

D2.3 Report on Islands requirements engineering and Use Cases definitions

Authors: Mónica Fernandes (EDP), Ana Carvalho (EDP)

H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-EC-ES-SCC EUROPEAN COMMISSION

> Innovation and Networks Executive Agency Grant agreement no. 957810

PROJECT CONTRACTUAL DETAILS

Project title	IntegrAted SolutioNs for the DecarbOnization and
	Smartification of Islands
Project acronym	IANOS
Grant agreement no.	957810
Project start date	01-10-2020
Project end date	30-09-2024
Duration	48 months
Project Coordinator	João Gonçalo Maciel (EDP) -
	JoaoGoncalo.Maciel@edp.com

DOCUMENT DETAILS

Deliverable no.	D2.3
Dissemination	Public
level	
Work package	WP2 - Requirements Engineering & Decarbonization Road-
	mapping
Task	T2.1 - Islands requirements engineering and use case
	definitions
Due date	30-11-2022
Actual	02-12-2022
submission date	02 12 2022
Lead beneficiary	EDP

Version	Date	Beneficiary	Changes
0.1	26-05-2021	EDP	First draft
0.2	31-05-2021	SUNAMP, BEON, AME, UNINOVA, BORA-BORA	Small changes to the respective products' specifications. Ameland and Bora-Bora description updated.
0.3	15-06-2021	CERTH, TNO	Comments on the document
0.4	23-06-2021	UBE, AME	Official Review
7	25-06-2021	EDP	first version
1.1	02-03-2022	EDP	Updates according to the developments of the project
1.2	28-03-2022	EDP	Second version
1.3	20-04-2022	UBE, AME	Official Review
2	21-04-2022	EDP	Final second version
2.1	06-07-2022	EDP	Updates to technology descriptions
2.2	11-07-2022	EDP	Update to Use Cases descriptions
2.3	12-09-2022	EDP	Updated with feedback from partners EDA, CERTH and RGA
2.4	24-10-2022	EDP	Changes to Technologies'

		Descriptions adapting the current status of Ameland technologies	
2.5	16-11-2022	UBE	Review
3	02-11-2022	EDP	Final version

This publication reflects the author's view only and the European Commission is not responsible for any use that may be made of the information it contains.

Executive Summary

This document presents Deliverable D2.3, the second update of IANOS' Report on Islands requirements engineering and Use Cases definitions developed under task T2.1 - Islands requirements engineering and use case definitions of Work Package 2 - Requirements Engineering & Decarbonization Roadmapping.

This deliverable presents a detailed definition of the 9 Technical Use Cases of IANOS project along with the identification of the requirements for each technological solution that will be demonstrated in the pilot sites of Ameland and Terceira.

The methodology followed to define the Use Cases was the IEC 62559-2 standard, which templates were used to describe in detail the Key Performance Indicators (KPIs) associated, the pre-requisites and assumptions considered, the actors involved, the relations and information exchanged between them, the scenarios that might occur and the functional, regulatory and safety requirements. Additionally, the Smart Grid Architecture Model (SGAM) was also used to facilitate the description of the different layers of interoperability of the Use Cases.

The first part of the deliverable describes demonstrator sites, where current energy systems are characterized in detail. This part also comprises of product specifications and installation requirements for each hardware solution that will be installed in Terceira and Ameland islands. Moreover, it is presented a characterization of the current energy system of the Fellow Islands (Lampedusa, Bora-Bora and Nisyros) where some of the use cases will be replicated.

Finally, the second part of the deliverable presents the 9 Technical Uses Cases which are defined in detail according to the standard IEC 62559 *Use case methodology*. At the moment of writing, some of the technologies regarding the demonstrator in Ameland are suffering alterations, which may impact the Use Case definition. If need so, a new version of this deliverable will be written, updating the Use Cases and technology descriptions accordingly.

The results of this deliverable, mainly the definition of the Use Cases, will be used in other tasks of the IANOS project, such as T2.4, T2.5, T4.1, T4.3, T4.4, T5.1, T5.2, T5.3, T.5.4, T6.1, T6.2, T6.3 and T6.4.

Table of Contents

LIST OF	FIGURES	9
LIST OF	TABLES	10
ABBREV	/IATIONS AND ACRONYMS	11
1. IN	TRODUCTION	13
1.1 F	Purpose and Scope of the Deliverable	13
1.2 S	STRUCTURE OF THE DELIVERABLE	13
1.3 F	RELATION TO OTHER DELIVERABLES	14
2 USE	CASES METHODOLOGY	16
2.1	Jse Cases Overview	16
2.2 S	STANDARDS USED	18
2.2.1	SGAM	18
2.2.2	IEC 62559-2	27
2.3 F	Participation and responsibilities	23
3 TERG	CEIRA DEMONSTRATOR	26
3.1	GENERAL CHARACTERIZATION	26
3.2 S	SITE ASSESSMENT AND EXISTING INFRASTRUCTURE	26
3.2.1	Supply and Demand	27
3.2.2	Electricity Grid	29
3.3 E	EQUIPMENT AND SYSTEM SPECIFICATION	32
3.3.1	PV panels with microinverter	32
3.3.2	Electrochemical batteries	33
3.3.3	Heat Batteries	33
3.3.4	Electric Water heaters	34
3.3.5	V2G chargers	35
3.3.6	Flywheel	36
3.3.7	Smart Energy Router	38
3.3.8	Hybrid Transformer	39
3.3.9	FEID-PLUS	40

	3.3.10	HEMS	42
	3.4 Lis	T OF STAKEHOLDERS	44
4	AMEL	AND DEMONSTRATOR	46
		NERAL CHARACTERIZATION	
	4.2 SIT	E ASSESSMENT AND EXISTING INFRASTRUCTURE	47
	4.2.1	Supply and Demand	47
	4.2.2	Electricity Grid	49
	4.2.3	Natural Gas Grid	49
	4.3 EQ	UIPMENT AND SYSTEM SPECIFICATION	49
	4.3.1	Residential solar panels	50
	4.3.2	Solar farm	50
	4.3.3	Micro-CHP	50
	4.3.4	Private Methane Fuel Cells	51
	4.3.5	Fuel Cell	51
	4.3.6	Hybrid Heat Pumps	51
	4.3.7	Biobased saline batteries	51
	4.3.8	Hydrogen fuelled vehicles or other H2 usages	52
	4.3.9	Tidal Kite	52
	4.3.10	Digester	52
	4.3.11	Electrolyzer	53
	4.4 Lis	T OF STAKEHOLDERS	53
5	FELLC	W ISLANDS	54
	5.1 Lai	MPEDUSA	54
	5.1.1	General characterization	54
	5.1.2	Site assessment and existing infrastructure	54
	5.1.2.1	Supply and Demand	54
	5.1.2.2	Electricity Grid	57
	5.2 Bc	ra-Bora	60
	5.2.1	General characterization	60

	5.2.2	Site assessment and existing infrastructure	60
	5.2.2	Supply and Demand	60
	5.2.2	2.2 Electricity Grid	61
	5.3 N	ISYROS	64
	5.3.1	General characterization	64
	5.3.2	Site assessment and existing infrastructure	64
6	USE (CASES DEFINITION	69
	6.1 Tr	RANSITION TRACK 1: USE CASES	69
	6.1.1	Use case 1: Community demand-side driven self-consumption maximization	69
	6.1.2	Use case 2: Community supply-side optimal dispatch and intra-day services provision	96
	6.1.3	Use case 3: Island-wide, any-scale storage utilization for fast response ancillary services.	116
	6.1.4	Use case 4: Demand Side Management and Smart Grid methods to support Power quo	ality
	and c	congestion management services	134
	6.2 Tr	RANSITION TRACK 2: USE CASES	163
	6.2.1	Use case 5: Decarbonization of transport and the role of electric mobility in stabilizing th	ne
	energ	gy system	163
	6.2.2	Use case 6: Decarbonising large industrial continuous loads through electrification and	
	locall	y induced generation	188
	6.2.3	Use case 7: Circular economy, utilization of waste streams and gas grid decarbonization	1206
	6.2.4	Use case 8: Decarbonization of heating network	223
	6.3 Tr	RANSITION TRACK 3: USE CASES	239
	6.3.1	Use case 9: Active Citizen and LEC Engagement into Decarbonization Transition	239
7	CON	CLUSIONS AND NEXT STEPS	.246
8	REFE	RENCES	.248
9	ANNE	EX	.249

List of Figures

Figure 1: Task 2.1 and the relation with other tasks	15
Figure 2: Smart Grid Architecture Model (SGAM) dimensions: Domains, Zones and Interoperability Layers	18
Figure 3: Terceira's location	26
Figure 4: Energy mix in Terceira in 2020	27
Figure 5: Electricity consumption in Terceira in 2020	27
Figure 6: Peak and Off-Peak Demands in Terceira, in 2020	28
Figure 7: Load Demand Curves for different seasons in Terceira, in 2020	29
Figure 8: Terceira's electricity grid	30
Figure 9: Ameland's location	46
Figure 10: Energy consumption per sector in Ameland (2012-2019)	47
Figure 11: Energy consumption in Ameland	48
Figure 12: Power over the mainland connector in Ameland (2017)	48
Figure 13: Ameland's MV electricity grid	49
Figure 14: Ameland's gas grid	49
Figure 15: Electricity generation mix in Lampedusa, in 2020	55
Figure 16: Typical Load Demand Curve for Lampedusa island	56
Figure 17: Energy consumption per sector in Lampedusa	56
Figure 18: Lampedusa's electricity grid	57
Figure 19: Lampedusa's generators	59
Figure 20: Typical demand curve for weekdays in Bora-Bora island	61
Figure 21: Typical demand curve for weekends in Bora-Bora island	6 ⁻
Figure 22: Bora-Bora's power grid	62
Figure 23: Nisyros' villages	64
Figure 24: Autonomous microgrid of Kos-Kalymnos-Nisyros-Tilos	65
Figure 25: Electrical energy demand for Tilos island	66
Figure 26: Nisyros island total electricity consumption (MWh _e) time evolution	66
Figure 27: Electricity consumption of Nisyros per sector (2010-2019)	67

List of Tables

Table 1: Use Cases overview	17
Table 2: Partners' participations on the Use Cases	23
Table 3: Use Case Owners	25
Table 4: Terceira's power plants	30
Table 5: Terceira's substations	31
Table 6: Energy Losses in Terceira's power system, in 2020	32
Table 7 Technical Characteristics of PV panels with microinverters	32
Table 8: Technical specifications of SUNAMP'S Heat Batteries	33
Table 9 Technical Specifications of Smart Electric Water Heaters to be installed in Terceira	35
Table 10 Technical specifications of the V2G Chargers to be installed in Terceira	36
Table 11: Technical specifications of TERALOOP's flywheel	36
Table 12: Technical Specifications of UNINOVA'S Smart Energy Router	38
Table 13T Technical Characteristics of the hybrid transformer	4C
Table 14 Technical specifications of the FEID-Plus	41
Table 15: CLEANWATTS' HEMS for the Residential Sector	42
Table 16: List of stakeholders for the hardware solutions demonstrated in Terceira	44
Table 17 Technical specifications of the biobased saline batteries	51
Table 18: Electricity consumers in Bora-Bora island	6C
Table 19: Bora-Bora's distribution grid	62
Table 20: Diesel Generators of Bora-Bora	63
Table 21: Energy losses in Bora-Bora's island	63

Abbreviations and Acronyms

API	Application Programming Interface	
AS	Ancillary Services	
BESS	Battery Energy Storage System	
BMS	Building Management Systems	
CHP	Combined Heat and Power	
CO2	Carbon Dioxide	
DC	Direct Current	
DER	Distributed Energy Resources	
DHW	Domestic Hot Water	
DLT	Distributed Ledger Technology	
DSM	Demand-Side Management	
DR	Demand Response	
DSO	Distribution System Operator	
ESS	Energy Storage System	
EV	Electric Vehicle	
FC	Fuel Cell	
FEID	Fog-Enabled Intelligent Device	
FFR	Fast Frequency Response	
FRR	Frequency Restoration Reserve	
aFRR, mFRR Automatic/Manual FRR		
GDPR General Data Protection Regulation		
GOPACS	Grid Operation Platforms for Congestion Solutions	
HEMS	Home Energy Management System	
HVAC Heating, Ventilating and Air Conditioning		
H2 Hydrogen		
ICT	Information and Communication Technologies	
IEC	International Electrotechnical Commission	
IED	Intelligent Electronic Device	
IEPT	IANOS Energy Planning and Transition Suite	
IoT	Internet of Things	
iVPP	Intelligent Virtual Power Plant	
KPI	Key Performance Indicators	
LEC	Local Energy Communities	
LH	Lighthouse	
LV	Low Voltage	
MV	Medium voltage	
NG	Natural Gas	
OCPP	Open Charge Point Protocol	
PCM Phase-Change Material		

PSI	Project Success Indicator	
PV	Photovoltaic	
PUCs	Primary Use Cases	
P2P	Peer-to-peer	
RES	Renewable Energy Sources	
RTU	Remote Terminal Unit	
SCADA	Supervisory Control and Data Acquisition	
SG-CG	Smart Grid Coordination Group	
SGAM	Smart Grids Architecture Model	
SoC	State of Charge	
SUC	Specialized Use Case	
TCP/IP	Transmission Control Protocol/Internet Protocol	
TSO	Transmission System Operator	
П	Transition Track	
UC	Use Case	
UI	User Interface	
UML	Unified Modelling Language	
VRDT	Voltage Regulating Distribution Transformers	
V2G	Vehicle-to-Grid	
iVPP	Intelligent Virtual Power Plant	
WP	Work Package	
WT	Wind Turbine	
L		

1. Introduction

1.1 Purpose and Scope of the Deliverable

IANOS project aims to decarbonize the energy systems of the Lighthouse Islands (Ameland and Terceira) and explore the possibility of replication in the Fellow Islands (Bora-Bora, Lampedusa, Nisyros). For this purpose, the project will demonstrate, under real-life operational conditions, a group of both technological and non-technological solutions adapted to harsh islandic conditions that are described in 9 Use Cases.

The Deliverable 2.3 - Report on Islands requirements engineering and UCs definitions developed under task T2.1 - Islands requirements engineering and use case definitions presents a characterization and identification of the Lighthouse Islands' requirements for each hardware solution that will be deployed in the demonstrator sites. Accordingly, this deliverable comprises a characterization of the current energy system of the islands (both Lighthouse and Fellow Islands) and a description of the product and technical specifications as well as installation requirements of the hardware solutions that will be demonstrated.

