational state of iVPP per UC
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-CONF.	Configuration Requirement	Requirements applicable to the electrical,
		physical and digital configuration
		applicable to enable the asset's operation.
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-USER	User requirement	Requirements related with the user
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
R-SEC1	Access Control	iVPP functions are accessible from personnel with specialized
R-SEC1	Access Control	
R-SEC1 R-SEC2	Access Control	personnel with specialized
		personnel with specialized authorization rights
		personnel with specialized authorization rights Utilization of good practices (e.g. secure
		personnel with specialized authorization rights Utilization of good practices (e.g. secure communication bus) to enhance
R-SEC2	iVPP cybersecurity	personnel with specialized authorization rights Utilization of good practices (e.g. secure communication bus) to enhance data cybersecurity
R-SEC2	iVPP cybersecurity	personnel with specialized authorization rights Utilization of good practices (e.g. secure communication bus) to enhance data cybersecurity Utilization of good practices to ensure
R-SEC2 R-SEC3	iVPP cybersecurity iVPP data privacy	personnel with specialized authorization rights Utilization of good practices (e.g. secure communication bus) to enhance data cybersecurity Utilization of good practices to ensure compliance with GDPR regulations
R-SEC2 R-SEC3	iVPP cybersecurity iVPP data privacy Network security measures for data	personnelwithspecializedauthorization rights
R-SEC2 R-SEC3	iVPP cybersecurity iVPP data privacy Network security measures for data	personnelwithspecializedauthorization rightsUtilization of good practices (e.g. securecommunicationbus)toenhancedata cybersecurityUtilization of good practices to ensurecompliance with GDPR regulationsEstablishesthewaysinwhichcommunicationbetween the iVPP and the

R-SEC5	Hybrid transformer site safety	Establishes the safety guidelines
N-SECS	Tybriu transformer site safety	Establishes the safety guidennes
		applicable to the physical location where
		the hybrid transformer is installed.
R-BUS1	Assets optimal location	Specification of the
		candidate assets location in pilot sites
R-BUS2	Physical installation and grid integration	Storage assets providers or operators or
		integrators will physically integrate the
		asset with the local energy system
R-BUS3	Installation of monitoring infrastructure	The necessary monitoring infrastructure
		will be installed
R-BUS4	Prequalification of asset with the	Assets should follow grid code
	transmission code requirements	requirements according to the services to
		be provided
R-FUN1	Day-ahead load and/or generation forecast	iVPP can predict the load and/or
	, , , , , , , , , , , , , , , , , , , ,	generation of its assets for the following
		day
R-FUN2	Intraday load and/or generation forecast	iVPP can predict the load and/or
		generation of its assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the prosumers'
		flexibility
R-FUN4	Flexibility segmentation	iVPP can break down the total DR
		requirement into the available assets
R-FUN5	3-phase balancing	Ability of Smart Energy Router to provide
		3-phase load balancing
R-FUN6	Dispatch prioritization	iVPP can select the most appropriate
		asset(s) to deliver the requested service

R-CONF1	Hybrid transformer electrical connection	Defines the electrical connection
		parameters required to install the hybrid
		transformer to the grid.
R-CONF2	Hybrid transformer control communication	Defines how the iVPP communicates with
		the hybrid transformer.
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually inspected
		through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-USER1	Opt-out option from DR service	Prosumer having the option to opt-out
		from demand response service before
		activation (and a certain time)
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability
R-COM2	Smart Energy Router interaction with	Appliances and other loads to be managed
	appliances and other loads	by the Smart Energy Router have
		communication and interaction
		capabilities (e.g., REST API) so monitoring
		and control activities can be conducted.

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
BESS	Battery Energy Storage Systems	
СНР	Combined Heat and Power	
DR	Demand Response	
DSM	Demand-Side Management	
DSO	Distribution System Operator	

FC	Fuel Cell
GDPR	General Data Protection Regulation
GOPACS	Grid Operation Platforms for Congestion Solutions
HVAC	Heating, Ventilating and Air Conditioning
iVPP	Intelligent Virtual Power Plant
LEC	Local Energy Communities
LV	Low Voltage
MV	Medium Voltage
NG	Natural Gas
RES	Renewable Energy Sources
SGAM	Smart Grid Architecture Model
SoC	State of Charge
TSO	Transmission System Operator
UC	Use Case
UI	User Interface

6.2 Transition Track 2: Use Cases

Transition Track 2 comprises all the Use Cases that demonstrate the potential of electrification as a mean to decarbonize relevant sectors along with non-emitting fuels utilization for crossresource integration (e.g. hydrogen) and circular economy. Thereby, the decarbonization of the transport (UC5) and industry sector (UC6) as well as means to decarbonize the gas grid through the utilization of waste streams for energy production (UC7) and the heating network (UC8) are demonstrated in four Use Cases.

6.2.1 Use case 5: Decarbonization of transport and the role of electric mobility

in stabilizing the energy system

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Energy efficiency and grid	Decarbonization of transport and the role of electric
	support for extremely	mobility in stabilizing the energy system
	high RES penetration	

1.2 Version management

		Version Mana	gement
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	EDP NEW	First draft
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on Actors, Scenarios Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture
3	08.03.2021	Nuno Costa (EFACEC MOBILITY)	Comments on Use Case conditions Information Exchanged
4	09.03.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios

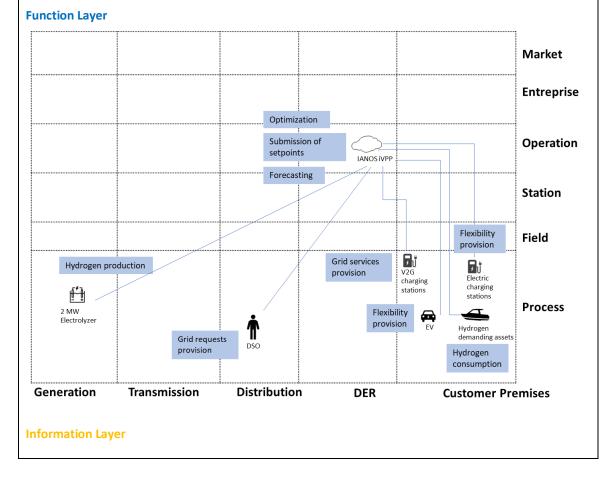
5	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements
6	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback
7	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version
8	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs. Changes on the description of the Use Case and in the scenarios

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	The scope of this Use Case is the decarbonization of the transport sector. Accordingly, it
	aims to install electric chargers in the islands to promote electric mobility. Moreover, it
6 mm	also aims to demonstrate the provision of grid services from electric vehicles leveraging
Scope	charging stations with V2G capabilities.
	Apart from electrification, this use case also demonstrates other alternative fuels such
	as hydrogen to fuel transportation vehicles.
	This Use Case focuses on the decarbonization of the transport sector on the islands,
	therefore it has the following objectives:
Objective(s)	1. Present a clear roadmap to decarbonize the transport sector
Objective(3)	2. Study the potential of electric chargers, hydrogen fueled vehicles, V2G and smart
	charging schemes to reach decarbonization targets
	3. Offer flexibility in the electricity grid

1.4 Narrative of use case

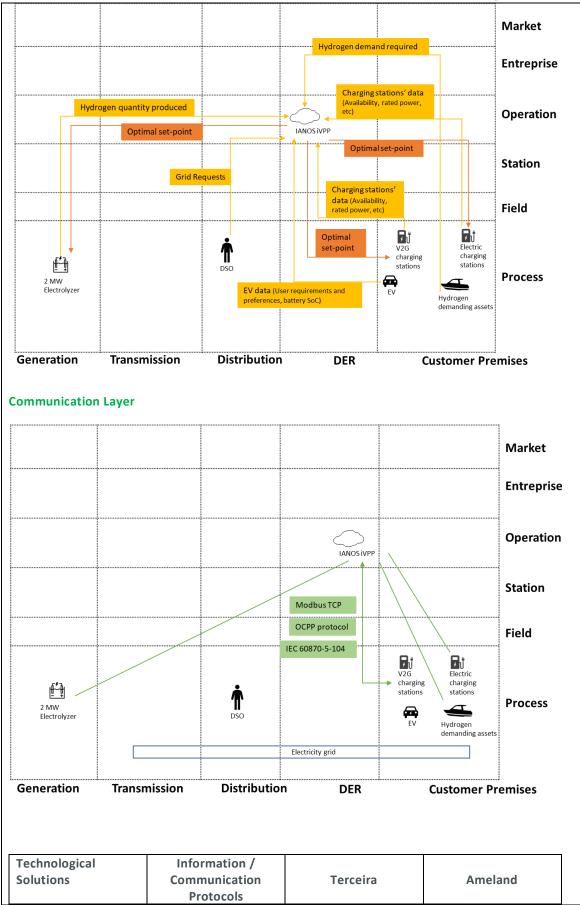
Narrative of Use Case
Short description
This Use Case aims to define a roadmap to reach decarbonization in the transport sector on the
islands. Moreover, it explores the growth potential of EV chargers with or without V2G capabilities


and smart charging schemes. The Intelligent Virtual Power Plant (iVPP) will manage the power flows of these chargers in order to ensure the stability of the power system.

Complete description

This Use Case intends to define a roadmap to decarbonize the transport sector of Ameland and Terceira islands, while also offering flexibility in the electricity grid. For this purpose, EV charging stations are installed to evaluate its growth potential. All the EV charging stations are connected to the iVPP which controls their charging and discharging modes. Some of these charging stations have V2G technology and therefore allow the provision of grid services such as load shifting and demand side management. Apart from V2G charging stations, smart charging schemes will also be analysed with the aim of providing flexibility to the power system.

Since the iVPP will not receive real-time data from EDA dispatch center, the optimal setpoints will be sent as a suggestion to the V2G chargers.


Moreover, this Use Case will also study the potential of hydrogen fuelled vehicles, to support the decarbonization of the transport sector, taking advantage of the hydrogen produced from the electrolyser in the case of Ameland (UC#2).

SGAM LAYERS

Electric charging stations			х
V2G charging stations	Usually the EV Chargers are equipped with the OCPP protocol. These V2G chargers support also some field buses (Modbus TCP) for the interface with other management systems. It can also be considered automation protocols such as the IEC 60870-5-104.	Х	
EV	-	Х	
Hydrogen Demanding Assets)			х
Electrolyzer			Х

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned use
			case objectives
1.7	Unbalance of the 3-phase	Examines the quality of the power supplied by	3
		measuring the supply voltage gap between the	
		three phases which should be 120 deg	
2.1.	Reduced fossil fuel	Measures the amount of fossil fuels which is	1,2
	consumption	not consumed anymore in the transport	
		sector because of IANOS demonstrated	
		solutions (electric chargers, V2G chargers,	
		hydrogen fuelled vehicles)	
2.2	Reduced Greenhouse Gas	Measures the reduction of greenhouse gas	1,2
	Emissions	emissions due to the transport sector	
4.1	Increased system flexibility	Indication of the ability of the system to	2,3
	for energy players	respond to supply and demand in real time,	
		as a measure of the demand side	
		participation in energy markets and in	
		energy efficiency intervention since the	
		beginning until the end of the project	

4.5	Increased Reliability	Measures the relative improvement in the	3
		number of interruptions	
7.1	Social Compatibility	Refers to the extent to which the project's	1,2,3
		solution fits with people's 'frame of mind' and	
		does not negatively challenge people's values	
		or the ways they are used to do things	
7.2	Technical compatibility	Examines the extent to which the smart grid	1,2,3
		solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end users of	Provides an indication of the complexity of the	1,2,3
	the solution	implemented solution within the IANOS	
		project for the end-users	
3	Existence of a	Indicates the existence of a clear roadmap	1
	decarbonization roadmap	which defines the paths to decarbonize the	
		transport sector in the island	
4	Analysis of decarbonization	Provides the assessment for each option that	1,2
	options	aims to decarbonize the transport sector	
		stating its potential and viability (economic,	
		technical and social)	
		·	

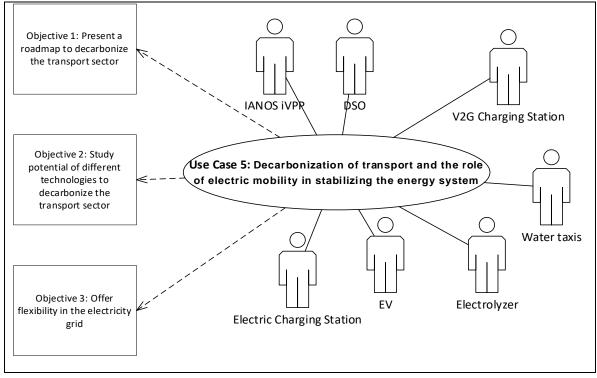
1.6 Use case conditions

	Use case conditions
Assump	otions
• • • Prerequ	Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP Bidirectional smart meters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP There are EVs and charging stations on the islands, including models with the V2G operation mode Some charging stations have V2G technology
	All available energy assets can be integrated on the iV/PD platform
•	All available energy assets can be integrated on the iVPP platform Communication between charging station and EV established for all EV types
•	For the V2G scenario, the EV allows the bidirectional power flow with the grid and is authorized to operate on this mode
•	Connection between iVPP and the EV manufacturer API with the battery SoC information Communication between all energy assets and the iVPP
•	Connection between iVPP and charging stations A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

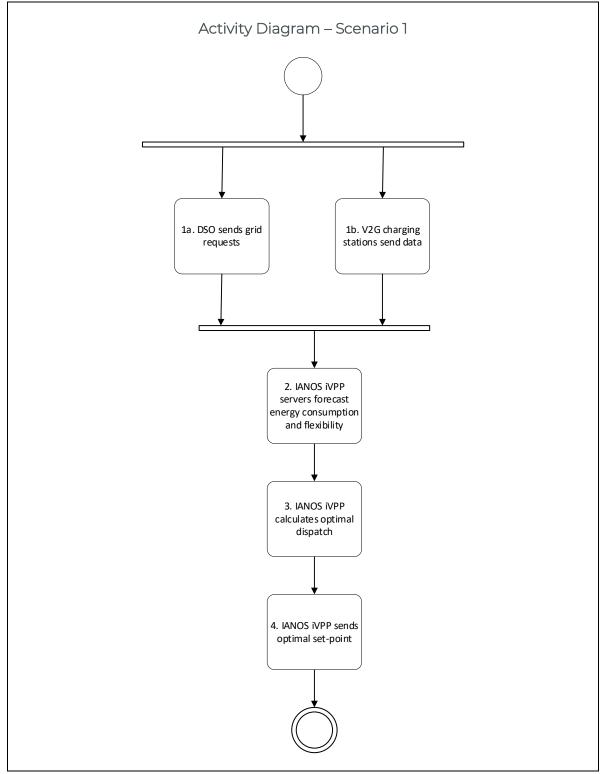
Classification Information
Relation to other use cases
UC1: Community demand-side driven self-consumption maximization
UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion
management services
Level of depth
High level use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case
Technical use case
Further keywords for classification
Electric vehicles, V2G, decarbonization, transport sector, smart charging, EV chargers, hydrogen taxis,
electric mobility

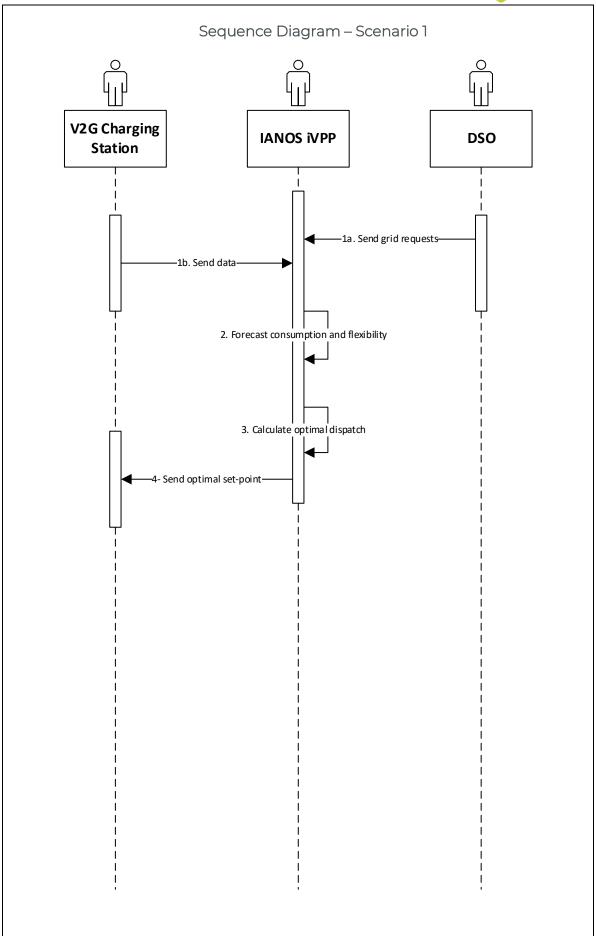
1.8 General Remarks

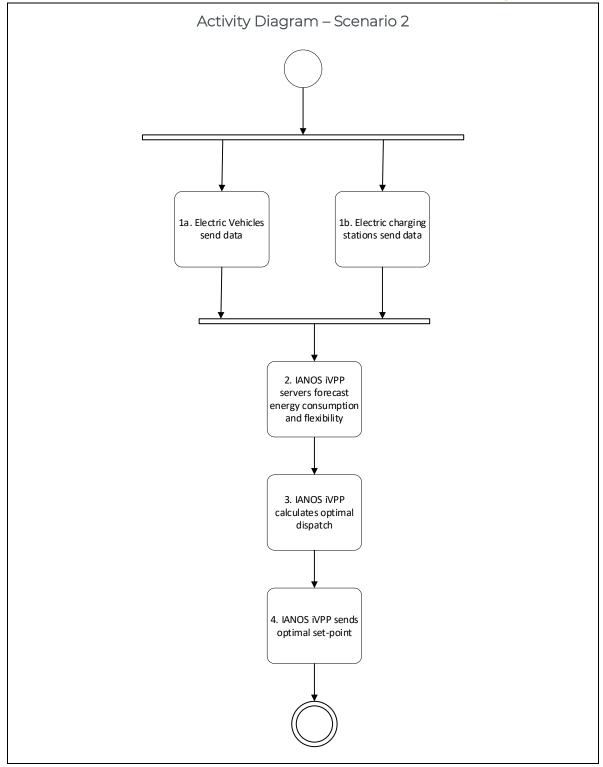

General Remarks		
-		

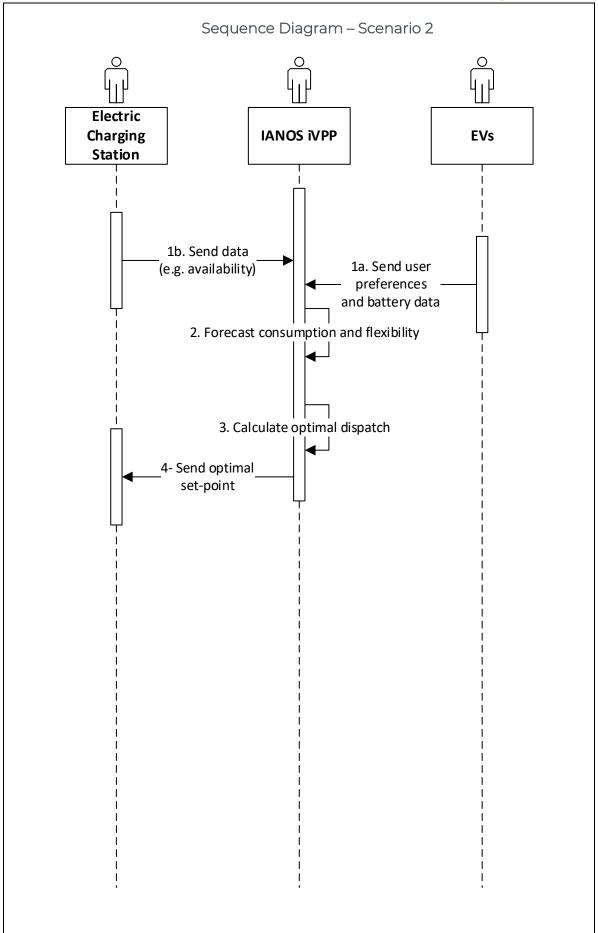
2 Diagrams of use case

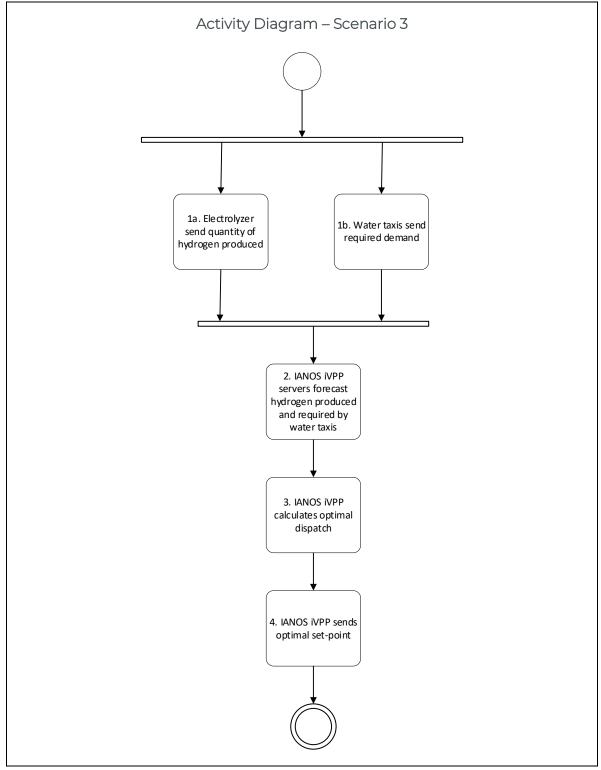
Diagram(s) of use case		
	Use Case Diagram	

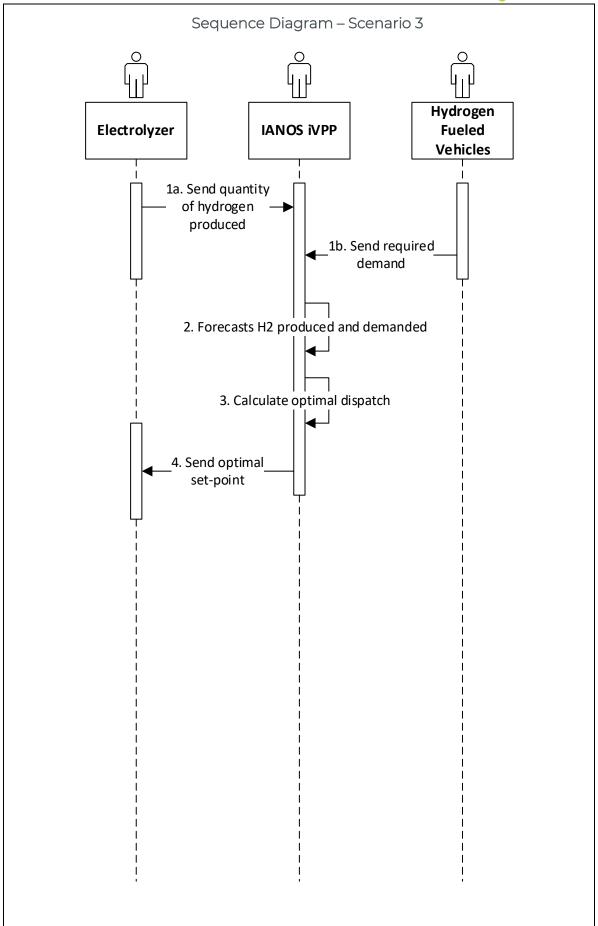












3 Technical details

3.1 Actors

Actors		
Actor Name	Actor Type	Actor Description
IANOS IVPP	System	The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non- dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and green gas CHP plants. Moreover, the iVPP comprises Energy Storage Systems (ESS), integrated as a single unit, providing flexibility services and fostering island renewable energy self-consumption. The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making intelligence, complemented by predictive algorithms for smart integration of grid assets into active network management based on relevant energy profiles. For this purpose, the iVPP is composed of 6 different modules: aggregation & classification, forecasting engine, centralized dispatcher, distributed ledger-based energy transactions, virtual energy console and secured enterprise service bus
DSO	Role	Distribution System Operator
V2G Charging Station	System	Bidirectional system that connects an electric vehicle (EV) to a source of electricity. Besides recharging the vehicle's battery, it enables to provide balancing services

Electric Charging Station	System	System that connects an electric vehicle (EV) to a source of electricity to recharge vehicle's battery
Electric Vehicle	System	A vehicle with an electric drive and a battery which can be charged at a charging station
Electrolyzer	System	System which produces hydrogen from electricity through water electrolysis
Water Taxis	System	Hydrogen fueled water taxis with capacity of 12 people

3.2 References

References							
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link	

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions							
No.	Scenario name	Scenario description	Primary	Triggering	Pre-	Post-		
			actor	event	condition	condition		
1	The use of V2G	iVPP is connected to	IANOS	EV is	Power	V2G		
	for power	V2G charging stations	iVPP	connected to	system	charging		
	system	and manages power		the charging	requires	station		
	stabilization	fluxes allowing the		station	balancing	charges		
		provision of balancing			services	EVs or		
		services to the grid			No power	provide		
					fluxes	energy to		
					between the	the grid for		

					grid and	balancing
					charging	services.
					station	Power
						system is
						stable
2	The use of	iVPP is connected to	IANOS	EV is	No power	Electric
	smart charging	electric charging	iVPP	connected to	fluxes	charging
	for power	stations and manages		the charging	between the	station
	system	power fluxes from the		station	electric	charges EV
	stabilization	grid to the station			charging	
		considering the end-			station and	
		user profile and			the EV	
		ensuring the stability				
		of the power system				
3	The use of	iVPP is connected to	IANOS	Available H2	Water taxis	Transport
	hydrogen for	the electrolyzer and	iVPP	quantities	need to be	of H2 from
	mobility in	manages the hydrogen			fuelled	the
	order to	quantity which can be				Electrolyse
	decarbonize	used to fuel hydrogen				r to the
	the transport	water taxis and the				water taxis
	sector	possible transport				harbour
		mean to transport the				
		hydrogen to water				
		taxis (e.g trucks)				
L						

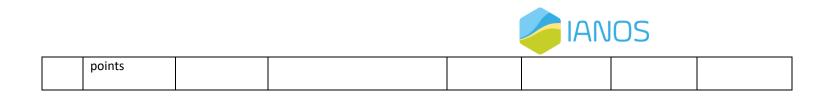
4.2 Steps – Scenarios

	Scenario							
Scena	rio name :	No. 1 - The us	e of V2G for power system stabilization					
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information Exchanged (IDs)	
1a	Submission of grid data	Sends grid requests	DSO sends grid requests to the	GET	DSO	IANOS iVPP	1	
1b	Submission of V2G charging station data	Sends data	V2G charging station sends data to the iVPP	GET	V2G charging station	IANOS iVPP	2,3	
2	Data forecast	Forecasts	iVPP servers forecast energy consumption and flexibility	EXECUTE	IANOS iVPP	IANOS iVPP	4,5	
3	Calculation of optimal dispatch	Calculates the optimal dispatch	iVPP computes the optimal dispatch for V2G charging stations in order to ensure energy supply to EVs and also the provision of balancing	EXECUTE	IANOS iVPP	IANOS IVPP	-	

				services to the grid by the V2G				
				chargers when required				
4	Submission of	Sends s	et-	iVPP sends the optimal	CREATE	IANOS iVPP	V2G	6
	optimal set-	points		setpoint to the V2G charging			charging	
	points			stations			stations	
	4	optimal set-	optimal set- points	optimal set- points	4 Submission of Sends set- optimal set- points set- setpoint to the V2G charging	4 Submission of Sends set- iVPP sends the optimal CREATE optimal set- points setpoint to the V2G charging	4 Submission of Sends set- iVPP sends the optimal optimal set- points CREATE IANOS iVPP 6 Submission of Sends set- iVPP sends the optimal optimal set- points Setpoint to the V2G charging CREATE	4 Submission of Sends set- iVPP sends the optimal optimal set- points CREATE IANOS iVPP V2G chargers when required setpoint to the V2G charging CREATE IANOS iVPP V2G