Moreover, the Deliverable 2.3 also presents a detailed definition of the 9 Use Cases of IANOS project where information is presented concerning various scopes such as the possible scenarios along with the information exchanged between the different actors of the Use Cases and the list of requirements.

1.2 Structure of the Deliverable

Deliverable D2.3 is structured as follows:

- Chapter 2: Use Cases Methodology is presented, comprising of the overview of the Use Cases in respect to the transition tracks and demonstrator sites of the project, the standards used for the definition of the Use Cases and the participation of the partners in each Use Case.
- Chapter 3: Terceira Demonstrator is characterized. This chapter contains a
 general characterization of Terceira, followed by a characterization of the current
 energy system of the island. Additionally, this chapter comprises of the
 specifications and installation requirements for all the solutions that will be

13

implemented in Terceira followed by the list of stakeholders where the solutions will be installed.

- Chapter 4: Ameland Demonstrator is characterized. This chapter contains a general characterization of Ameland, followed by a characterization of the current energy system of the island. Additionally, this chapter comprises of the specifications and installation requirements for the solutions that are currently planned to be implemented in Ameland, followed by the list of stakeholders where the solutions will be installed.
- Chapter 5: Fellow Islands characterization is presented where a general characterization of the island and the assessment of the current energy system are described for each Fellow Island.
- Chapter 6: Use Cases Definition is presented and is divided according to the 3 Transition Tracks of the project.
- Chapter 7: Conclusions and Next Steps are summarized.

1.3 Relation to other deliverables

Task 2.1 is strongly related to several tasks of IANOS project since it defines in detail the Use Cases implemented in the Lighthouse Islands and identifies the requirements to demonstrate all the solutions in the pilot sites. Therefore, the results and conclusions from this task will be used in the subsequent tasks, mainly in the ones related with Requirements Engineering & Decarbonization Roadmapping (WP2), IANOS Multi-Layer VPP Operational Framework (WP4) and Deployment, Use Cases Realization and Monitoring at LH (WP5, WP6).

In order to define the specifications and descriptions of the hardware technological solutions that will be demonstrated in the pilot sites, some inputs from Task 1.2 were needed.

Furthermore, Task 2.1 provides inputs regarding information and communication protocols of hardware solutions and the list of stakeholders to Task 2.3 and receives the KPIs to address to each one of the Use Cases, as well as Project Success Indicators (PSI) to evaluate the project success as a whole. Additionally, Task 2.1 provides inputs to Task 2.4 and Task 2.5 mainly related with the requirements identified. This task is also connected to Tasks 4.1, 4.3 and 4.4, since the development of the ICT components of

14

the iVPP platform will need the requirements and the detailed definition of the Use Cases. Finally, Task 2.1 will provide inputs for Tasks 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3 and 6.4 since these tasks will comprise of Use Cases realization and deployment, as well as, inputs for Task 7.1 to perform the technical impact assessment as it is illustrated in Figure 1.

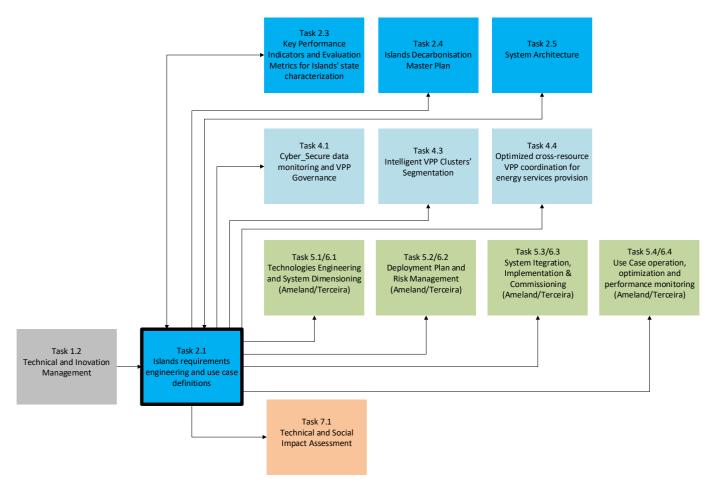


Figure 1: Task 2.1 and the relation with other tasks

2 Use Cases Methodology

2.1 Use Cases Overview

Use Cases allow to identify, clarify and organize system requirements since they are made up of a set of possible sequences of interactions between different actors in a particular environment and related to a particular goal. The Use Cases that will be demonstrated in IANOS project are technical Use Cases which describe the functionality level of the system and therefore specify functions or services that the system provides to the user. Furthermore, these Use Cases intend to be generic about the technological implementation in order to ensure replicability.

Except Use Case 9, all Use Cases are connected with the intelligent Virtual Power Plant (iVPP) and basically describe the interaction between the different actors (iVPP platform included) in order to meet its aim.

The 9 Use Cases, that will be demonstrated in Terceira and Ameland pilots and replicated in the Fellow Islands, are clustered into 3 Energy Transition Tracks (TT) according to the challenges addressed and exploitation opportunities. The Energy Transition Tracks are the following:

- -TT#1 Energy efficiency and grid support for extremely high-RES penetration which comprises of UC1, UC2, UC3 and UC4. This TT utilizes the iVPP logic to reduce energy curtailment and enabling a high-RES penetration in the energy system.
- -TT#2 Decarbonization through electrification and support from non-emitting fuels which comprises of UC5, UC6, UC7 and UC8. This TT demonstrates the potential of electrification as a means to decarbonize relevant sectors along with non-emitting fuels utilization for cross-resource integration and circular economy.
- -TT#3: Empowered Local Energy Communities that includes only UC9 and aims to engage and involve citizens into the decarbonization transition of the islands.

Furthermore, the Use Cases of IANOS project will be demonstrated (D) in at least one of the Lighthouse Islands during the course of the project and replicated (R) in the Fellow Islands.

Table 1 presents an updated overview of the Use Cases of IANOS project regarding the Transition Track associated and their demonstrator and replication sites.

Table 1: Use Cases overview

Use Case Number	Use Case Name	Ameland	Terceira	Bora- Bora	Lampedu sa	Nisyros	
#TTI: Energy efficiency and grid support for extremely high RES penetration							
UCI	Community demand-side driven self-consumption maximization	D	D	-	-	R	
UC2	Community supply-side optimal dispatch and intraday services provision	D	D	-	R	-	
UC3	Island-wide, any-scale storage utilization for fast response ancillary services	D	D	R	R	-	
UC4	Demand Side Management and Smart Grid methods to support Power quality and congestion management services	D	D	-	R	R	
#TT2: Decar	bonization through elec	ctrification a	nd support	from non-e	mitting fuel	S	
UC5	Decarbonization of transport and the role of electric mobility in stabilizing the energy system	D	D	R	R	R	
UC6	Decarbonizing large industrial continuous loads through electrification and locally induced generation	D	-	-	-	R	
UC7	Circular economy, utilization of waste streams and gas grid decarbonization	D	-	R	R	R	
UC8	Decarbonization of heating network	D	-	R	-	R	
#TT3: Empowered Local Energy Communities							
UC9	Active Citizen and LEC Engagement into Decarbonization Transition	D	D	R	R	R	

D: Demonstration / R: Replication

2.2 Standards used

In order to guarantee harmonisation and replicability of the use cases, standardized methodologies were used such as the Smart Grid Architecture Model (SGAM) and the IEC 62559-2 standard.

221 SGAM

The Smart Grid Architecture Model (SGAM) is a unified standard for smart grid use-cases and architecture design defined by the CEN-CENELEC-ETSI Smart Grid Coordination Group (SG-CG) [1]. This model enables the provision of a global and clear view of smart grid projects by mapping the different actors and devices considering 3 dimensions. The first dimension describes the domains which range from generation through transmission and distribution to end-consumers. The second dimension corresponds to the zones of operation from the processes through field, station and operation to enterprise and market zones. Finally, the third dimension describes the interoperability layers that range from the component layer to the business layer.

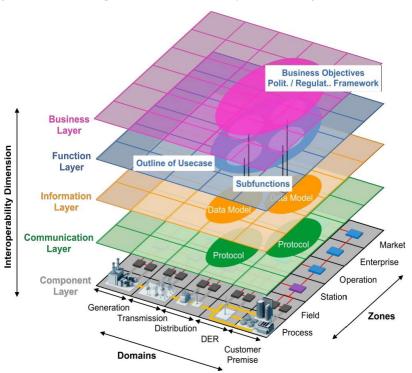


Figure 2: Smart Grid Architecture Model (SGAM) dimensions: Domains, Zones and Interoperability Layers

As it is shown in Figure 2, according to the SGAM, there are 5 interoperability layers:

- The Business Layer which represents the business view of the smart grid model.
 The business layer can be used to map different stakeholders within the zones and domains and also to map their roles and responsibilities.
- The Function Layer which comprises of functions and services independent from actors and physical implementations in applications, systems and components.

 These functions reveal the functionalities of the Use Case.
- The Information Layer which contains the information exchanged between the actors involved in the Use Case. This layer comprises of information objects and the underlying canonical data models.
- The Communication Layer which describes protocols and mechanisms for the interoperable exchange of information between components.
- The Component Layer represents the physical distribution of all the components (e.g. system actors, applications, power system equipment, smart meters, etc.).

For each interoperability layer, there is a 2-Dimensional plane characterized by Domains and Zones.

Domains cover the complete electrical energy conversion chain:

- The Generation includes generation of electrical energy in bulk quantities (fossil, nuclear, hydropower plants, offshore wind farms, large-scale solar power plants), normally connected to the transmission system.
- The Transmission includes all the infrastructure responsible for transporting electricity over long distances.
- The Distribution represents the infrastructure responsible for distributing electricity to the customers.
- The Distributed Energy Resources (DER) include any distributed technologies
 of small-scale power generation (from 3 kW to 10.000 kW) directly connected
 to the distribution grid.
- The Customer Premises host consumers but also prosumers which apart from consuming electricity are also able to generate electricity through solar PV panels, micro turbines, electric vehicles storage, etc.. The premises can be

industrial, commercial and home facilities such as airports, shopping centres and homes.

Finally, **Zones** represent the hierarchical levels of power system management:

- The Process includes all the physical, chemical or spatial transformations of energy and the equipment directly involved such as generators, transformers, cables, sensors, etc.
- The Field includes all the equipment to protect, control and monitor the power system such as protection relays, intelligent electronic devices, etc.
- The Station which represents the aggregation of field zones such as local SCADA systems, data concentration, etc.
- The Operation which hosts power system control operation in the respective domain such as distribution management system, energy management system, etc.
- The Enterprise which includes commercial and organizational processes, services and infrastructures for enterprises such as asset management, logistics, work force management, customer relation management, etc.
- The Market which reflects the market operations possible along the energy conversion path such as energy trading or retail market.

In Chapter 6 - *Use Cases Definition*, each Use Case is defined according to the IEC 62559-2 standard and in Section 1.4 (Narrative of the Use Case – Complete Description) of this template a characterization of the SGAM layers that are applicable to the Use Case is presented. For each interoperability layer, actors are mapped into Domains and Zones. All Use Cases, except UC 9, have the Function and Information Layer characterized. Only UC1, UC4 and UC5 present the Communication Layer due to the absence of information regarding communication and information protocols from its actors. Moreover, since IANOS' Use Cases are technical Use Cases, the Business and Component Layers are not characterized.

2.2.2 IEC 62559-2

The Use Cases are described according to the IEC 62559-2 standards, thereby the standard IEC 62559 *Use case methodology* (Annex I) is the template used for the description of the 9 Use Cases of IANOS project.

This template contains 7 Sections:

- Section 1: Description of the Use Case
 - 1.1 Name of the Use Case: Use Case identification, transition track and name.
 - 1.2 **Version Management**: History of updates, contributions and comments from project partners to the use case definition.
 - 1.3 Scope and Objectives of Use Case: Boundaries and the listed objectives.
 - 1.4 Narrative of Use Case: Short and complete description of the use case. The complete description describes what occurs when, why, with what expectation, and under which conditions. In this section, the characterization of SGAM layers that are applicable to the Use Case is included. Additionally, this section presents a table that describes the information and communication protocols for the hardware technological solutions that will be implemented within the scope of the Use Case along with the respective demonstrator sites where they will be demonstrated.
 - 1.5 Key Performance Indicators (KPIs): KPIs from the D2.9 IANOS KPIs and evaluation metrics. Due to the technical nature of the Use Cases, only some of the KPIs were chosen and explained here (e.g. KPIs in economic domain were not considered in this deliverable). The KPI identification number corresponds to the number defined in D2.9 and the KPIs are linked to the objectives defined in section 1.3. Throughout the task 2.1 progress, several KPIs were adapted and redefined to better adapt to each Use Case reality. This was done in coordination with the Consortium partners and Task 2.3. In addition to the KPIs, also the PSIs in deliverable D2.9 should be taken into consideration when measuring UC and Project success.
 - 1.6 Use Case Conditions: Assumptions and Prerequisites for each use case.
 - 1.7 Further Information for classification / mapping
 - Relation to other use cases: IANOS' Use Cases are strongly related with each other, mainly the ones that belong to the same Transition Track.

Level of depth: All Use Cases, except UC9 which is a high-level use case, are specialized use cases since they use specific technological solutions/implementations.

Prioritisation: All Use Cases have a high priority since all have the same level of importance for the project.

Generic, regional or national relation: All Use Cases are generic because they will be demonstrated in more than one country.

Nature of the use case: All Use Cases have a technical nature, except UC9 which has a social nature.

Further Keyword for classification: List of keywords related to the Use Case.

1.8 General Remarks: Any other important details related to the Use Case that were not referred in other sections.

• Section 2: Diagrams

UML Use Case diagrams where objectives and actors are presented; activity diagrams where different tasks of the use case are described; and sequence diagrams where the information exchanged between actors is presented.

• Section 3: Technical Details

- 3.1 Actors: List of actors involved in the use case.
- 3.2 **References**: Any documents or standards that are important for the Use Case.
- Section 4: Step by step analysis of use case
 - 4.1 Overview of scenarios: A scenario describes a situation that might occur in the Use Case. A short description, the responsible actor, the triggering event, the preconditions and post-conditions are presented.
 - 4.2 **Steps Scenarios:** For each scenario the succession of events is described. The information flows presented in the sequence diagrams correspond to the steps of the scenario.

Section 5: Information Exchanged

Describes the information exchanged between actors in specific scenarios.

Section 6: Requirements

Describes the necessary requirements (functional, data privacy, cybersecurity, etc.) for the implementation of the Use Cases.

• Section 7: Common Terms and Definitions: Glossary of terms.