	Scenario							
Scenario name : No. 2 - The use of smart charging for power system stabilization								
Step	Event	Name of		Name of Description of process/		Information	Information	Information
No.		process/	/	activity		producer	receiver	Exchanged
		activity				(actor)	(actor)	(IDs)
1a	Submission of	Send	user	EVs send user preferences and	REPORT	EV	IANOS iVPP	7
	EV's data	preferer	nces	battery data such as SoC				
		and b	attery					
		data						
1b	Submission of	Sends da	ata	Electric charging station sends	GET	Electric	IANOS iVPP	8,9
	electric			data to the iVPP		charging		
	charging					station		

station data						
Data forecast	Forecasts	iVPP servers forecast energy	EXECUTE	IANOS iVPP	IANOS iVPP	4,5
		consumption and flexibility				
Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-
optimal	optimal	dispatch for electric charging				
dispatch	dispatch	stations in order to stabilize				
		the energy system while				
		simultaneously ensuring				
		user's preferences and				
		requirements.				
Submission of	Sends set-	iVPP sends the optimal set-	CREATE	IANOS iVPP	Electric	10
optimal set-	point	point to the electric charging			charging	
points		stations			stations	
	Data forecast Calculation of optimal dispatch Submission of optimal set-	Data forecastForecastsData forecastForecastsCalculation ofCalculates theoptimaloptimaldispatchdispatchdispatchSubmission ofSubmission ofSendsoptimalset-optimalset-	Data forecastForecastsiVPP servers forecast energy consumption and flexibilityCalculation of optimalCalculates the optimaliVPP computes the optimal dispatch for electric charging stations in order to stabilize the energy system while simultaneously ensuring user's preferences and requirements.Submission of optimal set- pointSends pointiVPP sends the optimal set- point to the electric charging	Data forecastForecastsIVPP servers forecast energy consumption and flexibilityEXECUTECalculation of optimalCalculates the optimalIVPP computes the optimal dispatch for electric charging the energy system while simultaneously ensuring user's preferences and requirements.EXECUTESubmission of optimal set- pointSends set- point to the electric chargingCREATE	Data forecastForecastsiVPP servers forecast energy consumption and flexibilityEXECUTEIANOS iVPPCalculation ofCalculates theiVPP computes the optimal dispatch for electric charging the energy system while simultaneously ensuring user's preferences and requirements.EXECUTEIANOS iVPPSubmission ofSendsset-iVPP sends the optimal set- point to the electric chargingCREATEIANOS iVPP	Data forecastForecastsIVPP servers forecast energy consumption and flexibilityEXECUTEIANOS iVPPIANOS iVPPCalculation of optimalCalculates the optimaliVPP computes the optimal dispatch for electric charging the energy system while simultaneously ensuring user's preferences and requirements.EXECUTEIANOS iVPPIANOS iVPPSubmission of optimal set- pointSends set- point to the electric chargingCREATEIANOS iVPPElectric charging


	Scenario						
Scena	Scenario name : No. 3 - The use of hydrogen for mobility in order to decarbonize the transport sector						
Step	Event	Name of	Description of process/	Service	Information	Information	Information
No.		process/	activity		producer	receiver	Exchanged

		activity			(actor)	(actor)	(IDs)
1a	Submission of	Send quantity	Electrolyzer sends quantity of	GET	Electrolyzer	IANOS iVPP	11
	electrolyzer	of hydrogen	hydrogen produced to the				
	data	produced	iVPP				
1b	Submission of	Sends	Hydrogen fueled vehicles send	GET	Water Taxis	IANOS iVPP	12
	hydrogen	required	required demand to the iVPP				
	fueled	demand					
	vehicles data						
2	Data forecast	Forecasts	iVPP servers forecast	EXECUTE	IANOS iVPP	IANOS iVPP	13,14
			hydrogen produced and				
			hydrogen required for				
			transportation				
3	Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-
	optimal	optimal	dispatch for the electrolyzer in				
	dispatch	dispatch	order to assure hydrogen				
			fueled vehicles demand				
4	Submission of	Sends set-	iVPP sends the optimal	CREAT	IANOS iVPP	Electrolyzer	15
	optimal set-	points	setpoint to the electrolyzer				

5 Information exchanged

	Information exchanged					
Information	Name of information	Description of information exchanged				
exchanged						
(ID)						
1	Grid Requests	Grid requests				
2	V2G charging station	Availability, EV battery state of charge, charging current, etc				
	real-time data					
3	V2G charging station	Rated power, etc				
	hard technical					
	constraints					
4	Forecasted Energy	EV's forecasted energy consumption data				
	Consumption Data					
5	Forecasted Flexibility	Forecasted flexibility from EVs				
	Data					
6	Optimal Setpoints for	Optimal energy dispatch computed by the iVPP for V2G				
	V2G charging stations	charging stations. It is the amount of power from the grid that				
		will be provided to the V2G charger to charge EVs or to be				
		stored for later use. Moreover, it may also represent the				
		amount of energy used for providing balancing services to the				
		grid from the V2G charger (if the EV allows the bidirectional				
		power flow with the grid and is authorized to operate on this				
		mode)				
7	EV data	User preferences, battery SoC				
8	Electric charging	Availability, charging current, etc				
	station real-time data					

9	Electric charging	Rated power, etc
	station hard technical	
	constraints	
	constraints	
10	Optimal Setpoints for	Optimal energy dispatch computed by the iVPP for electric
	electric charging	charging stations. It is the amount of power from the grid that
	stations	will be provided to the electric charger to charge EVs or to be
		stored for later use. Additionally, it may also represent the start
		and end of the charging and discharging modes
11	Hydrogen quantity	Hydrogen produced at real-time
12	Hydrogen fueled	Hydrogen consumption and expected demand from hydrogen
	vehicles demand	fueled vehicles
13	Forecasted H2	Forecasted hydrogen production from the electrolyzer
	production	
14	Forecasted H2	Forecasted hydrogen demand from water taxis
	demand	
15	Optimal Set-point for	Optimal power dispatch computed by the iVPP for the
	electrolyzer	electrolyzer. It corresponds to the amount of hydrogen that
		should be transported to hydrogen fueled vehicles to meet
		their demand.
	<u> </u>	

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects

R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-SEC.	Security Requirement	Requirements related to the safety issues
Requirement	Requirement name	Requirement description
R-ID		
R-FUN1	Charging/discharging constraints	Defines the period for
		charging/discharging the EV, including the
		considerations related with the user
		authorisation and battery SoC expectation
		after the charging process
R-FUN2	Receive Operator's requests	iVPP having the ability to receive requests
		for service activation (e.g. congestion
		management) from System Operator (TSO
		or DSO)
R-FUN4	Activation of iVPP EV assets to provide	iVPP having the ability to activate EVs to
	secondary regulation	provide Frequency Restoration Reserves
		(FRR) within 5-15 minutes
R-FUN5	Activation of iVPP EV assets to provide	EV battery inverter can be automatically
	voltage support	triggered to provide voltage control within
		seconds
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability
R-COM2	iVPP minimum communication	Bandwidth and latency are ensured to
	requirements	follow min. requirements according to the
		level of service to be delivered (e.g. mFRR,
		aFRR)
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually inspected
		through the use of KPIs

R-UI2	Reporting	iVPP can produce reports on system performance upon iVPP Operator request
R-SEC1	Access Control	iVPP functions are accessible from personnel with specialized authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure communication bus) to enhance data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure compliance with GDPR regulations

7 Common Terms and Definitions

	Common Terms and Definitions				
Term	Definition				
DER	Distributed Energy Resource				
EV	Electric Vehicle				
GDPR	General Data Protection Regulation				
iVPP	Intelligent Virtual Power Plant				
LV	Low Voltage				
MV	Medium Voltage				
RES	Renewable Energy Sources				
SGAM	Smart Grid Architecture Model				
SoC	State of Charge				
UC	Use Case				
UI	User Interface				
V2G	Vehicle-to-grid				

6.2.2 Use case 6: Decarbonizing large industrial continuous loads through

electrification and locally induced generation

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Decarbonization through	Decarbonizing large industrial continuous energy
	electrification and	consumers through electrification and local generation
	support from non-	
	emitting fuels	

1.2 Version management

	Version Management				
Version No.	Date	Name of Author(s)	Changes		
1	04.02.2021	EDP NEW	First draft		
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture		
3	12.02.2021	Bastiaan Vreijsen (NEROA), Luuk Meijer (NEROA)	Comments on the Narrative of the Use Case, Diagrams		
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization and requirements. Improve diagrams, description, information exchanged and scenarios		
5	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collecting the new feedback		
6	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version		
7	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs.		

1.3 Scope and objectives of use case

Scope and Objectives of Use Case				
	The scope of this Use Case is to use electrification and local generation for decarbonizing			
Coone	large industrial energy consumers located in the islands.			
Scope	This Use Case is limited to the decarbonization of the natural gas platform located off			
	the cost of Ameland.			
	This Use Case orients at decarbonizing large industrial sites which tend to be very			
Objective(s)	difficult sites to eliminate emissions due to their requirements for stable electricity. Therefore, the main objectives are the following:			
	 Maximize consumption from local RES Decarbonize the industrial sector 			

1.4 Narrative of use case

Narrative of Use Case

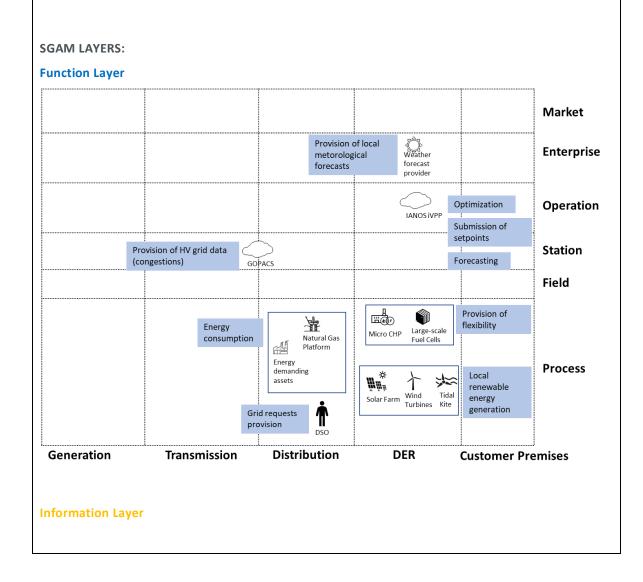
Short description

The present use case aims to decarbonize large industrial continuous and power intensive energy consumers, either located in the island or interconnected as in the case of the AWG natural gas platform off the coast of Ameland. The electrification and local renewable generation will be the main drivers to reach decarbonization in this site and will allow the maximization of renewable sources in the local grid.

Complete description

This use case intends to explore means to decarbonize large industrial sites which have a huge impact on global emissions due to their high levels of energy consumption.

In Ameland, there is the AWG natural gas platform which is located off the coast of Ameland and will be electrified until the end of 2022. For this purpose, its gas-powered modules will be replaced by electric drives and the facilities will be connected to Ameland's electricity grid.


This use case focuses on supporting the decarbonization process of the AWG platform, by exploring the potential of local renewable generation such as tidal, wind and solar to replace fossil-based power consumed by the platform. Furthermore, fuel cells and CHP also contribute to provide flexibility to the system and thereby allowing to maximize renewable energy penetration.

The intelligent Virtual Power Plant (iVPP) is responsible for distributing energy throughout the whole of Ameland. Since the demand of electricity from the AWG platform has a big impact on the energy supply of the island, the iVPP needs to safeguard a steady flow of energy to this platform. The iVPP

has a facilitating role in making the AWG platform as green as possible by contributing to the maximization of renewable energy utilization. For this purpose, the iVPP optimizes energy flows to the platform by sending set-points to the dispatchable assets (fuel cells and CHP) according to the data that will be received from the platform, the dispatchable and the non-dispatchable assets.