2.3 Participation and responsibilities

Each Use Case includes the contribution of different partners of the project:

- Technological Providers (T): Partners who provide technological hardware solutions to be demonstrated in the Lighthouse Islands.
- Local Partners (L): Partners located in the LH (e.g. municipalities).
- Lighthouse island system's integrators (LH): Partners that cope with LH integration and operation and performance monitoring. Additionally, partners that are involved in the development of the iVPP platform.
- People Engagement Partners (P): Partners which are responsible for citizens or stakeholder's engagement in LH islands.
- Replication Activities Partners (R): Partners that will support Fellow Islands in the replication of the Use Cases.

Table 2 presents the participants for each Use Case as well as the characterization of the type of contribution to the Use Case according to the groups of partners described above:

Table 2: Partners' participations on the Use Cases

Partners	UC1	UC2	UC3	UC4	UC5	UC6	UC7	UC8	UC9
EDP NEW	LH	LH	LH	LH	LH				LH
	Т								
Uninova	ТР			ΤP					Р
Efacec Energia				Т					
EDA	L	L	L	L LH	L				
	LH	LH	LH		LH				
Efacec Electic Mobility					Т				
					LH				
Governo Regional dos	L	L	L	L	L				L
Açores									
Virtual Power Solutions	LH	LH	LH	LH	LH				
	Т	Т	Т	Т	Т				
Teraloop			Т						
Sunamp	Т								
BeOn	Т								
Municipality of Ameland	L	L	L	L	L	L	L	L	L
New Energy Coalition							Р		Р

TNO	LH								
Alliander	L	L	L	L	L	L	L	L	
Amelander Energie	Р			Р					Р
Coöperatie									
SuWoTec	Т			Т					
Hanze University									Р
Neroa	LH								
Repowered B.V.	LH								
SeaQurrent Holding B.V.						Т			
GasTerra B.V.							Т		
Municipality of			L	L	L		L		L
Lampedusa and Linosa									
CNR-IIA			R	R	R		R		R
Commune de Bora-Bora		L	L		L		L	L	L
Akuo Energy		R	R		R		R	R	R
Municipality of Nisyros	L			L	L	L		L	L
CERTH	LH								
	Т								
ETRA	LH								
Engineering-Ingegneria	LH								
Informatica SpA									
RINA			R	R	R		R		R
EREF									Р
UBITECH ENERGY	LH								

T: Hardware Technology Provider L: Local Partners LH: Lighthouses' System Integration

P: People Engagement Partners R: Replication Activities Partners

Each Use Case will be assigned to a Use Case Owner which will be responsible for the implementation of the Use Case. Use Case owners assure that the objectives of the Use Case defined in this deliverable are met, assure KPIs' results are obtained and also monitor UC development. Table 3 presents the Use Case owners for each Use Case in the 2 Lighthouse Islands.

Table 3: Use Case Owners

	Use Case Owne	rs
Use Case	Terceira	Ameland
UCI	EDP NEW/EDA	NEROA
UC2	EDP NEW/EDA	REPOWERED
UC3	EDP NEW/EDA	REPOWERED
UC4	EDP NEW/EDA	ALLIANDER
UC5	EDP NEW/EDA	AMELAND
UC6	-	AMELAND
UC7	=	AMELAND
UC8	-	AEC
UC9	RGA	AEC

3 Terceira Demonstrator

3.1 General characterization

Terceira is the third largest island in the Azores archipelago, with an area of 402.2 km². Terceira is a volcanic island located in the middle of the north Atlantic Ocean 1,600 km West of Portugal and its population is 55,300 inhabitants. Its economy is mostly based on the raising of livestock, production of dairy-based products and, recently, tourism. Between 2010-2018 the tourism in Terceira has grown 230%, reaching in 2018 137,920 tourists. Angra do Heroísmo, the historical capital of the archipelago and part of Terceira, is classified as an UNESCO World Heritage Site. Terceira has a subtropical climate with mild annual oscillations. Given its volcanic origin, geothermal surfaces allow the use of geothermal resources for power generation.

Figure 3: Terceira's location

3.2 Site assessment and existing infrastructure

Terceira's current energy system state is described addressing the current energy supply and demand as well as a detailed description of the electricity grid of the island.

3.2.1 Supply and Demand

In 2020, 184.6 GWh of electricity were generated in Terceira, where approximately 38% were from renewable energy sources as it is shown in Figure 4. The fuel oil is still the dominant energy source in the island.

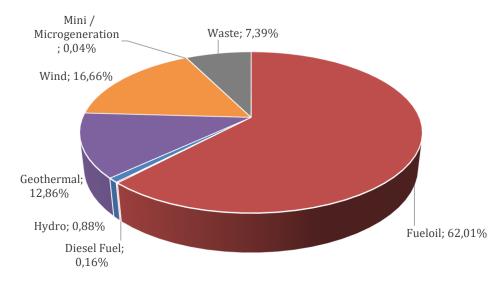


Figure 4: Energy mix in Terceira in 2020

Regarding the electricity consumption in 2020, 170.7 GWh were consumed in the island: 101.1 GWh from Low Voltage and 69.6 GWh from Medium Voltage. According to Figure 5, the Residential Sector is the one who represents the most significant consumption.

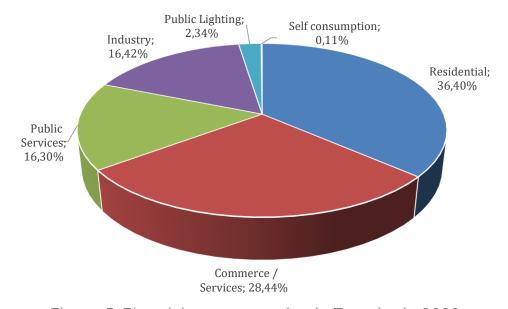


Figure 5: Electricity consumption in Terceira in 2020

As illustrated in Figure 6, the annual peak demand in 2020 was in 29 December at 7:30 PM, while the annual off-peak demand was in 7 May at 04:45 PM.

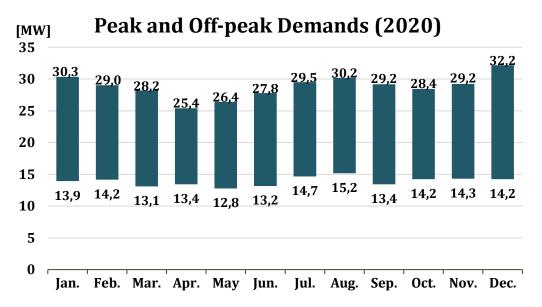


Figure 6: Peak and Off-Peak Demands in Terceira, in 2020

The typical load demand curve obviously varies according to the seasons of the year as it can be observed in Figure 7. Accordingly, the highest rise in consumption happens in the morning, certainly driven by the beginning of activity from commercial and residential sectors. The peak consumption depends on the season: while in Winter and Autumn is around 08:00 PM, in Spring and Summer is in the morning at 10:00 AM and 12.00 AM, respectively.

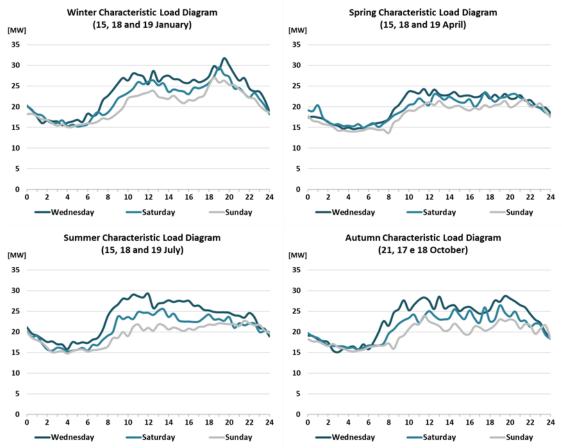


Figure 7: Load Demand Curves for different seasons in Terceira, in 2020

3.2.2 Electricity Grid

The electric system of Terceira is composed of 8 power plants and 6 substations. It has a MV transmission line at 30 kV, MV distribution lines at 15 kV and LV distribution lines at 0.4 kV as displayed in Figure 8. The distribution grid has a total of 1,490 km of network length: 1,092 km aerial cables and 398 km underground cables. 358 km correspond to 15 kV lines, 0.74 km correspond to 30 kV while 1,131 km are LV lines. On the other hand, the transmission grid has only 79 km of length: 67 km aerial and 12 km underground cables.

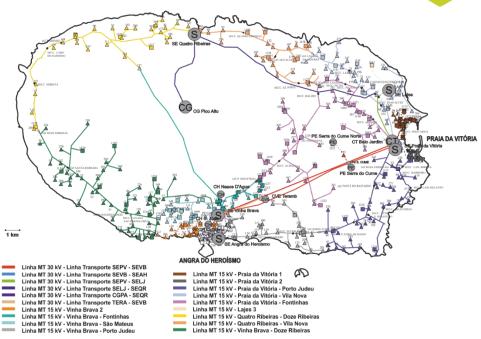


Figure 8: Terceira's electricity grid

Table 4 presents the 8 power plants of Terceira. The island has 79.5 MW of capacity installed with a diverse portfolio of power plants: thermal, hydro, wind, waste and geothermal. Hydropower plants are the oldest with more than 60 years operation and the geothermal power plant the newest, which is in operation only since 2017. The plant which generates more electricity is undoubtedly Belo Jardim power plant, followed by the geothermal plant Pico Alto and wind park Serra do Cume.

Table 4: Terceira's power plants

	In		Ge	enerator	Groups	Electricity
Name	operation since (*)	Type of production	Voltage level [kV]	Units	Installed Capacity [kW]	Production [MWh]
Belo Jardim	1983	Diesel Fuel	6.6	3	9,116	255.2
Delo Salaii ii	1505	Fueloil	6	6	49,000	120,029.8
Cidade	1955	Hydro	0.4	1	264	376.7
Nasce d'Água	1955	Hydro	0.4	1	720	852.1
São João de Deus	1955	Hydro	0.4	1	448	400.2
Serra do Cume	2008	Wind	0.4	10	9,000	23,192.5

Serra do Cume	2012	Wind	0.7		7,600	7.555.0
Norte	2012	Wind	0.4	4	3,600	7,555.8
TERAMB	2016	Waste	6	1	2,720	13,651.1
Pico Alto	2017	Geothermal	11	1	4,675	23,741.7
			-	28	79,543	190,055.2

^{*} Date referring to the start of operation of the system and not including subsequent refurbishments or expansions.

The electricity grid is composed of 6 substations: 1 for the Belo Jardim power plant and 5 in the MV transmission line at 30 kV. Table 5 presents information regarding the 6 substations of Terceira.

Table 5: Terceira's substations

Name	Abbreviation	In operation since (*)	Transformation Ratio	Installed Capacity [MVA]
Belo Jardim	SEBJ	1983	30/15 kV	10.00
Praia da Vitória	SEPV	2016	30/15 kV	20.00
Vinha Brava	SEVB	1990	30/15 kV	20.00
Angra do Heroísmo	SEAH	2003	30/15 kV	10.00
Quatro Ribeiras	SEQR	2010	30/15 kV	10.00
Lajes	SELJ	2004	30/6,9 kV	12.50
Lajes	SLL	2004	30/15 kV	1.00
	1	·	Total	83.50

^{*} Date of to the start of operation of the system, not including subsequent refurbishments or expansions.

Concerning energy losses, analysing the year 2020, Table 6 illustrates that there were around 13.9 GWh of energy losses corresponding to 7.52% of grid losses. Isolated systems, like Terceira Island, are subject to frequency and voltage fluctuations caused by power deviations of independent generation (wind, waste and geothermal generation) and load demand. The autonomous and decentralized frequency and voltage control system is achieved by each diesel generator connected to the grid in Belo Jardim Power Station, with conventional droop control methods implemented on individual speed and voltage regulators and based on droop characteristic.

Table 6: Energy Losses in Terceira's power system, in 2020

Energy [kWh]	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total
Production	46,137,524	42,770,054	47,801,179	47,900,405	184,609,162
Consumption	43,022,677	39,993,438	44,081,395	43,622,254	170,719,763
Grid Losses	3,114,847	2,776,616	3,719,783	4,278,152	13,889,399
311d 203303	6.75%	6.49%	7.78%	8.93%	7.52%

3.3 Equipment and system specification

In Terceira, several hardware solutions will be installed in certain stakeholders. In this subchapter, a description of the technical and product specifications and the installation requirements of the hardware solutions are presented.

3.3.1 PV panels with microinverter

Solar PV panels and microinverter plug & play kit to be installed in customer premises in Terceira, to be used towards community demand-side driven self-consumption. These solar kits are modular and allow for ease of installation.

Product Specifications

Table 7 Technical Characteristics of PV panels with microinverters

Technical Specifications				
Nominal power for each installation	1,500W (5x300W)			
Dimensions	10m² (around 2m² per panel)			
Maximum voltage	49V DC, 230V AC			

Installation Requirements

Requires 10m² for the installation.

3.3.2 Electrochemical batteries

Sixteen distributed electrochemical batteries will be installed in customer premises in Terceira. These batteries will be standard batteries, with no innovation feature associated. Therefore, it is not necessary to identify the specifications and installation requirements.

3.3.3 Heat Batteries

Twenty-four heat batteries developed by SUNAMP (UniQ eHW 3 +iPV) will enable the production of domestic hot water heating by using grid electricity and surplus PV energy. These batteries allow the maximization of thermal power by immersing a powerful heat exchanger into the Phase Change Material used as storage medium.

Product Specifications

Table 8: Technical specifications of SUNAMP'S Heat Batteries

Technical Specifications	UniQ eHW 3 +iPV
Width x Height x Depth (mm)	575 x 440 x 365
Gross Weight (kg)	74
Net Weight (kg)	70
Volume (m3)	0.092
Heat storage capacity (kWh)	3.5
Water Content (L)	2.3
Equivalent Hot Water Cylinder Size (L)	71
V40, Volume of Hot water available at 40°C (L)	85
Standby heat loss rate (kWh / 24h (W))	0.48 / (20)
Energy efficiency rating class	С
Recommended maximum HW flow rate (L/Min)	6
Minimum mains supply pressure at inlet of Heat	1.5
Battery (Bar)	
Maximum working pressure (MPa / (Bar))	1.0 (10)
Hot water outlet temperature at design flow rate	45-55
(°C)	
Connected load at ~ 230 V, 50Hz (W)	2,800
Power supply / Standby consumption (W)	1 PH ~ 230 V / 7
Electrical efficiency (ηelecwh) (%)	81.4

Annual electricity consumption (AEC)	542
(kWh/annum)	
Tapping cycle	S

Installation Requirements

- · The Heat Battery is suitable for indoor use only;
- Due to the weight of the Heat Battery, it must be ensured that the floor is level, sound and capable of supporting its weight;
- There must be a space of 150mm around the Heat Battery (i.e. to view LED lights), and space of 450mm above it (i.e. to remove the lid if necessary).