				A		Market
		Local m	neteorological forecasts	Weather forecast provider		Enterprise
		Capacity M	arket Data; Bids	IANOS iVPP]	Operation
	GOP	Acs Require	ed energy	Optimal set-point	: Hard-technical constraints and real-time data (e.g.	Station
		deman	d	Power generated at real-time	" production profiles)	Field
	Grid reque	sts DSO	Natural Gas Platform Energy demanding assets	Micro CHP Solar Farm Solar Farm Wind Turbines Kitu	al	Process
Generation	Transr	nission	Distribution	DER	Customer Pr	["] emises
[echnological	Solutions	Information Communica	tion Protocols	Amelan	d	
arge-scale Fu	el Cell		-	x		
Vicro CHP			-	X		
Solar Farm		-		х		
Solar Farm		-		х		
Solar Farm Wind Turbines	5		-			
	5		-	Х		

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.3	Degree of energetic self-	Ratio of locally produced energy from RES and	1
	supply by RES	the final energy consumption over a period of	
		time (e.g. Month, year)	

2.1.	Reduced fossil fuel	Measures the amount of fossil fuels which is	2
	consumption	now not consumed in the industrial sector	
		because of IANOS demonstrated solutions.	
2.2	Reduced Greenhouse Gas	Measures the reduction of greenhouse gas	2
	Emissions	emissions in the industrial sector	
3.9	Load Purchasing from	Measures the electricity purchasing from	1
	Mainland	mainland after IANOS interventions and	
		compares it with the previous scenario	
		without IANOS.	
7.2	Technical compatibility	Examines the extent to which the smart grid	2
		solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end users of	Provides an indication of the complexity of the	2
	the solution	implemented solution within the IANOS project	
		for the end-users	

1.6 Use case conditions

	Use case conditions				
Assum	otions				
•	It is considered that the island has a natural gas platform The connection between the platform and the electricity grid of Ameland is established The platform will be electrified in the end of 2021				
Prerequ	uisites				
•	Direct connection between the iVPP, solar farm and the platform Direct connection between the iVPP, the tidal kite and the platform Direct connection between the iVPP, the small turbines and the platform Direct connection between the iVPP, the CHP systems and Fuel cells and the platform A (physical) hosting environment on which the iVPP can be established				

1.7 Further Information to the use case for classification / mapping

Classification Information			
Relation to other use cases			
-			
Level of depth			
Specialized use case			
Prioritisation			

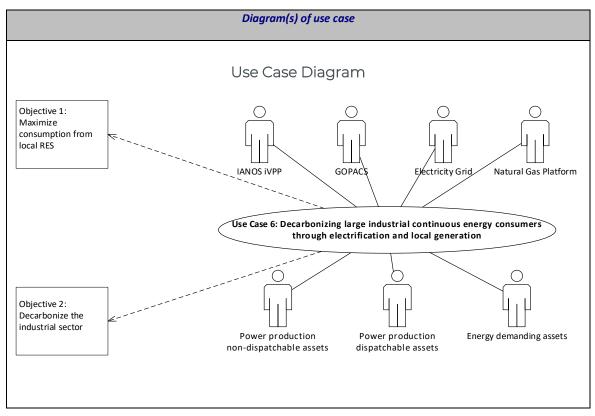
High level of priority

Generic, regional or national relation

Generic

Nature of the use case

Technical use case

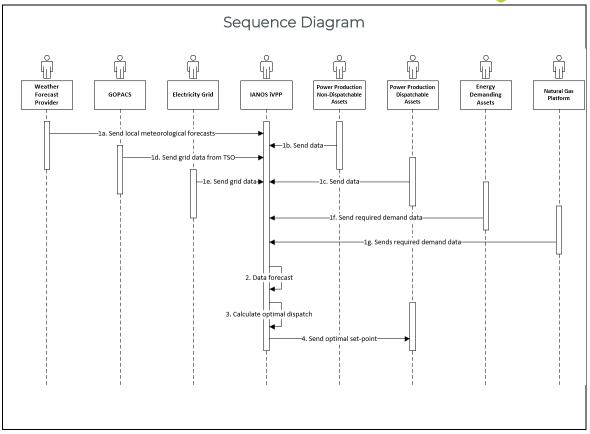

Further keywords for classification

Decarbonization, industry, natural gas platform, tidal kite, local renewable generation, wind turbines, solar farm, grid connection, electrification

1.8 General Remarks


	General Remarks	
-		

2 Diagrams of use case



3 Technical details

3.1 Actors

Actors				
Actor Name	Actor Type	Actor Description		
Weather Foreca	st	Provides generation, consumption and weather-related		
Provider	Role	operational risks, for a given location and a specific time		
Provider		horizon.		
		The IANOS iVPP sets up a virtual network of		
		decentralized renewable energy resources, both non-		
IANOS iVPP	System	dispatchable such as wind, solar, tidal resources and		
	- ,	dispatchable ones such as geothermal and green gas		
		CHP plants. Moreover, the iVPP comprises Energy		
		Storage Systems (ESS), integrated as a single unit,		

	1	
		providing flexibility services and fostering island
		renewable energy self-consumption.
		The optimal, autonomous, real-time iVPP operation will
		be driven by multi-level decision making intelligence,
		complemented by predictive algorithms for smart
		integration of grid assets into active network
		management based on relevant energy profiles. For this
		purpose, the iVPP is composed of 6 different modules:
		aggregation & classification, forecasting engine,
		centralized dispatcher, distributed ledger-based energy
		transactions, virtual energy console and secured
		enterprise service bus.
		Grid Operation Platforms for Congestion Solutions
		interface (GOPACS) is an unique initiative in Europe and
		has resulted from active collaboration between the
CODACE	System	Dutch TSO and the DSOs. This platform is consistent with
GOPACS		key European directives to mitigate grid congestion,
		while offering large and small market parties an easy
		way to generate revenues with their available flexibility
		and contribute to solving congestion situations.
		Power system including power generation units,
Electricity Grid	System	transmission system and MV/LV distribution grids
	latform System	Power intensive energy consumers from the industrial
		sector.
		In the case of Ameland, there is a Natural gas platform
Natural Gas Platform		located in Ameland's coast which has been operated by
		the Nederlandse Aardolie Maatschappij (NAM) since
		1986. Current natural gas production is close to 1 million

		m ³ /day, of which 100k m ³ /day is used as fuel to power the platform (mainly compression).
Energy demanding assets	System	Energy demanding assets of the island.
Power production dispatchable assets	System	Assets which power can be dispatched on demand at the request of grid operators when needed for instance fuel cells and CHPs.
Power production non- dispatchable assets	System	Local power generation assets which power cannot be controlled by grid operators such as wind, solar and tidal power generators.

3.2 References

	References						
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link	

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions							
No.	Scenario	Scenario	Primary actor	Triggering	Pre-	Post-		
	name	description		event	condition	condition		
1	Electrificati	iVPP computes	IANOS iVPP	Natural Gas	Natural Gas	Steady		
	on of	the optimal		Platform runs	Platform	energy flux		
	Natural gas	setpoint for		on electricity	requires	of natural		
	Platform	production			electricity	gas		
		dispatchable			to operate.	platform		
		assets to supply						

energy to the all		
energy		
demanding		
assets present in		
the island		
(including the		
natural gas		
platform) while		
ensuring the		
maximization of		
renewable		
penetration in		
the power		
system		

4.2 Steps – Scenarios

	Scenario							
Scena	rio name :	No. 1 - Refere	nce scenario					
Step	Event	Name of	Description of process/	Service	Information	Information	Information	Requirement, R-IDs
No.		process/	activity		producer	receiver	Exchanged	
		activity			(actor)	(actor)	(IDs)	
1a	Submission of	Send local	Weather Forecast Provider	CREATE	Weather	IANOS iVPP	1	
	local weather	meteorologic	sends local meteorological		Forecast			
	forecasts	al forecasts	forecasts		provider			
1b	Submission of	Sends data	Power Production Non-	GET	Power	IANOS iVPP	2	
	power		Dispatchable Assets send real-		Production			
	production		time data to the iVPP		Non-			
	non-		regarding its status		Dispatchable			
	dispatchable				Asses			
	assets data							
1c	Submission of	Sends data	Power Production	GET	Power	IANOS iVPP	3,4	
	power		Dispatchable Assets send real-		Production			
	production		time data to the iVPP		Dispatchable			

				-				
	dispatchable		regarding its status		Asses			
	assets data							
1d	Submission of	Send grid data	GOPACS exchange high	REPORT	GOPACS	IANOS iVPP	5	
	grid data from	from TSO	voltage grid data with iVPP					
	TSO							
1e	Submission of	Send grid data	Grid sends data regarding its	GET	Electricity	IANOS iVPP	6	
	grid data		status to the iVPP		Grid			
1f	Submission of	Send data	Energy demanding assets send	REPORT	Energy	IANOS iVPP	7	
	required		its required demand data to		Demanding			
	demand data		the iVPP		Assets			
	from energy							
	demanding							
	assets							
1g	Submission of	Sends data	Natural Gas platform sends	REPORT	Natural gas	IANOS iVPP	8	
	required		data regarding its required		platform			
	demand data		demand to the iVPP					
	from the							
	natural gas							

		1		1		1	1	
	platform							
2	Data forecast	Forecasts	iVPP servers forecast energy	EXECUTE	IANOS iVPP	IANOS iVPP	9,10	
			generation and flexibility					
3	Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-	
	optimal	optimal	dispatch for the dispatchable					
	dispatch	dispatch	assets in order to ensure a					
			steady energy flux for all the					
			assets present in the island					
			and a maximum penetration					
			of the RES in the power system					
4	Submission of	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	Dispatchable	11	
	optimal set-	points	setpoint to the dispatchable			Assets		
	points		assets					

5 Information exchanged

	Information exchanged					
Information	Name of information	Description of information exchanged				
exchanged						
(ID)						
1	Local meteorological	Expected irradiances and wind speeds for specific locations				
	forecasts					
2	Non-Dispatchable	Amount of energy (MWh) generated by non-dispatchable				
	assets data	generator assets (wind, solar and tidal) at real-time				
3	Fuel Cells and CHP	Maximum power, electrical and thermal efficiency, heat to				
	hard technical	power ratio, operating temperature				
	constraints					
4	Fuel Cells and CHP	Amount of existent fuel (hydrogen or methane); production				
	real-time data	profiles.				
5	HV grid data	High voltage grid real-time data				
6	Grid data	Grid status				
7	Energy demanding	Required demand from energy demanding assets				
	data					
8	Natural gas platform	Energy consumption and required demand from natural gas				
	required demand	platform				
9	Forecasted Energy	Forecasted energy supply data from production-side assets				
	Generation Data	(wind, solar and tidal generators, fuel cells and micro CHP)				
10	Forecasted Flexibility	Forecasted flexibility from production units and energy				
	Data	demanding assets				
11	Optimal Setpoints	Optimal power dispatch computed by the iVPP for dispatchable				
		assets such as fuel cells and CHP's.				

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety issues
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day

B FLINIQ		
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		and the state of the floor the floor the floor.
		production units flexibility
R-COM1	Common Information Model	iVPP adopts a common information model
IN COMIT	common monadon model	
		to exchange data ensuring interoperability
		5 5 7 7

7 Common Terms and Definitions

	Common Terms and Definitions				
Term	Definition				
СНР	Combined Heat and Power				
DER	Distributed Energy Resources				
GOPACS	Grid Operation Platforms for Congestion Solutions				
GPDR	General Data Protection Regulation				
iVPP	Intelligent Virtual Power Plant				
SGAM	Smart Grid Architecture Model				
TSO	Transmission System Operator				
UC	Use Case				
UI	User Interface				

6.2.3 Use case 7: Circular economy, utilization of waste streams and gas grid

decarbonization

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Decarbonization through	Circular economy, the utilization of waste streams and
	electrification and	connection to the local gas grid
	support from non-	
	emitting fuels	

1.2 Version management

	Version Management						
Version No.	Date	Name of Author(s)	Changes				
1	04.02.2021	EDP NEW	First draft				
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams, Actors, Scenarios				
			Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture				
3	15.02.2021	Johan Boekema (AME)	Comments and inputs on Scope and Objectives of Use Case, the Narrative of the Use Case, Diagrams, Scenarios, Information Exchanged. Add digester's data				
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization and requirements. Improve diagrams, description, information exchanged and scenarios				
5	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3 Collect the new feedback				
6	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version				

7	01.04.2022	Mónica	Fernandes	Minor	changes	and	updates	on	the	KPIs.
		(EDP NEW	')	Change	es on the o	descr	iption of t	he l	Jse C	ase

1.3 Scope and objectives of use case

Scope and Objectives of Use Case				
Scope	This use case is limited to the use of the small-scale AHPD digester in Ameland and the research into remaining waste streams with potential to produce green energy.			
Objective(s)	 The main objectives of this Use Case are the following: 1. Reduce the negative impact of waste streams produced on island by reusing them to produce green energy 2. Foster gas and electricity grid decarbonization 			

1.4 Narrative of use case

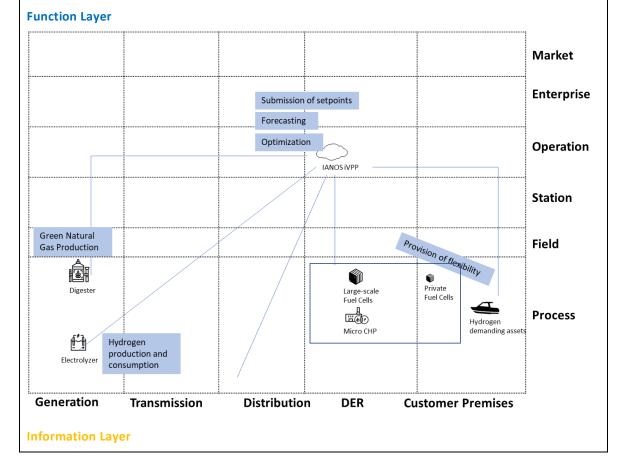
Short description

The present use case describes how waste streams are used to produce renewable energy and help to decarbonize the local grid, either for electricity production and/or heating purposes, using green natural gas. Therefore, a demonstration of a small-scale AHPD digester will occur at Ameland to exploit the potential of converting organic waste into green natural gas, while hydrogen produced from the Electrolyzer (using excess of RES) can be used to upgrade the remaining CO2 in the digester to natural gas. Moreover, an investigation regarding the potential of technologies to process biomass for using the remaining streams is also performed.

Complete description

This use case focuses on exploring methods to manage waste streams produced on islands by reusing them to produce renewable energy and allow to decarbonize the local grid.

Accordingly, a small-scale digester is used in Ameland which allows to convert i) sewage from households and businesses, ii) swill from catering industry and hospitals and iii) other organic waste into green natural gas. Moreover, some hydrogen produced from the 2MW Electrolyzer, despite of being stored, may also supply the digester in order to convert the CO2 that remains in the digester to natural gas. This green natural gas will feed the gas grid where it is used in Fuel Cells and CHPs. For this purpose, the iVPP is responsible for sending the necessary setpoints to the digester, including any available excess



of H2 produced and not consumed by the hydrogen fueled vehicles. The by-product of the digestion process, the digestate, will be used as fertilizer.

Additionally, this use case also intends to investigate the potential of the remaining waste streams. The main goals consist of mapping all the waste streams, identifying the technologies to process these biomass types, analysing the respective business models and select the best ones. This process must occur with the engagement of the local citizens.

SGAM LAYERS

					Market
					Enterpris
Feed and hydrogen am amount of gas produce			Hydrogen required		
Optimal set-point	t i	₽́́́́́́ ,	demand		Operatio
Amount of hydrog produced			e consumption and		Station
		required	Idemand		Field
Digester Optimal set	t-point	Large-scale Fuel Cells Large-scale Fuel Cells Micro CHP	Private Fuel Cells	Hydrogen demanding assets	Process
land the second					
Electrolyzer Generation Transmission	Distributi	on DER	Customer	Premises	
		on DER			
Generation Transmission	Information /			Premises	
Generation Transmission	Information /	Communicatio			
Generation Transmission	Information /	Communicatio		Ameland	
Generation Transmission Technological Solutions Private Fuel Cells	Information /	Communicatio		Ameland X	
Generation Transmission Technological Solutions Private Fuel Cells Large-scale Fuel Cell Hydrogen Demanding	Information /	Communicatio		Ameland x x	
Generation Transmission Generation Transmission Technological Solutions Image: Solutions Private Fuel Cells Image: Solutions Large-scale Fuel Cell Image: Solutions Hydrogen Demanding Assets (Water Taxis) Image: Solutions	Information / Pro	Communicatio	n	Ameland x x x	
Generation Transmission Generation Transmission Technological Solutions Image: Solutions Private Fuel Cells Image: Solutions Large-scale Fuel Cell Image: Solutions Hydrogen Demanding Assets (Water Taxis) Image: Solutions	Information / Pro	Communicatio tocols - - -	n	Ameland x x x	
Generation Transmission Generation Transmission Technological Solutions Image: Solutions Private Fuel Cells Image: Solutions Large-scale Fuel Cell Image: Solutions Hydrogen Demanding Assets (Water Taxis) Image: Solutions	Information / Pro	Communicatio tocols - - - - which protocols	n	Ameland x x x x	

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned use
			case objectives
2.1.	Reduced fossil	Measures the amount of fossil fuels which is now not	2
	fuel	consumed because of IANOS demonstrated solutions (e.g.	
	consumption	production of green natural)	
2.2	Reduced	Measures the reduction of greenhouse gas emissions in	2
	Greenhouse	the electricity and gas grid in order to assess the viability	
	Gas Emissions	to reach decarbonization targets.	
2.3	Electrical and	Computes the amount of electrical and thermal energy	1
	thermal energy	that is produced by the waste exploitation and compares	
	produced from	it with the base scenario without any IANOS interventions	
	solid waste or		
	other liquid		
	waste		
	treatment per		
	capita per year		
2.5	Reduction in	Calculates the percentage reduction in the amount of	1
	the amount of	waste collected due to the project	
	waste		
	collected		
5	Assessment of	Provides the best opportunities to utilize the remaining	1
	the potential of	waste streams in the island to produce green energy.	
	other waste		
	streams		

1.6 Use case conditions

	Use case conditions					
Assum	Assumptions					
•	The feedstock for the digester will be usual post treated sludge and swill from catering industry and hospitals.					
Prereq	quisites					
•	A small-scale AHPD digester is available					
•	 Community involvement in the research for the use of the remaining streams 					
•	Communication between the iVPP and the digester established					
•	Information on flexibility and availability of the digester required					
	The digester is connected to the electrolyzer					

The digester is connected to the electrolyzer

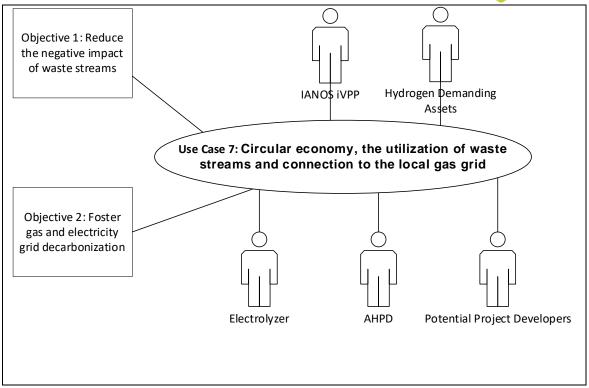
• A (physical) hosting environment on which the iVPP can be established

1.7 Further Information to the use case for classification / mapping

Classification Information
Relation to other use cases
UC2: Community supply-side optimal dispatch and intra-day services provision
Level of depth
Specialized use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case
Technical
Further keywords for classification
small scale digester, circular economy, waste, green natural gas, gas grid decarbonization, hydrogen

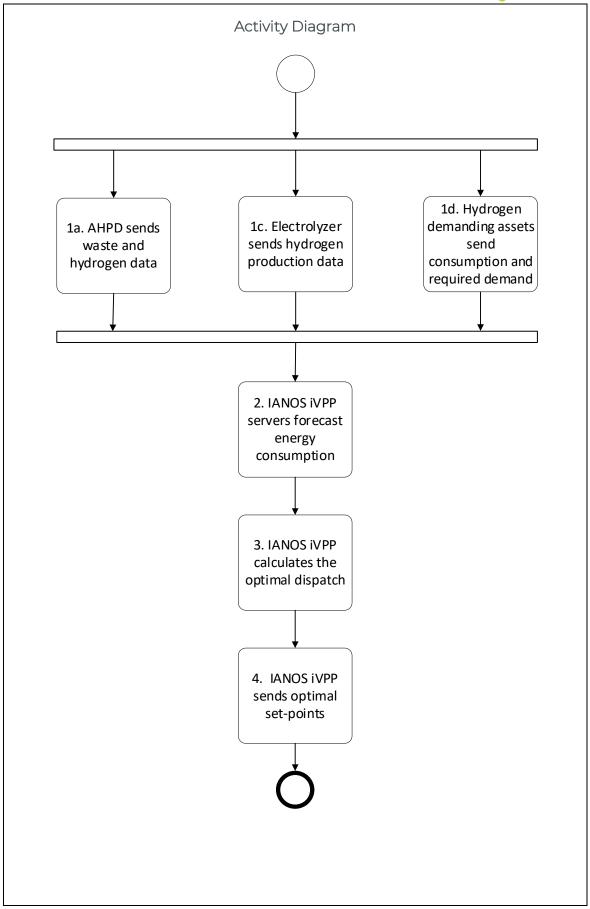
1.8 General Remarks

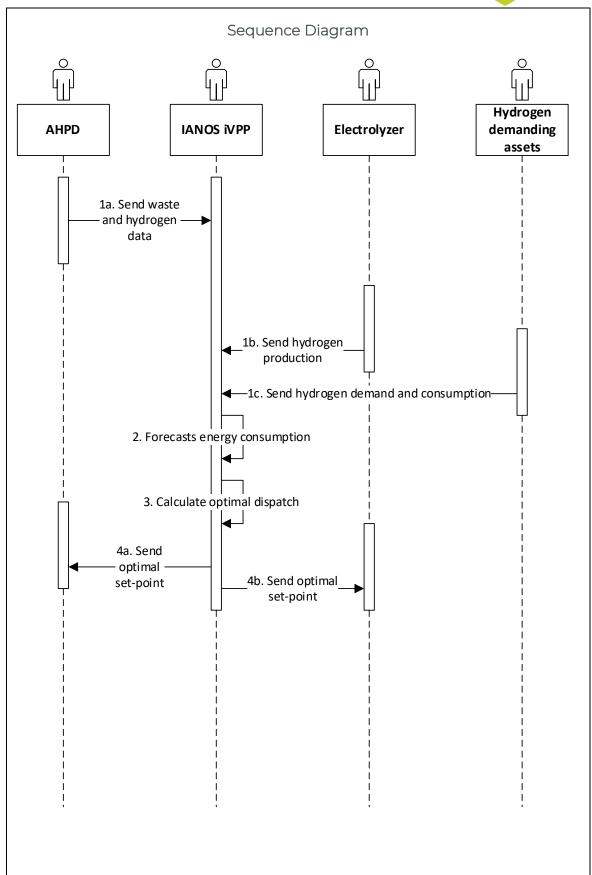
	General Remarks
-	


2 Diagrams of use case

Diagram(s) of use case

Use Case Diagram





3 Technical details

3.1 Actors

		Actors
Actor Name	Actor Type	Actor Description
	System	Digester which converts sewage, swill and other organic
		waste into green natural gas at high pressure, thus
Small-scale AHPD		allowing to produce high methane content (90% of
digester		methane). It produces 110.000 $\rm Nm^3$ of green gas from
		300 tons of dry substance.
		This digester can also use hydrogen as substrate.
Electrolyzer	System	The 2MWe BESS-Electrolyser DC connected system, will
Electrolyzer	System	be used to supply green H2 to the digestion process
		The IANOS iVPP sets up a virtual network of
		decentralized renewable energy resources, both non-
		dispatchable such as wind, solar, tidal resources and
		dispatchable ones such as geothermal and green gas
	System	CHP plants. Moreover, the iVPP comprises Energy
		Storage Systems (ESS), integrated as a single unit,
		providing flexibility services and fostering island
IANOS iVPP		renewable energy self-consumption.
		The optimal, autonomous, real-time iVPP operation will
		be driven by multi-level decision making intelligence,
		complemented by predictive algorithms for smart
		integration of grid assets into active network
		management based on relevant energy profiles. For this
		purpose, the iVPP is composed of 6 different modules:
		aggregation & classification, forecasting engine,

			· · · · · · · · · · · · · · · · · · ·
			centralized dispatcher, distributed ledger-based energy
			transactions, virtual energy console and secured
			enterprise service bus.
Hydrogen	demanding	System	Assets which consume hydrogen such as water taxis
assets		System	Assets which consume hydrogen such as water taxis
Potential	Project		Project Developers interested in applying biomass
Developers		Role	technologies to reduce waste streams

3.2 References

			Referen	ces		
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link

4 Step by step analysis of use case

4.1 Overview of scenarios

			Scenario con	ditions		
No.	Scenario	Scenario	Primary	Triggering	Pre-	Post-
	name	description	actor	event	condition	condition
1	Green	iVPP computes	Digester,	Significant	No use of	Green natural
	natural gas	the optimal	IANOS iVPP	costs of waste	waste	gas to feed
	production	dispatch for the		treatment	streams for	the gas grid
	from waste	electrolyzer and		(economic and	energy	
	streams	for the small-		environmental	production.	
		scale digester)	No power	
		regarding the			flows in the	
		respective			digester	

		amounts of gas				
		to be supplied				
2	Research on	Investigate the	NEC	Earthquakes	Natural gas	Biogas is the
	biomass	most suitable		(due to natural	is the main	main
	processing	technologies to		gas extraction)	source for	source for
	technologie	process biomass		and climate	heating the	heating the
	S	for the remaining		policies force	built	built
		waste streams of		us to minimize	environmen	environment
		the islands.		the use of	t on the	on the Island.
				natural gas.	Island.	

4.2 Steps – Scenarios

	Scenario						
Scena	Scenario name : No. 1 - Green natural gas production from waste streams						
Step No.	Event	Name of process/	Description of process/	Service	Information producer	Information receiver	Information Exchanged
		activity			(actor)	(actor)	(IDs)
1a	Submission of digester data	Sends waste and hydrogen data	Digester sends the data regarding its status to the iVPP	GET	Digester	IANOS iVPP	1,2
1b	Submission of Electrolyser data	Sends data	Electrolyzer sends the amount of hydrogen produced to the iVPP	GET	Electrolyser	IANOS iVPP	3
1c	Submission of hydrogen demanding assets	Send hydrogen demand and consumption	Hydrogen demanding assets send its hydrogen demand and consumption to the iVPP	REPORT	Demanding Assets	IANOS iVPP	4
2	Data forecast	Forecasts	iVPP servers forecast energy	EXECUTE	IANOS iVPP	IANOS iVPP	5

			consumption				
3	Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS iVPP	IANOS iVPP	-
	optimal	optimal	dispatch for the digester in				
	dispatch	dispatch	order to ensure the delivery of				
			the green natural gas to feed				
			the gas grid. Moreover, the				
			iVPP also calculates the				
			optimal dispatch for the				
			electrolyzer				
4a	Submission of	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	Digester	6
	optimal set-	points	setpoint to the digester				
	points						
4b	Submission of	Sends set-	iVPP sends the optimal	CREATE	IANOS iVPP	Electrolyzer	7
	optimal set-	points	setpoint to the electrolyzer				
	points						

	Scenario
Scenario name :	No. 2 - Research on biomass processing technologies

-							
Step	Event	Name of	Description of process/	Service	Information	Information	Information
No.		process/	activity		producer	receiver	Exchanged
		activity			(actor)	(actor)	(IDs)
1	Identification	Makes	Identifying the available	CREATE	NEC	Potential	8
	of	inventory of	biomass streams on the			project	
	biomass/wast	available	islands			developers	
	e streams	biomass					
		streams					
2	Investigation	Investigates	Investigating the most	EXECUTE	NEC	Potential	9
	of biomass	technologies	suitable technologies for			project	
	processing		biomass processing			developers	
	technologies						
3	Technology	Select best	Selecting the most interesting	REPORT	NEC	Potential	10
	Selection	technologies	business cases related to			project	
			specific biomass/technology			developers	
			combination				

5 Information exchanged

	Informa	tion exchanged
Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Digester hard technical	Maximum and minimum feed per hour and in total;
	constrains	maximum and minimum gas production; maximum and
		minimum hydrogen addition
2	Digester real-time data	Quality and quantity of feed in digester, amount of
		hydrogen in digester, amount of hydrogen being
		added; gas production
3	Hydrogen production	Amount of hydrogen produced
4	Hydrogen demanding assets	Hydrogen demand and consumption at real-time
	data	
5	Forecasted Energy	Loads forecasted energy consumption data
	Consumption Data	
6	Digester Optimal Set-point	Optimal setpoint computed by the iVPP for the digester
		which corresponds to the amount of natural gas that
		will feed the gas grid.
7	Electrolyzer Optimal Set-point	Optimal setpoint computed by the iVPP for the
		electrolyzer which corresponds to the amount of
		hydrogen to be sent to the digester
8	Biomass Streams	Database with biomass streams and quantities.
9	Biomass Technologies	Technology overview with bio/syngas potential.
10	Selected technologies	Description of the top 3 business cases for bio/syngas
		production on the island.