3.3.4 Electric Water heaters

The solution developed by UNINOVA allows the non-intrusive characterization and use of energy flexibility provided by existing electric water heaters. The solution will be tested and implemented in new electric water heaters to be installed at the consumers' households.

UNINOVA's solution comprises of a set of sensors coupled and installed in individual water heaters, to collect operation information. Collected information is then passed through a microcontroller and communicated wirelessly to UNINOVA's servers and through them to the iVPP. The iVPP will provide high level instructions on the grid's flexibility requirements; these instructions will be translated to specific actions on the cloud, at UNINOVA's servers, and communicated wirelessly to the on-site microcontroller which will in turn control individual water heaters.

In more detail, the system is composed of:

- A set of sensors to acquire temperature and power data, which are installed on electric water heaters with minimum impact on consumers' comfort;
- A microcontroller with Wi-Fi communication capabilities to collect and send data, while also receiving the control signals that define the state of the heating element (on or off);

- An actuator that enables the supply of power to the heating element;
- A remote-control system where the energy flexibility characterization and control strategy are computed, which also ensures communication with the iVPP.

There will be five electric water heaters deployed in Terceira in the context of IANOS, which will be newly installed in the consumers' premises. The water heaters will include sets of non-intrusive sensors, which are the innovative solution of IANOS, and a more intrusive set of sensors to enable the measurement of water heater temperature in order to validate the development of the non-intrusive solution.

Product specifications

Table 9 Technical Specifications of Smart Electric Water Heaters to be installed in Terceira

Technical Specifications				
Water Heater Power	1.5kW (230V)			
Water Heater Max capacity	150L			
Available space needed at electric socket	30x30x30 cm			
Available space needed at the hot water outlet	20x20x20 cm			

Installation Requirements

In order to install the components for the non-intrusive characterization and use of energy flexibility provided by Electric Water Heaters, as referred in the previous point, a cubic space with dimensions 30X30X30 (in cm) is needed at the water heater electric socket. Additionally, a cubic space with dimensions 20X20X20 (in cm) is needed at the water heater's hot water output. These cubic spaces must be accessible at all times.

3.3.5 V2G chargers

Two V2G chargers developed by EFACEC MOBILITY will be installed in Terceira. V2G chargers are smart chargers that besides providing energy to

electric vehicles also have the capability of providing control algorithms for ancillary services and grid support.

Product specifications

Table 10 Technical specifications of the V2G Chargers to be installed in Terceira

Technical Specifications				
Rated Power	10 kVA			
Grid Connection	Triphasic + neutral, 400V +- 10% / 50Hz			

Installation Requirements

The V2G chargers are wall mounted equipment. The dimensions (WxHxD) of the wall box are 740x646x415 (mm, excluding the cable connection) and its weight is 60 kg. A free space around the equipment should be considered for user access and to manipulate the charging cable. Moreover, the equipment can reach IP54. The place of installation may need additional protection/filtering conditions, if necessary. Additionally, there should not be a direct exposure to sunlight and the equipment should be protected against vehicle collisions.

3.3.6 Flywheel

The Flywheel developed by Teraloop will allow the provision of fast frequency regulation support and power quality, meeting the demands of unpredictable charge/discharge conditions and presenting an inertial load for the iVPP.

Product specifications

Table 11: Technical specifications of TERALOOP's flywheel

Technical Specifications	Flywheel
Max Power Rating (kW)	100
Max Energy Rating (kWh)	3
Max Energy Storage (kJ)	10,800

Efficiency (%)	95
Flywheel Type	Hubless Rotor, Magnetic Bearings, Vacuum
Operating Rotational Speed (RPM)	6,000-18,000
Flywheel Runtime (sec) [Load]	3,600 [3kW], 512 [25kW], 216 [50kW], 162 [75kW], 108
	[100kW]
Flywheel Recharge Time (sec@100kW)	130
Self Discharge (h)	1
DC Link Voltage (VDC)	400-750
Duty cycling (min)	4 (minimum full cycle, discharge and recharge time
	combined)
Operating temperature (°C)	-25 to 40
Cabinet Dimensions (mm)	2 x 1,000 (width), 800 (depth), 2,000 (height)
Ingress protection (IEC 60509:1989)	IP61 (flywheel with vacuum cover), IP48 (cabinets)
Grid Operating Voltage (VLL)	380/400/415 VAC 3-phase, 4-wire plus ground
Frequency (Hz)	50/60
Power Factor	0.99 at rated load and nominal voltage
Phases	3
Surge Withstand	Meets IEEE 587/ANSI C62.41
Weight (kg)	750 (flywheel only), 1,200 (20kW AC), 2,200 (100kW AC)
Audible Noise (dBA)	<75 (at 1 meter)
Operating Temperature (°C)	0 to 40 (cabinet)
Storage Temperature (°C)	-25 to 70 (flywheel)
Humidity (%)	5 to 95 (non-condensing)
Emissions and Immunity	EN 62040-2
Connectivity	System to grid or flywheel to DC link
t de la companya del companya de la companya del companya de la co	,

The combined estimated electricity consumption of the ventilation, air conditioning and ancillary services is a maximum of continuous 4kWh.

Installation Requirements

- Concrete bed/floor and M24 bolts, anchored to the concrete foundation, that must be able to sustain 1,500 kg/m².
- Dry environment with good ventilation.
- Flywheel space requirement: 2x2x2 m (including vacuum and cooling system).
- Power electronics space requirement: 2x1x2 m.
- Flywheel and power electronics to be installed in the same facility.

- Main requirement: 400Vac, 3x250A main fuse for 100 kW machine.
- Additional 230Vac, 3x16A and 16A sockets required for the auxiliary systems.

3.3.7 Smart Energy Router

The Smart Energy Router developed by UNINOVA is a power electronics device that manages the energy transfer from/to different sources (distribution grid, RES-based distributed generators), loads and electricity storage systems. The Energy Router collects data from various energy assets, like PVs (generation profile) and batteries (charge state) and will receive higher level instructions from the iVPP to control individual assets accordingly. Thus, it acts as an intermediary between the iVPP and the individual assets at building level.

In IANOS project, the Smart Energy Router will be located at building level (behind-the-meter). There will be 2 smart energy routers deployed in Terceira in the context of IANOS, both installed in residencies outside of the Terra Chã neighbourhood, in households with PV self-consumption and electric appliances such as heat pumps and air conditioned.

Product specifications

Table 12: Technical Specifications of UNINOVA'S Smart Energy Router

Technical Data	Energy Router 5.0	
Input PV System (DC)		
Max. PV array power	5,000 Wp	
Input voltage range	300 V to 800 V	
MPP voltage range	350 V to 750 V	
Rated input voltage	550 V	
Max. input current (input A / input B)	7.5 A / 7.5 A	
Max. DC short-circuit current (input A / input B)	12.5 A / 12.5 A	
Number of independent MPP inputs	2	

Input/output Grid (AC)				
Rated power (at 230 V, 50 Hz)	5,000 W			
Max. apparent AC power	5,000 VA			
Power factor range	0.7 lag to 0.7 lead			
Nominal AC voltage	3-NPE 400 V / 230 V			
Rated grid frequency / rated grid voltage	50 Hz / 230 V			
Max. input/output current	3 x 7.5 A			
Max. input/output overcurrent protection	12 A			
Total harmonic distortion	5%			
Phases	3			
General data				
Dimensions (W x H x D)	300 mm x 500 mm x 200 mm			
Operating temperature	0 °C to 60 °C			
Topology / cooling method	Transformerless / convection			
Maximum Switching frequency	50 kHz			

Installation Requirements

- Two Smart Energy Routers will be installed at residential buildings with three phase power supply.
- All equipment will be installed behind-the-meter.
- PV generation must be available on-site and Smart Energy Routers will substitute the existing power inverters.
- An indoor cubic space with dimensions lxlxl (in meters) is required for the installation. This space should be available to IANOS personnel but not to the buildings' users.
- Local Wi-Fi connection is required.

3.3.8 Hybrid Transformer

The hybrid transformer developed by EFACEC ENERGIA incorporates two technologies, electrical and electronic, operating simultaneously. These

combined technologies will allow the stepless, phase by phase, voltage regulations at the LV side with power factor control and monitoring.

Product specifications

Table 13T Technical Characteristics of the hybrid transformer

Technical Specifications			
Rated Power	400 kVA		
Rated Voltage	15,000 V +- 2x 2.5%/420V/242V +-12%		

Installation Requirements

- 2.3 m³ (1.5x1.7x0.9) of space is required for the transformer itself and 2 m³ for the regulator block.
- Cellular signal for communication between the hybrid transformer and EFACEC platform.
- Industrial low voltage supply for auxiliary systems (e.g. 400Vac 3~).

3.3.9 FFID-PLUS

The FEID-Plus developed by CERTH is a fog-enabled computing device equipped with special functions to control I/O, phase width modulation and analog signals. It employs enough processing capacity for distributed computing application such as information capturing and storing, algorithms execution and control over the installation. Additionally, it has the capacity to interface with several field elements, such as controllable building loads, storage and EV charging stations through appropriate protocols. There will be 20 FEID-PLUS installed in residential buildings of Terra Chã.

Product specifications:

Table 14 Technical specifications of the FEID-Plus

Technical Specifications			
Power Management	Dual step-down current- mode DC-DC		
	Converter (PAM2306)		
	5V to 3.3V and 1.8V		
Processing	Raspberry Pi Compute Module 3+ (CM3+)		
	with a BCM2837B0 processor 1Gbyte		
	LPDDR2 RAM and eMMC Flash		
Operating Characteristics			
Power consumption @ 5VDC			
Boot	0.25A		
Idle	0.45A/network connection		
Full	1.2A		
Max Voltage	5.5V		
Max Current	1.5A		
Dimensions			
PCB	87x68x35 mm		
Enclosure	96 x 72 x 50 (mm, 4 DIN positions		
1x Pluggable terminal blocks 2P	5 mm		
1x Pluggable terminal blocks 6P	5 mm		
1x Pluggable terminal blocks 7P	3.5 mm		
1x 5V 2.4A power supply (1 DIN position)	90 x 17.5 x 54 (mm)		
PSU			
Max supply Voltage	264VAC / 370VDC		
Max power supply	12W		

Installation requirements:

- Indoor installation, since the FEID-PLUS does not have the necessary protection from weather and therefore it is not suitable for outdoor areas.
- Power supply 5 VDC.
- Ethernet (connection to the local network for the configuration of the device).

3.3.10 HEMS

The HEMS developed by CLEANWATTS will allow the remote monitoring, management and control of the technological solutions that will be installed within the customer premises. The system is composed of the hardware (Smart Meters, Sensors and Actuators), the Data Management (Communication, Data Processing and other modules) and the User Interfaces.

Product specifications:

The CLEANWATTS HEMS platform has the capacity to remotely control the loads with the characteristics referred on the following table. Much more devices can be and will be integrated (some during the IANOS project implementation), however Table 15 shows the generic values for the most common energy assets.

Table 15: CLEANWATTS' HEMS for the Residential Sector.

Residential Sector						
Asset Type	Maximum Limit Capacity					
	Monitor / Device	Manage / Device				
Loads (sockets) – using Wi-Fi	16A 3kW	16A 3kW				
Plug						
Loads (generic) – using DIN-rail	From 16A to 32A	From 16A to 32A				
Zigbee devices installed on						
distribution boards						
Loads (generic) – using devices	Direct measurement: 100A AC	Control: 25A (1 Phase); 25A to				
(meters and I/O + Contactors)	(1 Phase); 65A AC (3 Phase)	63A (3 Phase), others on				
installed on distribution boards		request				
Loads (smart appliances) – using	Depends on appliance, typical:	Depends on appliance,				
Wi-Fi integration	2 kW	typical: 2 kW				
Loads (HVAC) – using devices	Direct measurement: 100A AC	Control: using digital output				
(meters and I/O) installed on	(1 Phase); 65A AC (3 Phase)	signal.				
distribution boards						
Loads (water heater)	16A 3kW	16A 3kW				
Generation (solar PV) - using	Dependent on individual inverte	er rated capacity: (from 1.5 kW				
integration with inverter	to 50 kW). Capacity can be increased by grouping inverters.					

Storage (batteries) - using integration with inverter

Dependent on individual inverter rated capacity: (from 0.8 kVA to 10 kVA). Capacity can be increased by grouping inverters.

Installation Requirements

The HEMS platform will be installed on a cloud-based platform that will collect data from the local energy assets and then store it and provide it to the Enterprise Service Bus (ESB). It will communicate with the equipment through a central local unit (Gateway) that must be connected to an ethernet cable, which can communicate with local devices thought Zigbee or MODBUS TCP.

The HEMS kit to be installed in Terceira Pilot is composed of:

- 1 x Cloogy Gateway/Hub.
- 2 x Smart Plugs.
- 1x Wi-Fi Energy Meter.

Concerning the hardware equipment installation requirements, these are as follows:

- The CLEANWATTS Gateway is much smaller than a common household internet router. It must be connected to a common household plug and to the internet through an ethernet cable. This operation must be performed by a qualified electrician.
- CLEANWATTS Smart Plugs have no special requirements in terms of installation procedures. They are plug and play devices that will automatically pair with the Gateway.
- CLEANWATTS Wi-Fi Smart Meters will need to be installed by a qualified electrician on the switch board and configured locally to have access to the Wi-Fi network. After the initial Wi-Fi connection procedure, they will automatically be paired with the Gateway.

The end-users will have access to an Android/iOS App that will give them information regarding their total energy consumption and individual load consumption connected to the smart plugs, which can also be controlled (e.g. On/Off).

3.4 List of stakeholders

As it is displayed in Table 16, the majority of the technological solutions described in the previous subchapter will be installed in Terra Chã social neighbourhood. This neighbourhood has 250 houses and is located in Angra do Heroísmo county in an area of 10km². Terra Chã perfectly fits in the IANOS project, since it has enough population to engage and involve in Terceira's energy transition. The technologies to be installed in customer premises, such as the heat batteries, PV kits, HEMS, FEID-Plus, electrochemical batteries and water heaters, will be installed in the households of this neighbourhood.

The flywheel will be installed in the dairy factory Pronicol, also located in Angra do Heroísmo. Pronicol usually has some consecutive power failures that force the factory to stop producing the dairy products, which have a great economic impact. Thereby, the flywheel will play an important role by being able to regulate the voltage and provide flexibility to the system.