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety issues
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-SEC4	Network security measures for data	Establishes the ways in which
	exchange with digeser	communication between the iVPP and the
		digester control system can be done
		safely, mitigating risks of external
		interference
R-SEC5	Digester site safety	Establishes the safety guidelines
		applicable to the physical location where
		the digester is installed. It further

-		· · · · · · · · · · · · · · · · · · ·
		establishes the safety guidelines
		applicable to all personnel in the local
		vicinity to ensure safe operation of the
		digester
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability

7 Common Terms and Definitions

	Common Terms and Definitions			
Term	Definition			
BESS	Battery Energy Storage Systems			
СНР	Combined Heat and Power			
CO2	Carbon Dioxide			
DER	Distributed Energy Resource			
FC	Fuel Cells			
GDPR	General Data Protection Regulation			
H2	Hydrogen			
iVPP	Intelligent Virtual Power Plant			

LEC	Local Energy Community	
NEC	New Energy Coalition	
NG	Natural Gas	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
UC	Use Case	
UI	User Interface	

6.2.4 Use case 8: Decarbonization of heating network

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Decarbonization through	Decarbonization of heating network
	electrification and	
	support from non-	
	emitting fuels	

1.2 Version management

Version Management			
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	EDP NEW	First draft
2	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback from relevant partners and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios Add iVPP requirements
3	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3
4	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version
5	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs.

1.3 Scope and objectives of use case

Scope and Objectives of Use Case		
The scope of this Use Case is to decarbonize the heating network in Ameland wh		
Scope	currently runs on natural gas. For this purpose, this Use Case focuses on the installation	
	of equipment that allows the reduction of emissions such as hybrid heat pumps to be	

	powered by local RES. Moreover, it also explores further possibilities to phase-out natural gas of certain villages.
Objective(s)	This Use Case aims to decarbonize the existent heating grid in Ameland which currently uses mainly natural gas as fuel (Objective 1).

1.4 Narrative of use case

Narrative of Use Case

Short description

This Use Case focuses on decarbonizing the existent heating network in Ameland which currently runs mainly on natural gas. Therefore, this Use Case explores different strategies such as installation of heat pumps and hybrid heat pumps powered by local RES and research work regarding the potential of phasing-out natural gas in particular sites.

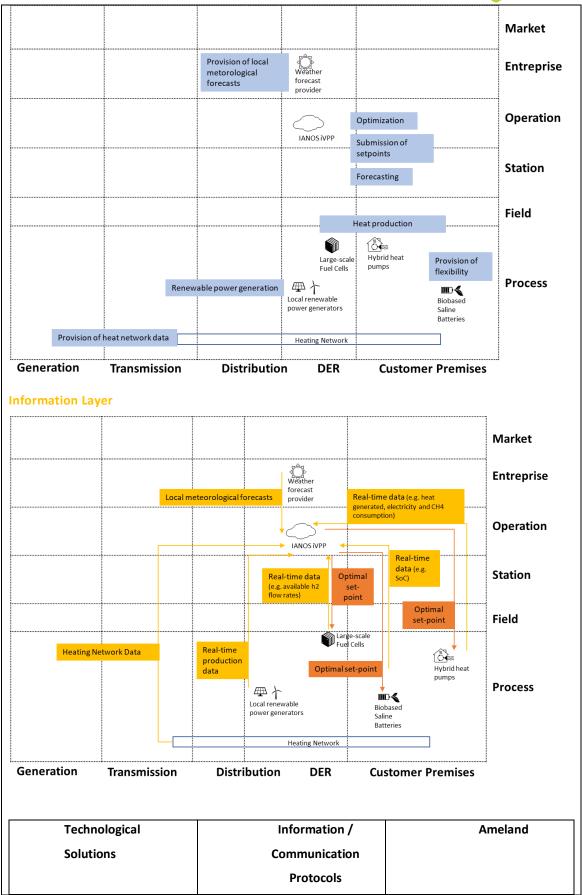
Complete description

The present use case describes the methods that aim to decarbonize the existent heating network in Ameland, which currently runs mainly on natural gas. Accordingly, 4 strategies are implemented to achieve this goal.

Firstly, hybrid heat pumps composed of a 20kWth boiler and a 1.1kWe/5kWth heat pump each, are installed in residential neighbourhoods. The intelligent Virtual Power Plant (iVPP) manages the power fluxes of these hybrid heat pumps according to the data received from them.

Moreover, the Klein Vaarwater holiday park will create an integrated design of a 500kWe fuel cell, H2 storage and additional heat pumps for peak demands which allow to expand the current heating grid in the site. The fuel cell will provide heat and electricity to support the heating network.

Another strategy is to study different means of phasing out natural gas from Buren Aardgasvrij village by selecting a technical approach with communities' collaboration.


Finally, the last strategy consists of installing an innovative heating grid infrastructure in Nes city by using heat pumps that are powered by local RES. Furthermore, an organic hybrid battery will be used to store excess energy in periods of high levels of renewable generation. The iVPP is responsible for sending the set-points to the heat pumps and storage assets according to the data provided by both and also from the local RES assets.

SGAM LAYERS

Function Layer

Large-scale Fuel Cell	-	x
Biobased saline		
batteries	-	x
Hybrid Heat Pumps	-	x

1.5 Key performance indicators (KPI)

Name	Description	Reference to mentioned use
		case objectives
		1
supply by RES	and the final energy consumption over a	
	period of time for the heating sector (e.g.	
	Month, year)	
Reduced fossil fuel	Measures the amount of fossil fuels which is	1
consumption	not consumed anymore for heating purposes	
	because of IANOS demonstrated solutions	
	(e.g. hybrid heat pumps, fuel cells, etc)	
Reduced Greenhouse Gas	Measures the reduction of greenhouse gas	1
Emissions	emissions in the heating grid	
People Reached	Percentage of people in the target group that	1
	have been reached and/or are activated by	
	the project	
Thermal Comfort	Estimates the quality of the delivered	1
	heating/cooling service	
Involvement of the island	Examines the extent to which the local	1
administration	authority is involved in the development of the	
	project, other than financial, and how many	
	departments are contributing	
Social Compatibility	Refers to the extent to which the project's	1
	solution fits with people's 'frame of mind' and	
	does not negatively challenge people's values	
	or the ways they are used to do things	
	Degree of energetic self- supply by RES Reduced fossil fuel consumption Reduced Greenhouse Gas Emissions People Reached Thermal Comfort Involvement of the island administration	Degree of energetic self- supply by RESRatio of locally produced energy from RES and the final energy consumption over a period of time for the heating sector (e.g. Month, year)Reduced fossil fuel consumptionMeasures the amount of fossil fuels which is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc)Reduced Greenhouse Gas EmissionsMeasures the reduction of greenhouse gas emissions in the heating gridPeople ReachedPercentage of people in the target group that have been reached and/or are activated by the projectThermal ComfortEstimates the quality of the delivered heating/cooling serviceInvolvement of the island administrationExamines the extent to which the local authority is involved in the development of the project, other than financial, and how many departments are contributingSocial CompatibilityRefers to the extent to which the project's solution fits with people's 'frame of mind' and does not negatively challenge people's values

7.2	Technical compatibility	Examines the extent to which the smart grid	1
		solutions fit with the current existing	
		technological standards/infrastructures	
7.3	Ease of use for end users of	Provides an indication of the complexity of the 1	
	the solution	implemented solution within the IANOS project	
		for the end-users	

1.6 Use case conditions

Use case conditions

Assum	ntions
Assulli	

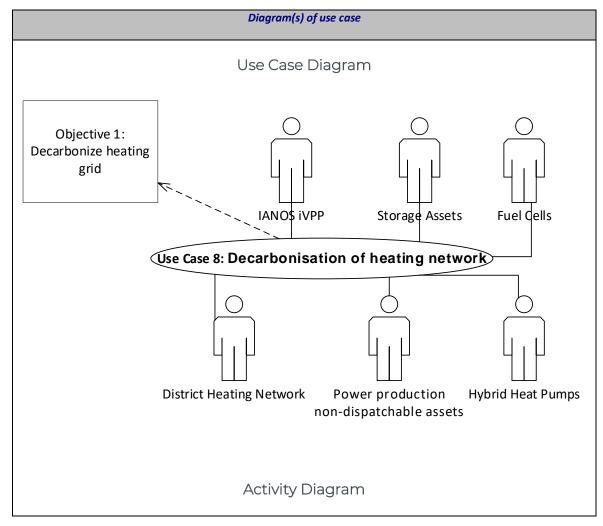
- Community engagement for studying the possibilities for phasing out natural gas from Buren Aardgasvrij village.
- Local RES supply electricity to heat pumps

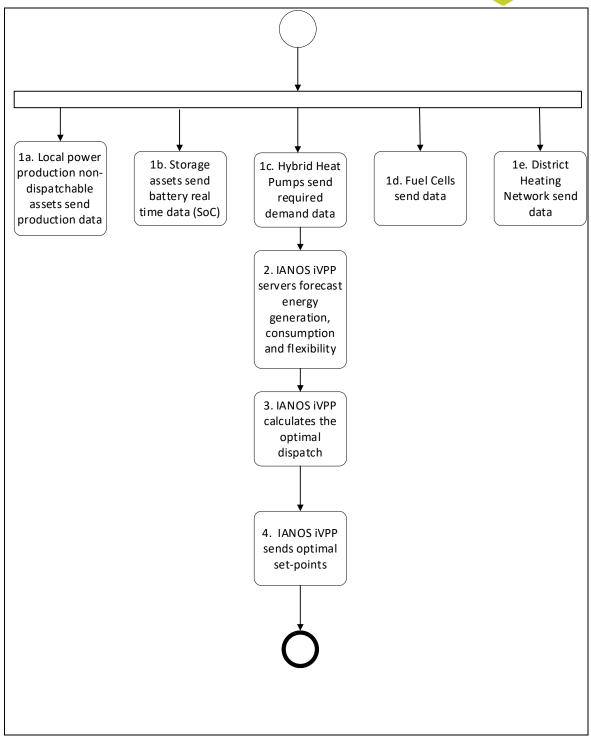
Prerequisites

- Direct connection between the iVPP and hybrid heat pumps and heat pumps
- Connection between iVPP and biobased saline batteries
- A (physical) hosting environment on which the iVPP can be established.

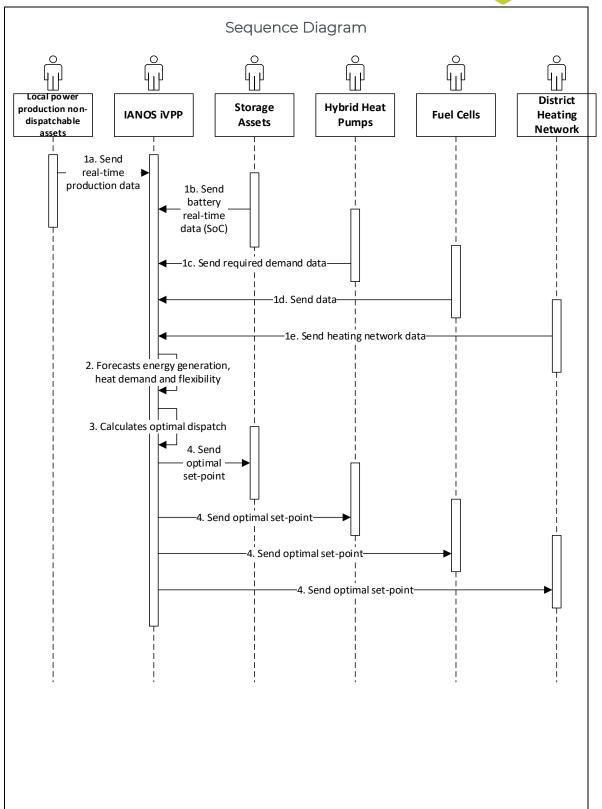
1.7 Further Information to the use case for classification / mapping

Classification Information		
Relation to other use cases		
-		
Level of depth		
High level use case		
Prioritisation		
High level of priority		
Generic, regional or national relation		
Generic		
Nature of the use case		
Technical use case		
Further keywords for classification		
Heating network, hybrid heat pumps, fuel cell, phasing out natural gas, local RES		


1.8 General Remarks


General Remarks

2 Diagrams of use case



3 Technical details

3.1 Actors

iption S iVPP sets up a virtual network of ed renewable energy resources, both non- e such as wind, solar, tidal resources and e ones such as geothermal and green gas
ed renewable energy resources, both non- e such as wind, solar, tidal resources and
ed renewable energy resources, both non- e such as wind, solar, tidal resources and
e such as wind, solar, tidal resources and
e ones such as geothermal and green gas
5. Moreover, the iVPP comprises Energy
stems (ESS), integrated as a single unit,
flexibility services and fostering island
energy self-consumption. The optimal,
is, real-time iVPP operation will be driven by
decision making intelligence, complemented
ve algorithms for smart integration of grid
active network management based on
nergy profiles. For this purpose, the iVPP is
of 6 different modules: aggregation &
n, forecasting engine, centralized dispatcher,
ledger-based energy transactions, virtual
sole and secured enterprise service bus.
h as biobased saline batteries that store
periods of energy excess to be used later by
hable assets such as hybrid heat pumps.
the ability of offering electricity or heat,
ssary.

		Hybrid heat pumps run on both electricity and natural
		gas and are composed of a 20 kWth boiler and a
Hybrid Heat Pumps	System	1.1kWe/5kWth heat pump, thereby allowing to a switch
		between gas and electricity operation. Hybrid heat
		pumps can also run on biogas.
		Local power generation assets which power cannot be
Local power production		
	System	controlled by grid operators such as wind and solar
non-dispatchable assets		
		power generators.
		Pipe network which provides heating and hot water from
District Heating Network	System	a central power plant for connected consumers

3.2 References

	References					
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions					
No.	Scenario	Scenario	Primary actor	Triggering	Pre-condition	Post-
	name	description		event		conditio
						n
1	Decarboniz	Decarbonization	IANOS iVPP	Periodically	No power	District
	ation of	of the heating			fluxes between	heating
	heating	network by			dispatchable	network
	network	installing heat			assets and local	is stable

and hybrid		renewable	and
pumps which use		generators	energy
electricity			curtailm
generated by			ent is
local RES. The			avoided
iVPP manages			
the steady			
energy flow from			
the local RES to			
the heat pumps			
ensuring heat			
and hot water is			
provided to the			
buildings.			