Due to the fact that EDA is both the DSO and TSO, it is the obvious stakeholder for the hybrid transformer. The V2G chargers will be installed in one of EDA's powerplants since they already have 2 EVs.

The Smart Energy Routers will also be installed in two customers' houses in Terceira, which have self-consumption and smart electrical appliances.

Table 16: List of stakeholders for the hardware solutions demonstrated in Terceira

	N# of units	Stakeholder
PV Panels with microinverters	40	Terra Chã
Electrochemical Batteries	16	Terra Chã
Heat Batteries	24	Terra Chã
Electric Water Heaters	5	To be defined
V2G chargers	2	EDA (Pico Alto geothermal power plant and EDA headquarters)
Flywheel	1	Pronicol

Smart Energy Router	2	To be defined	
Hybrid Transformer	1	EDA (distribution grid in Terra Chã)	
FEID-PLUS	20	To be defined	
HEMS	20	Terra Chã	

4 Ameland Demonstrator

4.1 General characterization

Ameland is one of the 5 inhabited Waddeneilanden (Wadden sea islands). The island's total size is 58.83 km² and consists mostly of sand dunes. It is the third major island of the West Frisians. Ameland is connected to the mainland electrical grid and to the mainland natural gas grid. There are four villages in Ameland: Hollum, Ballum, Nes and Buren with a total population of 3,673.

Figure 9: Ameland's location

Ameland has its own Energy Community: Amelander Energie Coöperatie (AEC) which delivers clean energy to its customers. Currently, AEC has 286 members and 993 customers being the main organization to participate in Renewable Energy projects, as well as in Energy Savings projects.

The larger part of Ameland consists of nature, with an immense variety of landscapes. Because of this variety there's an abundance of plants, but also many animals, like over 60 different species of birds.

4.2 Site assessment and existing infrastructure

Ameland's current energy system state is described addressing the current energy supply and demand, as well as a detailed description of the electricity and natural gas grid of the island.

4.2.1 Supply and Demand

The total energy usage in Ameland is approximately 490 TJ per year, excluding the NAM-platform. The NAM-platform now uses the gas it produces for gas compression, which amounts up to 410 TJ/year. In 2022 the compressor will be replaced by an electrical compressor which increases the energy flow to the island with approximately 180 TJ/year.

The energy consumption fluctuates significantly every year and has been increasing in the past years. Figure 10 shows the energy usage per sector, where it can be observed that the building environment sector (in green) has always been the largest consumer, while the transport sector (in orange) has been increasing over the years. Industry, energy, waste and water (in red), agriculture and fishing (in dark blue) and Heat (in blue) have been stable over the years and have a relatively low consumption in the island.



Figure 10: Energy consumption per sector in Ameland (2012-2019)

According to Figure 11, most of the energy used in Ameland comes from the connections with the mainland. Nevertheless, the solar farm and the solar panels in customer premises also generate 10 TJ per year.

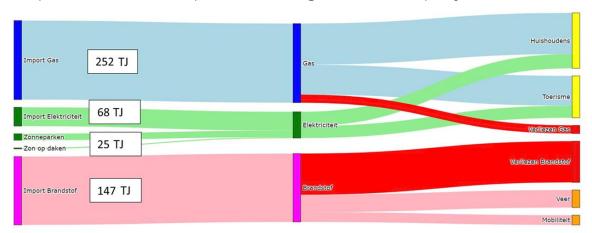


Figure 11: Energy consumption in Ameland

In most regions in the Netherlands, there is a decrease in natural gas and electricity usage in the summer. However, due to the large number of tourists visiting Ameland each year, this decrease is significantly smaller in Ameland.

In Figure 12, the power over the mainland connector is shown. Peak demand is around 6 MW (from the mainland to the island), while peak production (from the island to the mainland) is around 2.5 MW.

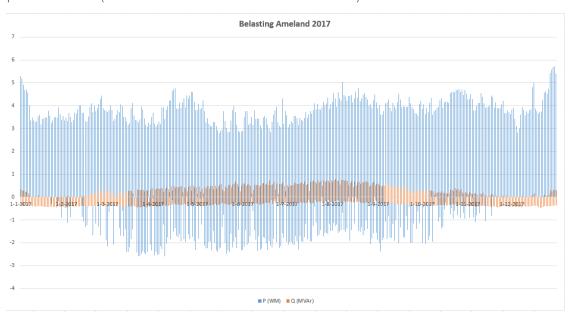


Figure 12: Power over the mainland connector in Ameland (2017)

4.2.2 Electricity Grid

In Figure 13, the midvoltage grid of Ameland is shown. The 4 parallel lines in the lower right-hand corner depict the connection to the mainland. At present, there are 2 cables, but during 2021, 2 extra cables (the blue ones) will be installed.

Figure 13: Ameland's MV electricity grid

4.2.3 Natural Gas Grid

The Natural Gas Grid of Ameland consists of an 8 bar, a 3 bar and a 200 millibar grid. The gas is transported from the mainland gas grid by Stedin.

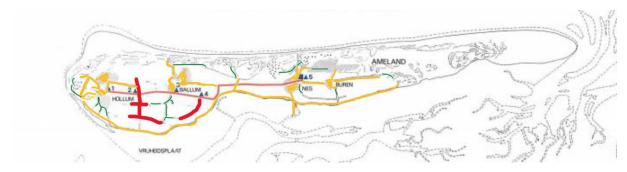


Figure 14: Ameland's gas grid

4.3 Equipment and system specification

In Ameland, some of the hardware solutions are already in operation while other solutions will still be installed. In this subchapter, a description of the technical and product specifications and the installation requirements of all the hardware solutions are presented. At the moment of writing this deliverable, obstacles were found to the realization of some of the

technologies as expected and described in previous versions of the Use Cases. Thus, the descriptions of the technologies such as the water taxis, the electrolyser and the AHPD have been updated to take this into account. If needed, a new version of this report or a new deliverable will follow, in order to precisely specify the technologies that will be tested in Ameland, as well as their specifications.

4.3.1 Residential solar panels

There are several consumers who have solar panels installed on their roofs. However, it is not known which panels or inverters are installed.

4.3.2 Solar farm

In February 2016, the 6 MWp solar park started operating. In the last 5 years this solar park produced 6600 MWh per year on an average basis. This Park has 3 owners: the municipality of Ameland, Eneco and the Amelander Energy Cooperative. This was the first ground based solar park in the Netherlands. There are 23,000 REC 260PE solar panels installed together with 165 ABB TRIO 27.6 TL OUTD inverters. The electricity is transformed to 10KV by three transformers. The electricity runs from the solar park in Ballum to the distribution in Nes by a 6 km cable and is distributed to the households in Ameland.

Another Solar Park is planned to be installed in the Ballumerbocht with a capacity of 3MWp.

4.3.3 Micro-CHP

Three houses equipped with a battery pack (3.5kWh), solar panels (1kWe) and micro-CHP (5.5kWth) will be located at multiple locations in Ameland.

4.3.4 Private Methane Fuel Cells

Thirty-five privately owned Methane Fuel Cells (2 kW_e), fed by the methane district grid, on 35 individual homes are already in operation and funded by the National Project Slimme Stroom Ameland.

4.3.5 Fuel Cell

On the largest recreational park of the island, a 200 kWe Fuel Cell will be installed. This Fuel Cell will work as an innovative CHP where the heat produced by the Fuel Cell will be fed into an already existing local heat net. The capacity and location of this fuel cell are still to be defined.

4.3.6 Hybrid Heat Pumps

One hundred and thirty-five hybrid heat pumps are already installed in residential houses in Ameland. These hybrid heat pumps are fitted with a 20kWth boiler and a 1.1 kWe/5 kWth heat pump. The units can switch between natural gas and electricity independently depending on weather conditions. These hybrid heat pumps are prepared to run on biogas as well.

4.3.7 Biobased saline batteries

SuWoTec will install a 120kWh (50kW charging capacity) biobased battery.

Product specifications

Table 17 Technical specifications of the biobased saline batteries

Technical Specifications	Flywheel
Nominal voltage	552 V
Storage capacity	120 Ah 400 Vac
Maximum charging capacity	12 KW
Maximum discharging capacity	> 15 KW
Load efficiency	> 97% @ 20 °C
Discharge efficiency	> 96% @ 20 °C
Dimensions (L x W x H)	2,170mm x 1,654mm x 1,560mm
Weight	3,600 KG

4.3.8 Hydrogen fuelled vehicles or other H2 usages

Due to a change of priorities for the shipowner external actor that was involved in the Ameland demonstrator, the water taxis cited in previous deliverables will no longer be used. The LH Island manager is now looking for alternatives for hydrogen usage, including the possibility of using Waste Trucks. The decided technologies will be described in further deliverables, if need be.

4.3.9 Tidal Kite

The TidalKite development, installation, testing and operation will be executed in a separate project. The IANOS scope focuses on integrating the TidalKite into the Ameland grid and in the central dispatcher. The SeaQurrent TidalKite technology is developed to harness energy from tidal flows. It consists of an underwater kite that makes it possible to cover a larger energy harvesting area, perpendicular to the flow.

The TidalKite test setup near Ameland consists of a monopile mooring that anchors the TidalKite system and a grid connection cable connected to Ameland's electricity grid as operated by Liander.

The grid connection will be realized by means of an HDD (horizontally directed drilling) under the sea dike, in order to place a tube in which the electricity cable can be placed. The offshore cable will be dug in.

The total TidalKite system is approximately 100m long. A standard TidalKite has a capacity of 500kW and is connected to the grid via a 10kV power cable.

4.3.10 Digester

The small-scale Auto-generative High-Pressure Digester (AHPD) described in previous versions of this report will no longer be realized due to financial and contractual obstacles. The digester solution to be implemented

is now being decided by the LH managers and a further deliverable will describe it and its specifications, if need be.

4.3.11 Electrolyzer

A 200kW electrolyzer is planned to be installed. This will first be installed at Wetterskip Fryslân and then moved to the newly installed solarpark. Its H2 will be used by the waste trucks previously mentioned.

4.4 List of stakeholders

At this moment, the Municipality of Ameland, as well as Amelander Energie Coöperatie and its customers, are the main stakeholders for the new technologies.

5 Fellow Islands

5.1 Lampedusa

5.1.1 General characterization

The islands of Lampedusa and Linosa, archipelago of the Pelagie Islands, located between Sicily and North Africa about 113 km from Tunisia and 205 km from Sicily, are administered by the City of Lampedusa and Linosa. From the last census, the islands are inhabited by 5,725 residents. Since 2003, the City of Lampedusa and Linosa manages the Marine Protected Area "Pelagie". Lampedusa covers a surface of about 20.2 km² and a coastline of about 26 km.

5.1.2 Site assessment and existing infrastructure

5.1.2.1 Supply and Demand

Energy consumption on the island is strongly influenced by its socio-economic system. The weather and climate conditions, the resident population, the fluctuating tourist population, the working activities and the use of the territory itself, are the main factors that influence the hourly demand curve. The local power plant is significantly oversized to have enough backup power in the case of failure. The energy demand varies considerably during the year, due to arrivals in the touristic season. The small size of the power system increases the cost of fuel transportation and the operative and maintenance costs. With the liberalization of the Italian energy sector in 2009, an incentive UC4 (now collapsed inside the incentive Arim) was introduced in the electricity bills to cover the higher costs for the electricity production in small islands. This way, whoever lives in small islands purchases electricity at the same price as someone on the mainland.

In 2020, the 24 installed photovoltaic systems fed 229,953 kWh (11.5%) into the island's grid, out of a total of 26,398,415 kWh of distributed electricity generated by the diesel thermoelectric power plant, as it is shown in Figure

15. The renewable energy sources are extremely underdeveloped in this territory, as the environmental constraints hamper its use, like wind or photovoltaic panels (except the installation in an integrated solution with buildings). The fossil fuel is regularly transported by boat from Sicily, so prolonged adverse weather conditions represent an important risk for the energy supply of the island.

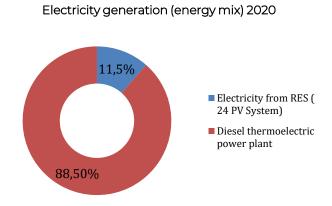


Figure 15: Electricity generation mix in Lampedusa, in 2020

The total electricity demand for the entire year was 32,871 MWh; the lowest peak was 2,012 MW and occurred on March 8 at 4:00 a.m.; the maximum peak was 8,864 MW and occurred on August 14 at 9:00 p.m. As expected, the minimum peak is observed when neither heating nor cooling is needed and the tourist season has not yet begun. On the other hand, the maximum peak occurred in the evening of August, when the island had the greatest number of tourists and the demand for air conditioning was at its peak. Between the winter period and the summer period the monthly value doubles, thus it is possible to affirm that the electric energy in summer is 4 times higher compared to the spring period.

The typical load demand curve is shown in Figure 16:

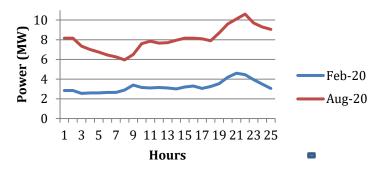


Figure 16: Typical Load Demand Curve for Lampedusa island

In Figure 17, the energy consumption per sector can be observed. The greatest weight corresponds to the residential load, which accounts for 29% of the total load, followed by the hotels' load, which, if added to that of residences intended for tourist accommodation, accounts for about 15% of the total load.

Energy Consumers	Electricity Demand (MWh)	%
Public lighting	855	3%
Residents	9438	29%
Non-resident	1403	4%
Tourist establishments	3302	10%
Tertiary activities	3084	9%
Tertiary activities such as bars, pizzerias and restaurants	1596	5%
Industries	1975	6%
Municipal users	322	1%
Water plant and sewage plant	366	1%
Desalination plant	3509	11%
Hospital	313	1%
Airport	1865	6%
Military areas and barracks	2453	7%
Self-consumption power plant	2389	7%

Figure 17: Energy consumption per sector in Lampedusa

5.1.2.2 Electricity Grid

The power system of Lampedusa is isolated from the main national grid. The local Medium Voltage network is composed of 69 nodes, 39 kiosk and 13 pole-mounted (10 kV/400 V) substations as shown in Figure 18.

The electricity grid is composed of 5 main medium-voltage lines through which are distributed about 60 electrical conversion substation/cabins from medium to low voltage, which supply low voltage electricity to public and private users. The medium voltage network is realized with a ramified structure that allows, in cases of accidental blackouts, the isolation of the fault, avoiding current interruption on the whole island.