4.2 Steps – Scenarios

	Scenario						
Scer	Scenario name : No. 1 - Reference scenario						
St	Event	Name of	Description of	Service	Informatio	Informa	Informa
ep		process/	process/ activity		n producer	tion	tion
No		activity			(actor)	receiver	Exchang
•						(actor)	ed (IDs)
1a	Submission	Send real-	Local Power	GET	Local	IANOS	1
	of Local	time	Production Non-		power	iVPP	
	Power	production	Dispatchable Assets		production		
	Production	data	send real-time		non-		
	Assets		production data to		dispatchab		
			the iVPP		le assets		
1b	Submission	Send battery	Storage assets send		Storage	IANOS	2,3
	of Storage	real-time	battery real-time	GET	Assets	iVPP	
	Assets data	data	data (e.g. SoC) to the				
			iVPP				
1c	Submission	Send	Hybrid Heat Pumps		Hybrid	IANOS	
	of Hybrid	required	send required	GET	Heat	iVPP	4
	Heat Pumps	demanddata	demand data to the		Pumps		
	data		iVPP				
1d	Submission	Send data	Fuel Cells send data	GET	Fuel Cells	IANOS	5,6
	of Fuel Cells		regarding its status			iVPP	
	data		to the iVPP				
1e	Submission	Send heating	District Heating	GET	District	IANOS	7
	of heating	network data	Network send data		Heating	iVPP	
	network		regarding its status		Network		

	data		to the iVPP				
	Data	Faustant	:)/DD	EVECT			0.010
2	Data	Forecasts	iVPP servers	EXECU	IANOS	IANOS	8, 9,10
	Forecast	energy	forecast energy	TE	iVPP	iVPP	
		generation,	generation from				
		consumption	production-side				
		and flexbility	assets, consumption				
			from heat				
			demanding assets				
			and flexibility				
			forecasts from				
			storage assets				
3	Calculation	Calculates	iVPP computes the	EXECU	IANOS	IANOS	-
	of optimal	the optimal	optimal dispatch for	TE	iVPP	iVPP	
	dispatch	dispatch	the dispatchable				
			and storage assets in				
			order to ensure a				
			steady heat and hot				
			water supply for the				
			community and also				
			to avoid energy				
			curtailment by				
			utilizing local				
			renewable energy as				
			a fuel for hybrid and				
			heat pumps.				
4	Submission	Sends set-	iVPP sends the	CREAT	IANOS	Dispatch	11,
	of optimal	points	optimal setpoint to	E	iVPP	able	12,13
	set-points		the dispatchable			Assets,	

			· · · · · · · · · · · · · · · · · · ·	
	and storage assets		Storage	
			Assets	

5 Information exchanged

	Informatio	on exchanged
Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Local power production non-	Amount of energy generated by non-dispatchable
	dispatchable assets data	generator assets (MWh) at real-time
2	Storage Assets hard technical	Min and Max SoC, Min and max charging and
	constraints	discharging power
3	Storage Assets real-time data	SoC, temperature, etc
4	Heat and hybrid pumps real-	Electricity and natural gas consumption
	time data and hard technical	Heat generated
	consraints	
5	Fuel Cells and CHP hard	Minimum and maximum natural gas and hydrogen
	technical constraints	flow rates; temperature range, maximum total
		power output (kW)
6	Fuel Cells and CHP real-time	Available natural gas and hydrogen flow rates;
	data	temperature at FC Anode
7	District Heating Network data	District Heating Network status
8	Forecasted Energy Generation	Forecasted energy supply data from production-side
	Data	assets such as Fuel Cells
9	Forecasted required demand	Forecasted required demand from heat demanding
	data	assets which are present in the district heating
		network
10	Forecasted Flexibility Data	Forecasted flexibility from storage assets

11	Storage Assets Optimal Set-	Optimal power dispatch computed by the iVPP for
	point	storage assets such as biobased saline batteries. It
		corresponds to the power generated by RES that will
		be stored or provided to the dispatchable assets such
		as hybrid and heat pumps.
12	Hybrid Heat Pumps Optimal Set-	Optimal power dispatch computed by the iVPP for
	points	heat and hybrid heat pumps. It corresponds to the
		power used for hybrid and heat pumps to generate
		heat.
13	Fuel Cells Optimal Set-points	Optimal power dispatch computed by the iVPP for
		fuel cells. It corresponds to the amount of hydrogen
		used to produce a certain amount of heat

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the safety issues
R-UI	User Interface Requirement	Requirements related with the iVPP UI
R-FUN	Functional Requirement	Requirements that capture the intended
		behaviour of the system
R-COM	Communication Requirement	Requirements related
		with communication aspects
Requirement	Requirement name	Requirement description
R-ID		

R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g. secure
		communication bus) to enhance
		data cybersecurity
R-SEC3	iVPP data privacy	Utilization of good practices to ensure
		compliance with GDPR regulations
R-UI1	Graphical visualization of iVPP operation	iVPP operation can be visually
		inspected through the use of KPIs
R-UI2	Reporting	iVPP can produce reports on system
		performance upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of its
		assets for the following day
R-FUN2	Intraday generation forecast	iVPP can predict the generation of its
		assets within the day
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units flexibility
R-COM1	Common Information Model	iVPP adopts a common information model
		to exchange data ensuring interoperability

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
СНР	Combined Heat and Power	
GDPR	General Data Protection Regulation	
iVPP	Intelligent Virtual Power Plant	
RES	Renewable Energy Sources	

SGAM	Smart Grid Architecture Model
SoC	State of Charge
UC	Use Case
UI	User Interface

6.3 Transition Track 3: Use Cases

Transition Track 3 includes the Use Case 9 related with Local Energy Communities engagement and involvement of local citizens into island's energy transition.

6.3.1 Use case 9: Active Citizen and LEC Engagement into Decarbonization

Transition

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case		
Empowered LECs		Active Citizen and LEC Engagement into Decarbonization		
		Transition		

1.2 Version management

	Version Management					
Version						
No.		Author(s)				
1	04.02.2021	EDP NEW	First draft			
2	11.05.2021	EDP NEW	Final version			

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case						
	The scope of this Use Case is to promote the citizen engagement in the local community						
	by involving them in the island's energy transition.						
Scope	The maximum reach of the use case refers to the whole island's inhabitants (both						
Scope	permanent and not), while the first target will be just a part of them, directly involved in						
	the IANOS activities. Technical staff and IANOS partners will facilitate the activities and						
	the community engagement, supported by the relevant local authorities.						
Objective(s)	The main goals of this use case focus on:						
Objective(s)	 Promoting the engagement of the local community in island's energy transition Raising customer's environmental and energy efficiency awareness. 						

3.	Support local generation
4.	Promote DSM programs

1.4 Narrative of use case

Narrative of Use Case

Short description

This Use Case aims to promote an active role and engagement of the community in island's energy transition. Accordingly, it uses Local Energy Cooperatives to reach this purpose where various strategies will be applied such as involving the community in DSM programs and raising customer's environmental and energy efficiency awareness through training for local homeowners and children.

Complete description

This Use Case describes the methodologies that will be used to promote the engagement of local communities in island's energy transition. For this purpose, a Local Energy Cooperative is simulated (in case of Terceira) or improved (in the case of Ameland) that fosters local generation and participation of its members in DSM programs.

The Local Energy Cooperative aims to increase local renewable generation by the cooperative members through the organization of group meetings, workshops and discussions. Moreover, it allows the connection of the members to the local DSM programs, through the development of useful indicators and provision of interfaces to monitor their power consumption (carefully respecting data ownership) and providing them with an economic/environmental feedback signal for their actions.

Furthermore, in the case of Ameland, it will also be developed a new cooperatively owned DC-solar farm combined with storage. It will be demonstrated a business model value where revenues coming from the solar farm will be invested back into green energy projects on the island.

Additionally, this Use Case also focuses on raising customer's environmental and energy efficiency awareness and therefore intends to provide capacity building and training for local homeowners and children through targeted promotion campaigns.

ID	Name	Description	Reference to mentioned use case objectives
-	LEC citizens	Number of citizens involved in the project	1
-	Events organized	Number of sessions/events organised	1,2,4

1.5 Key performance indicators (KPI)

1.12	Kwp photovoltaic installed per 100	Measures the installed capacity of	1,3
	inhabitants	photovoltaic interpolated to 100	
		inhabitants. To be assessed per sector	
		(residential, tertiary, industrial and	
		public)	
1.3	Degree of energetic self-supply by	Measures the increase on the ratio of	3
	RES	locally produced energy from RES and	
		the final energy consumption over a	
		period of time (e.g. Month, year) in the	
		LEC or in the target residencial area	
4.2	Data privacy - Data Safety & Level of	This indicator analyses the extent to	4
	Improvement (Improved Data	which regulations on data protection	
	Privacy)	are followed and to which proper	
		procedures to protect personal or	
		private data are implemented	
5.1	People Reached	Percentage of people in the target	1,2,4
		group that have been reached and/or	
		are activated by the project	
5.6	Increased citizen awareness of the	Measures the increased citizen	1,2
	potential of smart grid projects	awareness of the socio-cultural potential	
		of smart city projects and of the	
		environmental and energy efficiency	
		challenges.	
7.1	Social Compatibility	Refers to the extent to which the	1,2,3,4
		project's solution fits with people's	
		'frame of mind' and does not negatively	
		challenge people's values or the ways	
		they are used to do things	

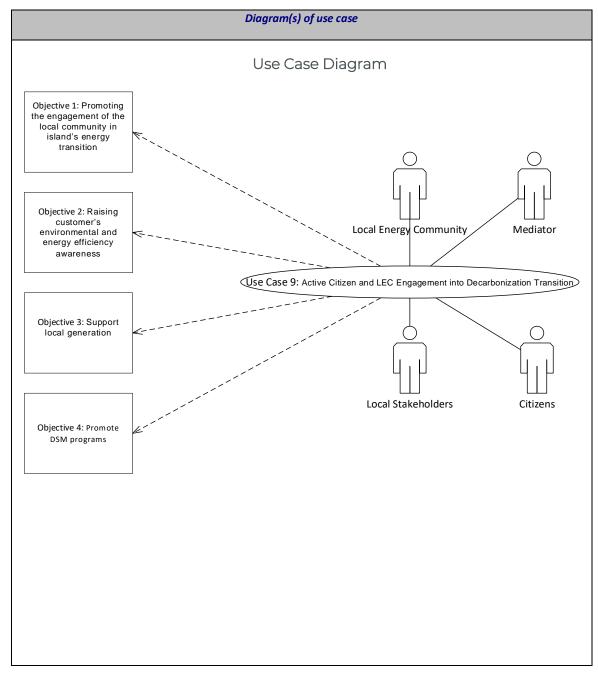
6	 Increase of participation in DSM	Measures the increase of the 4
	programs	participation of the local community in
		DSM programs due to IANOS
		interventions through data collection

1.6 Use case conditions

	Use case conditions				
Assumptions					
•	A national regulation for LEC should be in place before the use case reaches its objectives, while it could be initiated without it being fully developed.				
Prerequ	Prerequisites				
•	The materials for the group meetings and workshops should be developed as far as possible in local language to maximise its reach and guarantee the inclusion of the citizens.				

1.7 Further Information to the use case for classification / mapping

Classification Information				
Relation to other use cases				
UC1: Community demand-side driven self-consumption maximization				
UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion				
management services				
Level of depth				
High level use case				
Prioritisation				
High level of priority				
Generic, regional or national relation				
Generic				
Nature of the use case				
Social use case				
Further keywords for classification				
Local energy cooperative, community engagement, local generation, DSM programs, local community,				
training, raising awareness				


1.8 General Remarks

General Remarks

2 Diagrams of use case

3 Technical details

3.1 Actors

	Actors						
Actor Name	Actor Type	Actor Description					
Local Energy Community	Role	Decentralized cooperatives of local communities and citizens that promote the production and consumption of local energy. Local energy communities share a common long-term goal for a sustainable future of energy and work to advance the transition through active citizenship engagement. In Terceira there is not a LEC yet, while in Ameland already exists.					
Mediator (e.g. local authority)	Role	Person who helps to connect the community and the project					
Citizens	Role	Citizens who live in the community					
Local Stakeholders	Role	Local stakeholders present in the community					

3.2 References

	References							
No.	References	Reference	Status	Impact	Originator /	Link		
	Туре			on use	organisation			
				case				
		Legal documentation				To be completed		
						in the following		
						versions		
		National Report on				To be completed		
		new regulatory Plan				in the following		
		based on LEC				versions		

	National incentive		To be completed
	policies for LEC		in the following
			versions

4 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
LEC	Local Energy Communities	
DSM	Demand Side Management	

7 Conclusions and Next Steps

This deliverable identifies the requirements for each Lighthouse Island to deploy all the hardware solutions in the demonstrator sites. Additionally, it defines the 9 Use Cases of IANOS project in detail according to IEC-62559 standards.

The requirements for the LH islands are defined for each hardware solution that will be demonstrated. Most of the solutions are innovative elements and therefore some might be tested for the first time, therefore it is crucial to list all the requirements needed for the LH islands to assure that the implementation of the solutions in their pilot sites runs smoothly and most of the risks are mitigated.

The Use Cases of IANOS describe the functionality level of the system, therefore are technical use cases. All the Use Cases (except UC9) are connected to the intelligent Virtual Power Plant (iVPP) platform and what differentiates them is its scope and aim. The Use Cases are divided by 3 Transition Tracks which represent the main areas that IANOS addresses: #TT1: Energy efficiency and grid support for extremely high RES penetration, #TT2: Decarbonization through electrification and support from non-emitting fuels and #TT3: Empowered LECs. The Use Cases might be implemented in both LH islands or only in one of them.