Map 1 Medium voltage power grid

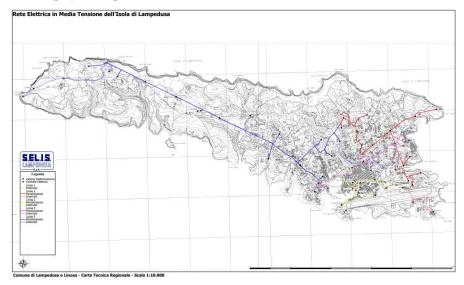


Figure 18: Lampedusa's electricity grid

The distribution chain of electrical energy on the island is produced by the alternators at 50 Hz. At a voltage between 400 V and 5,000 V, energy is transformed and introduced in the net at 10,000 V (medium voltage) and so transported to the distribution substation/cabins where it is transformed, again, to the national voltages of 220 V and 380 V (low voltage) and finally supplied to the users.

The current electrical network of the island of Lampedusa is designed so that the flow of energy moves in a unidirectional way, from the production place to the consumption one and, in that regard, the final user is only and exclusively a passive load. The implementation of new large-scale electricity

production plants requires the modification of the electrical network of the island for the transition from passive to active. Moreover, since the locations identified for the installation are in areas currently not reached by the medium voltage distribution network, for their connection it will be necessary to provide the realization of special underground cables connected to the power plant.

The supply of energy, since there is no direct connection with the mainland, is provided through a diesel thermoelectric power plant managed by the company S.EL.IS. Lampedusa s.p.a. The company has a power plant located close to the town centre, in the district of Pisana, consisting of 8 generators coupled to an equal number of diesel engines with a total power of 22.5 MVA. The generators work with different scheduling according to the hourly electrical load and the engines work alternating between the primary energy production system and the storage system. The operational behaviour of the power plant engines is managed in a way, so that as soon as a motor runs for 10 minutes at 80% of its nominal power, a second motor is switched on and the power is distributed according to the distribution algorithms of the management system adopted by the company SELIS SpA. It is worth to consider that the fuel (diesel) needed for the regular operation of the plant is brought to the island by tankers from the mainland and since the plant is not located near the port, the fuel is then transported by road to the plant. Obviously, this solution is not sustainable from an environmental point of view, because of the emission of CO₂ and other pollutants caused by the diesel combustion in the local power plant. At present, the installed generator groups are the following:

S.EL.I.S. LAMPEDUSA S.p.A.

GR.	MOTORI	ALTERNATORI	POTENZA KW	
1	MAN 18V28/32S - Matr. 40157 02 52	AVK - 750 g/1' - 11000 V DIG 156 N/8 - Matr. 8425109 B101	4100	
2	MAN G8V 30/45ATL - Matr. 413746	GARBE LAHMEYER - 500 g/1' - 5000 V Smh 12/140-52 Matr. 4101415012 003	1328	
3	WARTSILA NOHAB 6R25 - Matr. 3674	GARBE LAHMEYER - 1000 g/1' - 5000 V PA 1004115-80/6 R 9602 201	1470	
4	WARTSILA NOHAB 16V25 - Matr. 3607	LEROY SOMER - 750 g/1' - 5000 V LSA 56L8/8P Matr. 159143/1	2800	
5	MAN 9L 25/30 - Matr. 1040253	RELIANCE ELECTRIC - 1000 g/1' - 5000 V SDGB 6302-6 Matr. 185092 RR	1893	
6	MAN 12V 32/36 - Matr. 1055000 (collaudo 4412 KW; targa 4440 kW)	UNELEC - 750 g/1' - 5000 V PA 160 G 95-65-8P Matr. 154/191/1	2998	
7	WARTSILA NSD 16V25 - Matr. 4322	LEROY SOMER - 750 g/1' - 5000 V LSA 56 UL9/8P Matr. 166869/1	2935	
8	WARTSILA 12V32 - Matr. 22360	ABB - 750 g/1' - 11000 V AMG0900LR08 DSE- Matr. 4575070	5040	

Figure 19: Lampedusa's generators

All generator sets are equipped with a modern SCR - "Selective Catalytic Reduction" - type catalyst system for the reduction of pollutants /exhaust gases in particular NOx.

In Lampedusa, there is no gas grid. The heating of the houses is electric as for the hot water heating. Gas cylinders are used for the kitchens, transported by ship from Porto Empedocle (mainland).

All electric generators are equipped with both primary and secondary frequency control. The primary frequency/active power control keeps the frequency/active power stable according to a droop percentage, while the secondary frequency/active power system intervenes to keep the frequency within predetermined parameters and, if necessary, to correct the load distribution. The secondary frequency system distributes the active power in proportion to the rated power. For voltage regulation there is a primary and a secondary voltage/reactive power control. The primary voltage regulation/breakdown is done by voltage regulators working in droop, while the secondary one distributes the reactive power in proportion to the generator size. Concerning energy losses in the grid, in 2020 there were 15.69% of energy losses in the island. In terms of network congestion, no episodes were reported in the previous years.

5.2 Bora-Bora

5.2.1 General characterization

Bora Bora is a small island located in the South Pacific Ocean in the Society's Archipelago in French Polynesia (270 km northwest of Tahiti, Oceania). This archipelago contains 14 islands and is divided into two groups, the Windward Islands (207,333 inhabitants) and the Leeward Islands (35,393 inhabitants), where Bora Bora is located. Bora Bora had a population of 10,605 in 2017 and covers 29 km², plus some 10 km² of islets adjacent to the coral reef, forming a lagoon. Bora Bora has a relatively temperate climate. Bora Bora is the most visited island after Tahiti (125,000 visitors/y). The island also contains a dormant volcano.

5.2.2 Site assessment and existing infrastructure

5.2.2.1 Supply and Demand

The total electricity produced in 2020 was 35.6 GWh, where 33.7 GWh was correspondent to thermal electricity. Most of the electricity production still comes from fossil fuels (94.6%). The small part that is generated from renewable energy sources is due to PV panels.

There are 3,198 clients on the island, with the low voltage for social use being the sector that consumes the most, as it can be observed in Table 18.

Table 18: Electricity consumers in Bora-Bora island

Number of clients	Low Voltage social use	Low Voltage Home	Low Voltage industries	Low Voltage EP	Medium Voltage	TOTAL
2020	1,811	975	347	34	31	3,198

The annual peak demands use to be around 6 or 7 MW. Figure 20 and Figure 21 show the typical demand curves for weekdays and weekends, respectively.

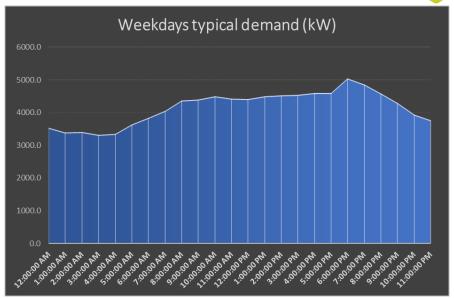


Figure 20: Typical demand curve for weekdays in Bora-Bora island

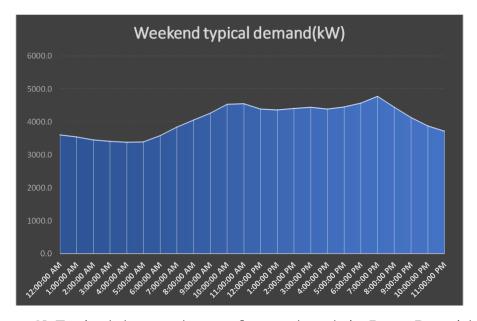


Figure 21: Typical demand curve for weekends in Bora-Bora island

5.2.2.2 Electricity Grid

Figure 22 illustrates the map of the power grid lines of Bora-Bora island.

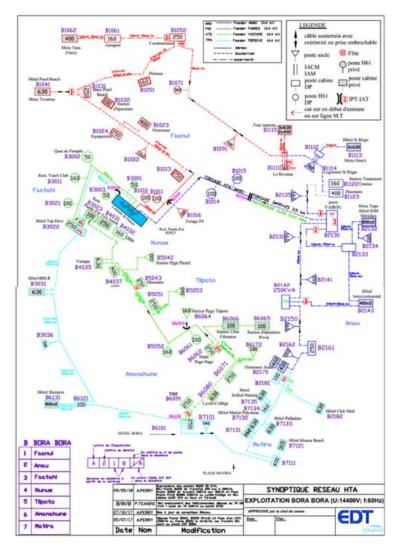


Figure 22: Bora-Bora's power grid

Table 19 displays the characterization of the distribution grid of Bora-Bora which has a total of 160 km. There is no transmission grid on the island. Table 19: Bora-Bora's distribution grid

Distribution	Length of networks (km) Voltage Fre					Frequency	
Distribution	Aerial	Buried	Sub-marine	Total	Voltage	requericy	
HT	8.0	44.]	18.5	70.7	14,400		
111	0.0	77.1	10.5	70.7	V	60 Hz	
LT	26.0	64.1	0.0	90.1	220 -	00112	
LI	20.0	04.1	0.0	50.1	380 V		
Total	34.0	108.2	18.5	160.7			

Concerning power plants, the island has 8 generators with different nominal powers and installed in different years as displayed in Table 20.

Table 20: Diesel Generators of Bora-Bora

Diesel generators	Name	Brand	Nominal power (kW)	Continuous service power (kW)	Year of install
Gl	G051	CUMMINS KTA50	1,000	640	1996
G3	G106	WARTSILA W200 V12	2,000	1,800	2001
G4	G224	WARTSILA W9L32	3,880	3,880	2011
G6	G074	WARTSILA 6R32	2,150	2,000	1998
G7	G110	WARTSILA W200	2,000	1,800	2002
G10	G064	WARTSILA 8R32	2,850	2,850	1997
G12	G094	WARTSILA W200	2,000 1,800		2000
G13	G225	WARTSILA W9L32	3,880	3,880	2011

The power grid of Bora-Bora has energy losses around 3% as shown in Table 21. Voltage and frequency fluctuation are usually controlled with diesel production and spinning reserve.

Table 21: Energy losses in Bora-Bora's island

Production	Gross genset production (GWh)	AUX consumption (%)	Max (kW)	Consum ption (m³)	Producti on yield	Network yield
2017	45.556	2.98	7,330	11,591	97.0%	97.2%
2018	44.758	2.62	7,680	11,408	97.4%	95.4%
2019	46.146	2.08	6,950	11,870	97.9%	96.6%
2020	34.678	2.73	6,860	9,098	97.3%	97.0%

5.3 Nisyros

5.3.1 General characterization

Nisyros Island is composed of 4 villages: Mandraki (The biggest village), Nikeia, Emporeios and Paloi as described in

Figure 23. These villages are connected with specific electric cables and, in the villages, there are some stations for interconnection and distribution of the energy inside the villages and between them.

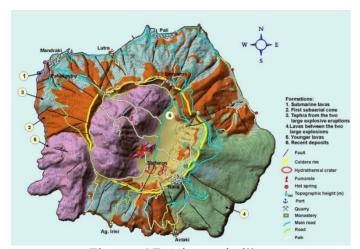


Figure 23: Nisyros' villages

5.3.2 Site assessment and existing infrastructure

Nisyros island belongs to the island complex of Dodecanese and covers its electricity needs as part of the "Kos-Kalymnos" autonomous microgrid as shown in Figure 24. Two oil-based APS (the first one operating in Kos island with rated power 102 MW and the second operating in Kalymnos island with rated power 18 MW) feed the autonomous microgrid and provide electrical energy to Nisyros through two Medium Voltage (MV) subsea cables that are terminated at the north part of the island (near the Mandraki village), through

the Yali islet. Thereby, the electrical energy is fed through the power distribution overhead lines to other parts of the island, while from the south part of the island (near the Avlaki region), two independent MV subsea cables are feeding electricity to the south part of the specific microgrid (Tilos island).

Figure 24: Autonomous microgrid of Kos-Kalymnos-Nisyros-Tilos.

The extensive and complex configuration of the "Kos-Kalymnos" autonomous microgrid has substantial repercussions on the quality of the electricity fed to Nisyros island, with frequent black-outs occurring mainly at the microgrid's south part (which is comprised of Nisyros and Tilos), as also voltage and frequency stability issues.

Unfortunately, there does not exist a dedicated energy meter installed at the entry point of electricity at Nisyros island. As a result, a general overview of the island's total electrical energy needs is not directly available.

Based on previous years' historical data, Nisyros peak power demand is estimated at 1.2 MW. In addition, the desalination units, comprising of a main component of the load demand, operate on a constant water provision policy and, as a consequence, have constant power requirements and therefore do not affect the peak power demand. In order to visualize the aforementioned, Figure 25 presents the load demand measurements carried out for Tilos island during the time period 2015 - 2018. Thus, the load demand for Nisyros

island will have an analogous profile, with its peak being multiplied by a factor of 1.5 or 1.7.

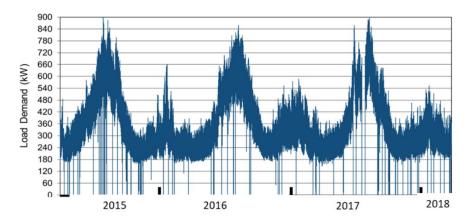


Figure 25: Electrical energy demand for Tilos island

Based on the available official data for the energy consumption of Nisyros island during the past decade (Figure 26), a significant fluctuation is noted, which is smoothed out the last three years (2017 – 2019). More precisely, the load demand was 4,000 MWh_e/year for 2010, while it surpasses 6,200 MWh_e/year for 2019, presenting a constantly increasing tendency.

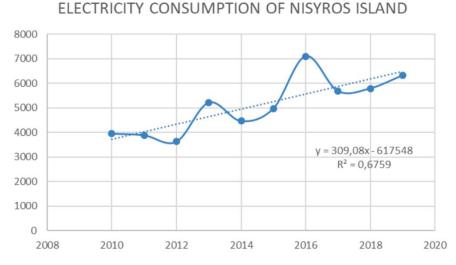


Figure 26: Nisyros island total electricity consumption (MWh_e) time evolution

Figure 27 describes the electricity consumption of Nisyros island for the different sectors. Accordingly, the main constituents of the electrical energy consumption are the domestic and the commercial sectors. The desalination

units play a crucial role on the island's energy demand, as the electrical consumption was increased approximately by 1,000 MWh $_{\rm e}$ when the first unit begun to operate at 2013 and doubled at 2016, when the second unit was integrated. Following, a variation exists depending on the operational status of the two units. The third unit begun its operation at 2019 to replace the problematic first unit. Moreover, the lighting contribution is more than halved during the past decade and along with the public buildings and the public entities represent a small percentage of 6 - 7% of the island's total annual energy requirements.

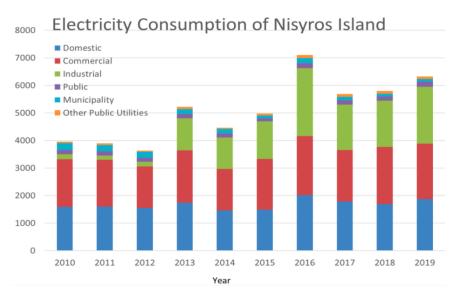


Figure 27: Electricity consumption of Nisyros per sector (2010-2019)

Finally, it can be stated that the electrical energy demand of Nisyros island presents the typical seasonal profile of all Greek islands located in the Aegean Archipelagos, with a peak power demand occurring during the summer (approximately during mid-August) and being equal to 1.5 MW. The greatest percentage of the electrical energy demand is due to the Mandraki region and is around 6,000 MWh_e, presenting a constantly increasing tendency, which is expected to be terminated the following years due to the pandemic impact on the economy. The whole electrical energy consumption is covered by the (double) subsea connection with the "Kos- Kalymnos" autonomous microgrid, which is characterized by the dominant presence of

diesel oil-based power stations (at a percentage of 85%) and the pertinent environmental and macro-economic issues.

Consequently, any intervention for energy savings, as well as the installation of RES-based and environmentally friendly power stations, will enhance the energy security of the local habitants and alleviate from both the direct and indirect environmental impacts as also from the macroeconomic charges on the Greek economy. Finally, in such a case, economic benefit could also be attained. The island does not have any power plants or substations for production of electricity.

6 Use Cases Definition

6.1 Transition Track 1: Use Cases

Transition Track 1 comprises of all the Use Cases that utilize high renewable energy penetration to provide energy services to the power system. The main aims of these Use Cases focus on reducing energy curtailment and on providing stability to the grid by avoiding challenges such as congestion and voltage variations. For this purpose, self-consumption maximization (UC1), use of flexibility from generation side (UC2) and provision of fast (UC3) and slow grid services (UC4) are demonstrated in four Use Cases.

6.1.1 Use case 1: Community demand-side driven selfconsumption maximization

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
1	Energy efficiency and grid	Community demand-side driven self-
	support for extremely high-RES	consumption maximization.
	penetration.	

1.2 Version management

		Version Mand	agement
Version	Date	Name of	Changes
No.		Author(s)	
1	04.02.2021	Mónica	First draft version.
		Fernandes (EDP	
		NEW)	
2	05.02.2021	Nikolaos	Comments and inputs on Diagrams,
		Nikolopoulos	Actors, Scenarios, Information
		(CERTH),	Exchanged.
		Dionisios	

3	10.02.2021	Stefanitsis (CERTH) Carlos Patrão (CLEANWATTS)	Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture. Comments on Use Case conditions, Actors, References, Scenarios, Information Exchanged.
4	23.02.2021	Rui Lopes (UNINOVA)	Comments on Use Case conditions, Diagrams.
5	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios.
6	16.03.2021	Ioannis Moschos (CERTH)	iVPP Requirements.
7	21.04.2021	Denisa Ziu (ENGINEERING)	Scenario 2 – Self-consumption maximization through P2P energy trading based on DLT; Pure P2P approach.
8	29.04.2021	Mónica Fernandes (EDP NEW)	KPI's added from D2.3. Collecting the new feedback.
9	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version.
10	01.04.2022	Mónica Fernandes (EDP NEW)	Minor updates on the actor of the Use Case.
11	11.07.2022	Ana Carvalho (EDP NEW)	Revision and start third version.

12	15.07.2022	Ana	Carvalho	Minor	char	nges	to	Use	Case
		(EDP NE	VV)	Descrip	tion	corre	ecting	typo	os or
				providir	ng mo	re det	tails.		
13	16/09/2022	Vasilis		Correct	ions	to	KPI	num	bering
		Apostolo	poulos	accordi	ng to 1	final v	ersion	of D2.9	9.
		(CERTH)							

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	The scope of this Use Case is the optimization of behind-the-meter assets
	at residential consumer premises to maximize self-consumption from
	RES and thereby reducing energy curtailment. The ability of monitoring
Scope	and control loads, PV generation and storage can allow consumers to
Scope	explore the potential of self-consumption and electricity cost
	minimization. This Use Case is demonstrated in Local Energy
	Communities (if LEC already exist in the island) and the optimization of
	the assets will be performed in a local and a neighbourhood-level.
	This Use Case orients at optimizing and controlling the energy
	consumption in the local and neighbourhood level to achieve the
	following objectives:
	1. Maximize self-consumption from renewable energy sources to
	allow the users (Terceira) or community (Ameland) level better
Objectives	exploit their assets, to avoid future grid transport costs to the
	mainland and to alleviate the grid in periods of excess of
	renewable generation.
	2. Reduce energy curtailment by achieving a maximum renewable
	penetration possible.
	3. Avoid grid challenges such as congestion and voltage variations.

1.4 Narrative of use case

Narrative of Use Case
Short description
This Use Case occurs in a Local Energy Community (LEC) and focuses on controlling
and optimizing energy assets with the main purpose of matching the energy
generation from PV panels and small wind turbines and storage with the consumption

of end-user or community level assets including i) electrochemical and heat batteries, ii) electric water heaters, iii) heat pumps and iv) micro-CHP through an intelligent virtual power plant (iVPP). The iVPP computes the optimization of behind-the-meter assets based on several information-sources provided by localized energy management systems (Home Energy Management Systems and Fog-Enabled Intelligent devices). Thereby, the iVPP is capable of controlling storage and demand-side assets by, for instance, shifting demand for periods of renewable generation surplus.

Additionally, this use case comprises of the details regarding peer-to-peer energy trading schemes.

Complete description

The present Use Case describes the methods to control and optimize the consumption of the behind-the-meter assets in a Local Energy Community (LEC) or group of consumers, through an intelligent virtual power plant (iVPP).

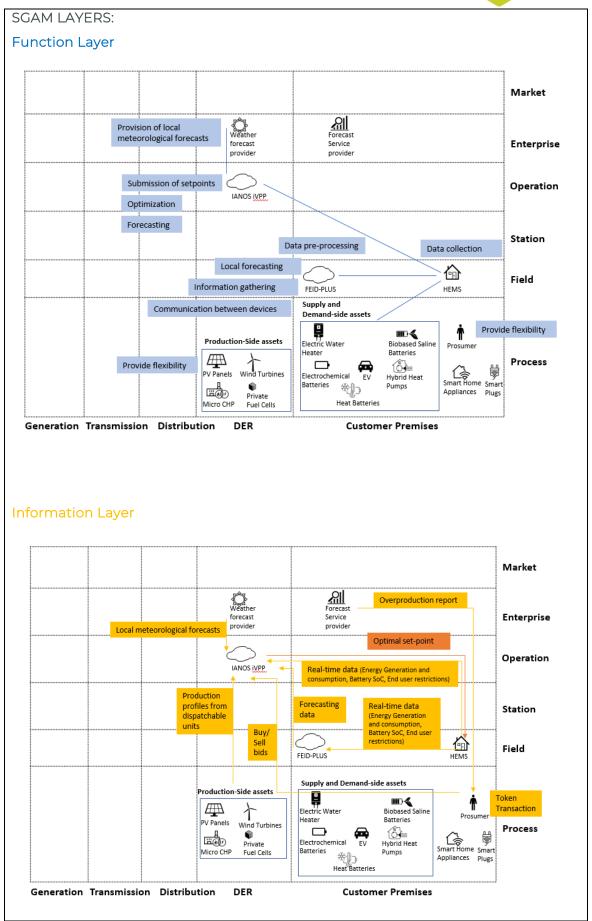
The controlled and optimized assets will be: i) electrochemical and heat batteries, ii) electric water heaters, iii) heat pumps, iv) micro-CHP, v) EVs, vi) smart home appliances and smart plugs, vii) fuel cells, viii) hybrid heat pumps and ix) biobased saline batteries.

This optimization will be local and in the neighbourhood level with the goal of maximizing renewable energy sources (RES) self-consumption from PV panels and small wind turbines. The local optimization will consist of controlling the building loads and storage systems while the neighbourhood level optimization, either locally (in the case of Terceira) or centrally (in the case of Ameland), will allow to take advantage of load heterogeneity and enable to supply the generation surplus from certain buildings to buildings with higher energy demand at a specific time period. The iVPP will be able to perform the global control and energy dispatch while considering the comfort requirements of the energy users. For this purpose, the iVPP will be interfaced with localized energy management systems such as residential Home Management Systems (HEMS) and Fog-Enabled Intelligent Devices (FEID-Plus) in residential and other local Building Management Systems (BMS) in tertiary buildings.

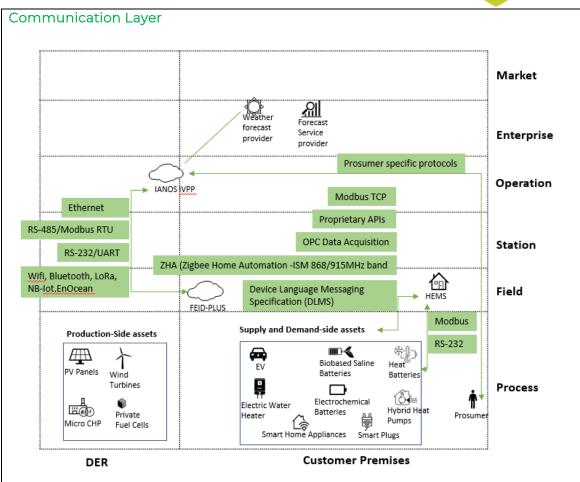
The localized energy management systems will provide real-time data to the iVPP such as energy consumption, energy generation, batteries' state of charge, temperature and others. These data will be obtained through smart sensors, smart plugs, field-level interfaces or other well-known sources such as weather forecast websites.

Thereby, the iVPP will shift demand to periods where there is excess of renewable energy through the development of control algorithms. These algorithms will be based on several data such as: i) forecasted PV generation, ii) non-controllable and critical load which operation cannot be altered significantly and iii) controllable loads, such as electric water heaters or heat pumps, with flexibility margins depending on comfort restrictions and operation settings imposed by the users.

This optimization process will also contemplate any type of distributed storage such as batteries along with novel Phase Change Material (PCM) thermal storage, fuel cells and electric charging stations, always with the aim of achieving the maximum economic and environmental benefit for the end-user. For this purpose, an external forecast provider will supply production forecasts based on local meteorological forecasts while the iVPP, through its forecasting engine, aggregation and classification and centralized dispatcher modules, will utilize the following data: i) energy consumption forecasts based on historical load consumption and real-time measurements, ii) historical generation data, iii) artificial intelligence-based clustering of assets and iii) dispatching of evaluated flexibility strategies to optimize self-consumption on the community which will depend on the profile of the assets at-hand and the future time-slots' energy prices.


Moreover, this use case also includes the peer-to-peer (P2P) energy transactive framework, which aims at promoting self-consumption. This trading allows users to exchange flexible energy products with other prosumers and assets thereby contributing to maximize the penetration of renewables and avoid future grid transport costs.

In this case, prosumers sell the excess energy in a P2P market. The market will leverage on self-enforcing smart contracts to manage, in a programmatic manner, the P2P energy-trading between prosumers.


Direct energy transactions in the community will be facilitated through the Distributed Ledger Technologies (DLT)-transactive logic implemented into the iVPP intelligence. The iVPP will realize the energy flexibility tokenization, through the implemented DLT-based energy credits' application mechanism through Smart Contracts.

This part of the Use Case is described in more detail in *D4.9 - iVPP P2P transactive* energy framework.

Technological	Information /			
Solutions	Communication	Terceira	Ameland	
	Protocols			
PV Panels		X	X	
Wind Turbines			X	
Micro CHP			X	
Private Fuel Cells			X	
Biobased Saline			X	
Batteries				
Heat Batteries	RS-232;	X		
	Modbus			
Electrochemical	-	X		
Batteries				
Hybrid Heat			X	
Pumps				
Smart Plugs	-	×		

Electric Water	The protocol used can	×	
Heaters	be adjusted according		
	to the needs and		
	specifications of the		
	iVPP as long as it is		
	supported by a Wi-Fi		
	connection at the		
	installation site.		
HEMS	·DLMS - (Device	X	
	Language Messaging		
	Specification) a protocol		
	that is emerging as the		
	worldwide standard of		
	choice among smart		
	meter designers for		
	interoperability among		
	all metering systems,		
	including all energy		
	types (electricity, gas,		
	heat and water);		
	·Modbus TCP - Modbus		
	version over TCP/IP;		
	Proprietary APIs –		
	proprietary APIs.		
FEID-PLUS	Wired communication	X	X
	protocols: Ethernet, RS-		
	232/UART, RS-		
	485/Modbus RTU		
	Wireless		
	communication		
	protocols: WiFi,		
	Bluetooth, LoRa, NB-lot,		
	EnOcean		

1.5 Key performance indicators (KPIs)

			Reference
			to
ID	Name	Description	mentioned
			use case
			objectives
1.2	Energy Savings	Calculates the reduction of the energy	1
		consumption to reach the same services	
		(e.g. Comfort levels) after the	
		interventions, taking into consideration	
		the energy consumption from the	
1.77	Chanaga	reference period.	107
1.7	Storage capacity of the island's	Compares the storage capacity with the	1,2,3
	of the island's energy grid per	total energy consumption of the island.	
	total island		
	energy		
	consumption		
1.9	Peak Load	calculates the peak load reduction after the	3
1.5	Reduction	IANOS implementation (DSM programs	
		and storage system management)	
		compared to the baseline scenario (before	
		the implementation)	
1.12	Peak	Measures the installed capacity of	1
	photovoltaic	photovoltaic interpolated to 100	
	power installed	inhabitants. To be assessed per sector	
	per 100	(residential, tertiary, industrial and public).	
	inhabitants		
2.2	Reduced fossil	Measures the amount of fossil fuels which	1,2
	fuel	is not consumed because of IANOS	
	consumption	demonstrated solutions (e.g.	
		Electrification of transport, RES	
		penetration).	
3.11	Energy Poverty	Assesses the change in percentage points	1
		of (gross) household income spent on	
		energy bills since the beginning until the	
		end of the project. Calculation of the	
		reduction in consumer's electricity bill.	

4.4	Increased	Gives a statement about the additional	1,2,3
	hosting capacity	loads and RES that can be installed in the	
	for RES, electric	system, when innovative solutions and	
	vehicles and	energy management techniques are	
	other new loads	applied (e.g. VPP platform).	
5.1	People Reached	Percentage of people in the target group	1
		that have been reached and/or are	
		activated by the project.	
7.1	Social	Refers to the extent to which the project's	1
	Compatibility	solution fits with people's 'frame of mind'	
		and does not negatively challenge people's	
		values or the ways they are used to do	
		things.	
7.2	Technical	Examines the extent to which the smart	1, 3
	compatibility	grid solutions fit with the current existing	
		technological standards/infrastructures.	