The Use Cases are defined in a general way to assure the possibility of replicability in different islands. Thereby, these Use Cases will also be replicated in some of the Fellow Islands (Lampedusa, Bora-Bora and Nisyros).

This Deliverable is being developed in an early stage of the project when certain issues are still being defined, therefore it is expected that, along with the further developments of future tasks, this document will be updated which will originate a new version that will be submitted in month 26.

The descriptions of the use cases, list of actors, scenarios, information exchanged and requirements represent a quality foundation for several upcoming tasks. They enable to define System Architecture (T2.5), to develop the Decarbonization Master Plan (T2.4), to define the multi-layer iVPP operational framework (T4.1, T4.3, T4.4) and for the Use Cases Realization (T5.1, T5.2, T5.3, T6.1, T6.2, T6.3).

8 References

1. CEN-CENELEC-ETSI Smart Grid Coordination Group (SG-CG), "Smart Grid Architecture Model (SGAM) Reference Architecture," 2012

9 Annex I

1 Description of the use case

Use case describes functions of a system in a technology-neutral way. It identifies participating actors which can for instance be other systems or human actors which are playing a role within a use case. Use cases can be specified on different levels of granularity and are according to their level of technological abstraction and granularity either described as High Level Use Case (HL-UC) or Primary Use Case (PUC).

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Select from: (1) Energy efficiency and grid support	
	for extremely high RES penetration; (2)	
	Decarbonization through electrification and	
	support from non-emitting fuels; (3) Empowered	
	Local Energy Communities;	

1.2 Version management

Version Management					
Version No.	Date	Name of	Changes		
		Author(s)			
	DD.MM.YYYY				

1.3 Scope and objectives of use case

Scope and Objectives of Use Case

Scope	The scope defines the limits of the use case.	
Objective(s)	List of objectives of the use case	
Related	Provides a description or reference with some rationale for the suggested use case. Usually the	
business	business case is related to several use cases. Therefore, an external reference or link to a	
case(s)	business case/business requirements might be more efficient and can be added here.	

1.4 Narrative of use case

 Narrative of Use Case

 Short description

 Short text intended to summarize the main idea as service for the reader who is searching for a use case or

 looking for an overview. Recommendation: This short description should have not more than 150 words.

 Complete description

 Complete Description Provides a complete narrative of the use case from a user's point of view, describing

 what occurs when, why, with what expectation, and under what conditions. This narrative should be written

 in plain text so that non-domain experts can understand it. The complete description of the Use Case can

 range from a few sentences to a few pages.

 This section often helps the domain expert to think through the user requirements for the function before

 getting into the details required by the next sections of the Use Case.

1.5 Key performance indicators (KPI)

The KPIs defined in the D2.3 will be used in this Section.

ID	Name	Description	Reference to mentioned use case objectives
		The description specifies the KPI and may include specific targets in relation to one of the objectives of the use case and the calculation of these targets.	Here is the link to one of the objectives which are specified in the targets and the KPI before.

1.6 Use case conditions

Use case conditions

Assumptions

May be used to define further, general assumption for this use case. In some use cases, it is critical to

understand which preconditions or other assumptions are being made.

- Any assumptions shall be identified, such as: which systems already exist, which contractual relations exist, and which configurations of systems are probably in place.
- Any initial states of information exchanged in the steps in the next section shall be identified.

Prerequisites

Describes what condition(s) should have been met prior to the initiation of the use case, such as prior state

of the actors and activities.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

Known relations to other use cases can be provided here.

Level of depth

Defines the level of depth of the use case:

High level use case (HL-UC) use case which describes a general requirement, idea or concept independently from a

specific technical realization like an architectural solution

Primary use case (PUC) use case which describes in detail the functionality of (a part of) a business process.

Specialized use case (SUC) use case which is using specific technological solutions/implementations

Prioritisation

Considering a larger number of use cases it might be interesting to cluster them according to priority. This

prioritisation might be different from country to country.

Generic, regional or national relation

Generic, regional or national relation: On international level, the use case description might be generic enough to

describe a use case in a more general way independently from the national or regional market design. But use cases

might be used to describe regional or national specific circumstances like laws or even project-specific details. If the

use case reflects those circumstances, it should be characterized accordingly.

Note: Use Cases demonstrated in more than one DSO (country) should be classified and written as Generic.

Nature of the use case

This field can help to classify the main focus of the use case. EXAMPLE: Technical/system use case, business use

cases (e.g. market processes), political, test use cases.

Further keywords for classification

Keywords can be defined in order to support extended search functionalities within a use case repository. Multiple

keywords should be provided as a comma-separated list.

EXAMPLE: Smart grid, electric vehicles, loading of vehicles, electricity metering, storage, renewables.

1.8 General Remarks

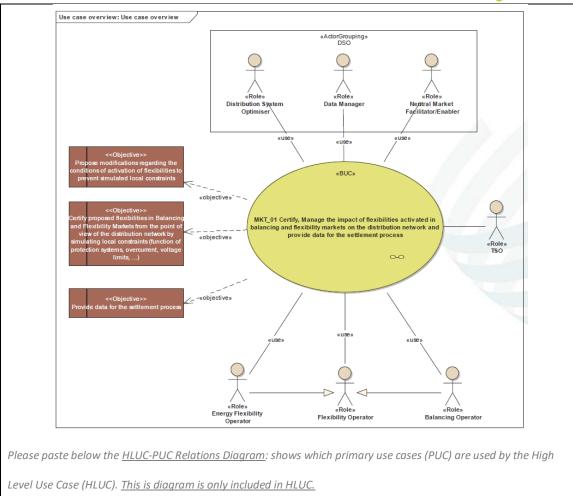
General Remarks

Is used for further comments which are not considered elsewhere.

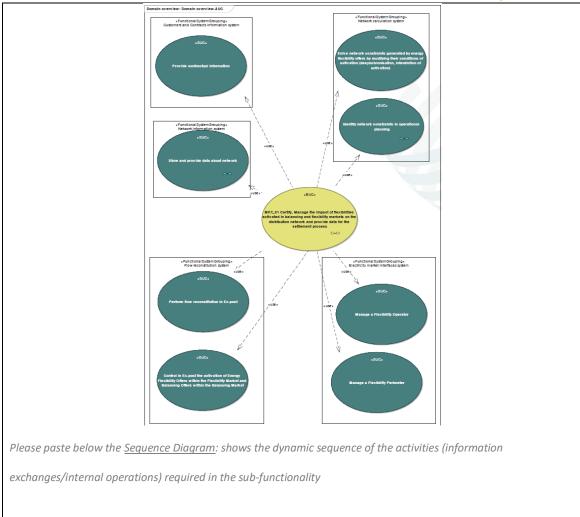
2 Diagrams of use case

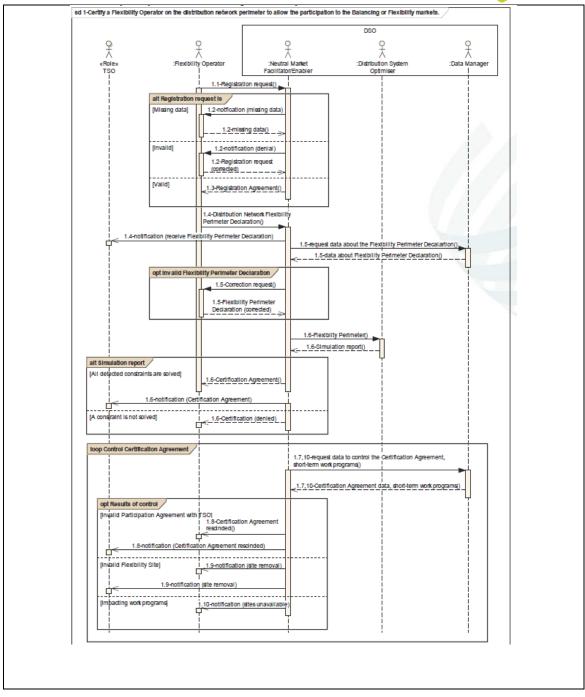
For clarification, in general it is recommended to provide drawing(s) by hand, by a graphic or as UML graphics. The drawing

should show interactions which identify the steps where possible.


Diagram(s) of use case

Please paste below the <u>Use Case Diagram</u>: shows how actors interact within the Use Case by participating in the


technical functions



3 Technical details

3.1 Actors

In this section 3.1, actors which are involved in the use case are listed and described. These can for instance include roles,

systems, applications, databases, devices, etc.

Actors					
Actor Name	Actor Type	Actor Description			

3.2 References

References (which are standards, reports, mandates and regulatory constraints) associated with the Use Case. The writers must identify the standards that should be used to realize the Use Case and improve the replicability of the solution.

Identify any legal issues that might affect the design and requirements of the function, including contracts, regulations, policies, financial considerations, engineering constraints, pollution constraints, and other environmental quality issues.

	References					
No.	References Type	Reference	Status	Impact on use	Originator /	Link
				case	organisation	
			The status	e.g. copy		
			of the	right, IPR		
			referenced			
			document.			

4 Step by step analysis of use case

Template section 4 focuses on describing scenarios of the use case with a step-step analysis (sequence description). There

should be a clear correlation between the narrative and these scenarios and steps.

4.1 Overview of scenarios

The table provides an overview of the different scenarios of the use case like normal and alternative scenarios which are

described in section 4.2 of the template.

In general, the writer of the use case starts with the normal sequence (success). In case precondition or post-condition does not provide the expected output (e.g. no success = failure), alternative scenarios have to be defined.

	Scenario conditions					
No.	Scenario	Scenario	Primary actor	Triggering event	Pre-	Post-condition
	name	description			condition	
			Refers to the actor	Event that triggers	Describes	Describes the
			that triggers the	the scenario. It can	the state	expected state
			scenario. For	be a real event	ofthe	of the system
			instance, a function	such as, "a fault	system	after the
			called "Protection"	occurs in the grid",	before the	scenario is
			would probably be	or it is also	scenario	realized.
			triggered by an	possible to define	starts.	
			"Intelligent	scenarios that		
			Electronic Device	occur periodically.		
			(IED)".			

4.2 Steps – Scenarios

For this scenario, all the steps performed shall be described going from start to end using simple verbs like – get, put, cancel, subscribe etc. Steps shall be numbered sequentially – 1, 2, 3 and

so on. Further steps can be added to the table, if needed (number of steps are not limited).

Should the scenario require detailed descriptions of steps that are also used by other use cases, it should be considered creating a new "sub" use case, then referring to that "subroutine" in

this scenario.

	Scenario							
Scenar	io name :	No. 1 - Reference scenario						
Step	Event	Name of	Description of process/ activity	Service	Information	Information	Information	Requirement, R-IDs
No.		process/			producer	receiver	Exchanged (IDs)	
		activity			(actor)	(actor)		
	Event that	Label that	This describes what action takes		Name of the	Name of the	Here the	
	triggers the	would appear	place in this step. The focus	Identifies	actor that	actor that	information can	
	activity. This	in a process	should be less on the algorithms	the nature	produces the	receives the	use a short ID	
	triggering event	diagram. Action	of the applications and more on	of flow of	information.	information.	referring to	
	can be an	verbs should	the interactions and information	informatio			template	
	event, such as	be used when	flows between actors.	n and the			section 5 for	
	"a fault that	naming activity.		originator			further details.	
	occurs in the	EXAMPLE:		of the			Several	
	grid", or it may	"Fault occurs in		informatio			information	
	refer to an	the grid".		n (*).			exchanged IDs	

activity that			can be listed,	
occurs "periodically".			comma separated.	

(*) Available options are:

- CREATE means that an information object is to be created at the Producer.
- GET (this is the default value if none is populated) means that the Receiver requests information from the Producer (default).
- CHANGE means that information is to be updated. Producer updates the Receiver's information.
- DELETE means that information is to be deleted. Producer deletes information from the Receiver.
- CANCEL, CLOSE imply actions related to processes, such as the closure of a work order or the cancellation of a control request.
- EXECUTE is used when a complex transaction is being conveyed using a service, which potentially contains more than one verb.
- REPORT is used to represent transferral of unsolicited information or asynchronous information flows. Producer provides information to the Receiver.
- TIMER is used to represent a waiting period. When using the TIMER service, the Information Producer and Information Receiver fields shall refer to the same actor.
- REPEAT is used to indicate that a series of steps is repeated until a condition or trigger event. The condition is specified as the text in the "Event" column for this row or step. Following the word REPEAT, shall appear, in parenthesis, the first and last step numbers of the series to be repeated in the following form REPEAT(X-Y) where X is the first step and Y is the last step.

5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step

Analysis". If appropriate, further requirements to the information objects can be added.

Information exchanged					
Information exchanged	Name of information	Description of information exchanged	Requirement, R-IDs		
(ID)					

Refers to an identifier used	Is a unique ID which identifies the	Brief description, in case a reference to existing data	Can be used to define requirements
in the field "Information	selected information in the context of	models/information classes should be added. Using existing	referring to the information and not to
Exchanged" of Table 4.2.	the use case.	canonical data models is recommended.	the step as in the step by step analysis
			(see template section 6 below):
			EXAMPLE: Data protection class
			corresponding to this information
			object.

6 Requirements

This table summarizes the requirements of all steps in the use case and it is linked to template section 4 "Step by Step Analysis".

	Requirements	
Categories ID	Category name for requirements	Category description
Unique identifier for	Name for the category of requirements.	Description of the requirement category.
the category.		
Requirement R-ID	Requirement name	Requirement description

Unique identifier	A name of the requirement.	Description of the requirement (this might be populated automatically
which identifies the		from the repository, if the requirement has already been described in
		non the repository, if the requirement has an eady been described in
requirement within its		the external document before).
category and which		
can link the		
requirement to an		
requirement to an		
external requirement		
document.		

7 Common Terms and Definitions

Should be defined in a common glossary for all use cases. Here relevant terms belonging to this use case are listed. Using a database repository for the glossary, the definitions might be filled

automatically based on existing information.

Common Terms and Definitions				
Term	Definition			