1.6 Use case conditions

Use case conditions

Assumptions

- Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP, such as PV panels, electrochemical and heat batteries, electric water heaters, smart home appliances, smart plugs, small wind turbines, fuel cells, heat pumps, hybrid heat pumps and biobased saline batteries.
- Smart meters and smart plugs are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time.

Prerequisites

- Availability of real time data from localized energy management systems.
- Availability of forecasting data to the iVPP: Solar Irradiation, Wind Potential, loads (heating, cooling, DHW, electricity) consumption profiles, including historical data.
- Definition of end-user levels of comfort.
- Definition of end-user critical loads.
- All available energy assets can be integrated on the iVPP platform.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information Relation to other use cases UC2: Community supply-side optimal dispatch and intra-day services provision. UC3: Island-wide, any-scale storage utilization for fast response ancillary services. UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion management services. UC5: Decarbonization of transport and the role of electric mobility in stabilizing the

UC9: Active Citizen and LEC Engagement into Decarbonization Transition.

Level of depth

energy system.

Specialized use case

Prioritisation

High level of priority

Generic, regional or national relation

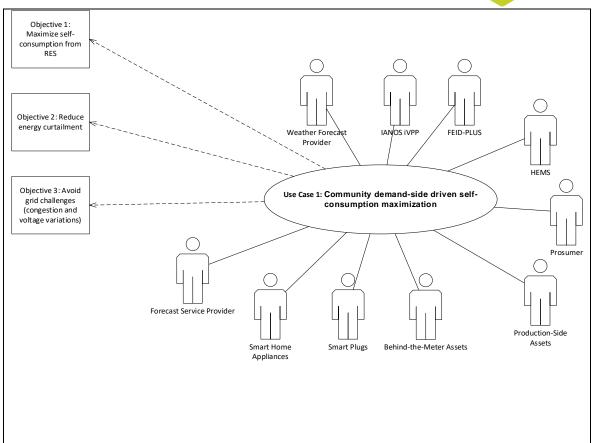
Generic

Nature of the use case

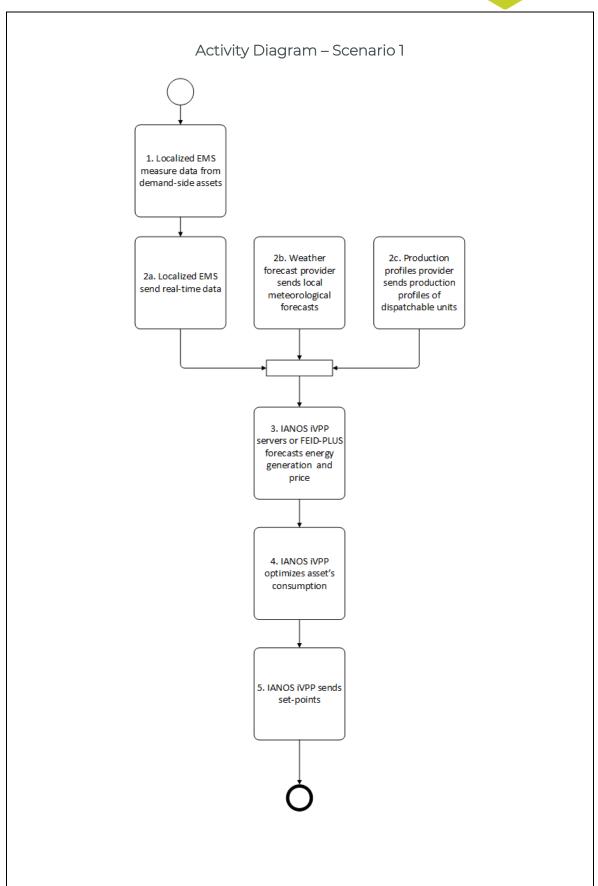
Technical use case

Further keywords for classification

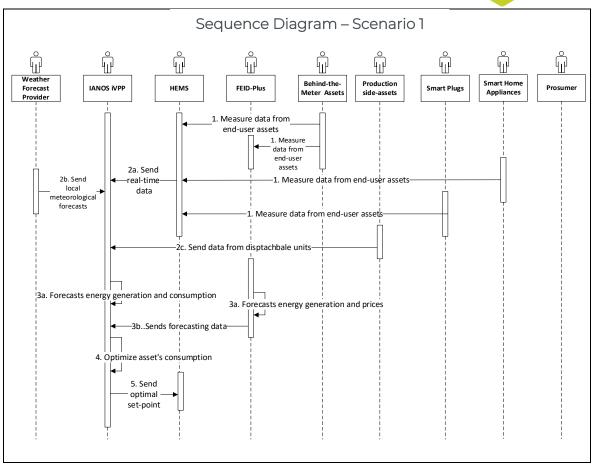
Self-consumption, prosumers, Peer-to-peer, consumption optimization, supply and demand-side assets, iVPP, LEC

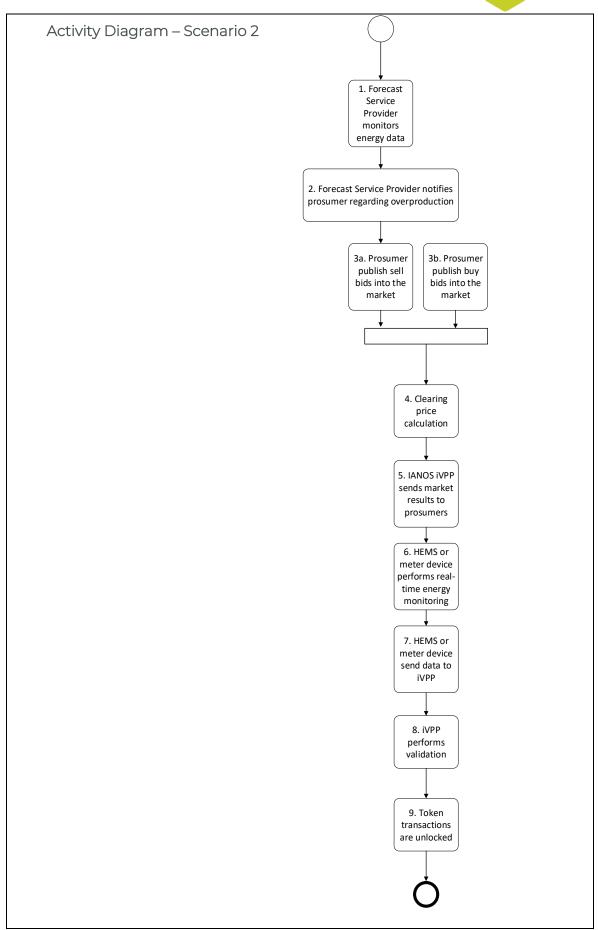

1.8 General Remarks

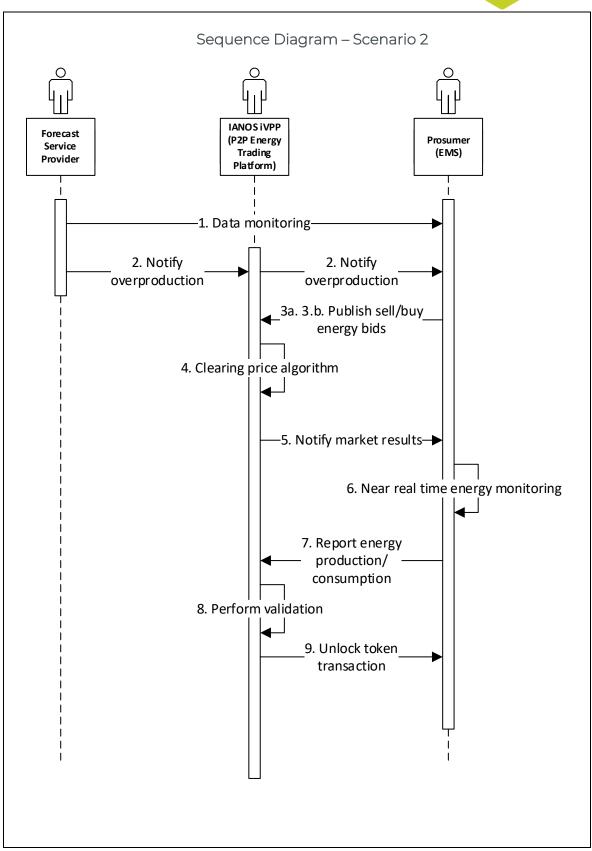
General Remarks	
-	


2 Diagrams of use case

Diagram(s) of use case	
Use Case Diagram – Scenario 1	







3 Technical details

3.1 Actors

Actors					
Actor Name	Actor Type	Actor Description			
		The IANOS iVPP sets up a virtual network of			
		decentralized renewable energy resources,			
		both non-dispatchable such as wind, solar,			
		tidal resources and dispatchable ones such as			
		geothermal and green gas CHP plants.			
		Moreover, the iVPP comprises Energy Storage			
		Systems (ESS), integrated as a single unit,			
		providing flexibility services and fostering			
		island renewable energy self-consumption.			
		The optimal, autonomous, real-time iVPP			
IANOS İVPP	System	operation will be driven by multi-level decision			
		making intelligence, complemented by			
		predictive algorithms for smart integration of			
		grid assets into active network management			
		based on relevant energy profiles. For thi			
		purpose, the iVPP is composed of 6 different			
		modules: aggregation and classification,			
		forecasting engine, centralized dispatcher,			
		distributed ledger-based energy transactions,			
		virtual energy console and secured enterprise			
		service bus.			
		Device that performs resource-intensive			
		functionalities such as computation,			
		communication, storage, and analytics locally			
		next to the end-user assets instead of			
Fog Enabled		forwarding data to cloud-based servers to be			
Intelligent Device	Device	processed.			
Plus (FEID-Plus)		The FEID-Plus is a fog-enabled computing			
		device equipped with special functions to			
		control I/O, phase width modulation and			
		analog signals. It employs enough processing			
		capacity for applying distributed computing			

		such as information capturing and storing,
		algorithms execution and control over the
		installation. Additionally, it also has the
		capacity to interface with several field
		elements for instance controllable building
		loads, storage and EV charging stations
		through appropriate protocols. Its functions
		are similar to a HEMS.
		Energy management system used for real
		time monitoring of energy
		consumption/generation, controlling
		domestic devices and electric circuits,
		accessing smart meter data and real time
		energy consumptions. HEMS is responsible
Home Energy		for gathering flexibilities within the
Management	System	customer premises and providing them to
System (HEMS)		the iVPP platform.
		Briefly, the system is composed of the
		hardware (Smart Meters, Sensors and
		Actuators), Data Management
		(Communication, Data Processing and other
		modules) and User Interfaces (UI).
		Devices which are interconnected through
Smart home	Davisa	the internet, allowing the user to control
appliances	Device	functions remotely using a mobile or other
		networked device.
		Plugs which can be controlled remotely
Cross of Division	Device	through a mobile and allow to control and
Smart Plugs	Device	automate small appliances and home
		devices.
Production-Side		Residential PV panels and assets from
Assets	System	community owned areas such as small wind
ASSELS		turbines, fuel cells and micro-CHP systems.
		Private end-user's energy assets such as
Behind-the-Meter		electrochemical and heat batteries, electric
Assets	Device	water heaters, electric vehicles, smart home
A33CL3		appliances and smart plugs. Additionally, it
		also comprises assets from community

		owned areas, for instance hybrid heat
		pumps and biobased saline batteries.
		End-user of electricity, gas, water or heat
Prosumer	Role	that can also generate energy using a
		Distributed Energy Resource.
		Provides generation, consumption and
Weather Forecast	Role	weather-related operational risks, for a given
Provider	Role	location and a specific time horizon for non-
		dispatchable generation assets.
Forecast Service		Monitors energy data from prosumers and
Provider	Dolo	provides an overproduction report based on
	Role	forecast performed for prosumer's energy
		consumption and production.

3.2 References

	References						
N	Referenc	Reference	Status	Impact on use	Originator/	Link	
О.	es Type			case	organisation		
7	Regulati	Decreto-	Publish	Approves the	Portuguese	https://dat	
	on	Lei n.º	ed	legal regime	Government	a.dre.pt/eli/	
		162/2019		applicable to self-		dec-	
				consumption of		lei/162/2019	
				renewable		/10/25/p/dr	
				energy, partially		е	
				transposing			
				Directive			
				2018/2001			

4 Step by step analysis of use case

4.1 Overview of scenarios

Scenar	Scenario conditions							
No.	Scenario name	Scenario description	Primar Triggering		Pre-condition	Post-condition		
			y actor	event				
1	Self-	The iVPP receives several real-time	IANOS	Data	Generation/Consum	Energy assets		
	consumption	data coming from localized energy	iVPP	gathering	ption of supply and	optimization for		
	maximization	management systems and the			demand-side	supply and demand		
	through	weather forecast provider. Along			energy assets is not	match maximization		
	optimization of	with its internal data, the iVPP			optimized or	of self-consumption.		
	behind-the-	performs optimization of behind-			controlled.			
	meter assets	the-meter assets' consumption in						
		order to maximize self-						
		consumption. Lastly, the iVPP sends						
		the setpoints to the localized						
		management systems.						
2	Self-	An overproduction occurs due to	IANOS	Over	The excess of energy	The excess of energy		
	consumption	excess production from renewables.	iVPP	Production	generated from	generated from		
	maximization	Prosumers sell the excess energy in		identification	renewables is fed	renewables is traded		
	through P2P	a P2P market. The market will			back into the grid.	locally providing		
	energy trading	leverage on self-enforcing smart				efficiency in the grid		
	based on DLT	contracts to manage, in a				and token-based		
		programmatic manner, the P2P				compensation		
		energy-trading between prosumers.				among prosumers.		

4.2 Steps – Scenarios

Scena	Scenario								
Scena	rio name:	No.1 - Self-consump	otion maximization through optimize	ntion of beh	ind-the-meter o	assets			
Step	Event	Name of process/	Description of process/ activity	Service	Information	Information	Information		
No.		activity			producer	receiver	Exchanged		
					(actor)	(actor)	(IDs)		
1	Behind-the-	Measure real-time	Localized energy management	GET	Supply and	HEMS, FEID-	1,2,3,4		
	meter assets' data	data from supply	systems such as FEID-Plus and		demand-	Plus			
	collection	and demand-side	HEMS (also interfacing with smart		Side Assets				
		assets	appliances and smart meters)						
			collect real time data from behind-						
			the-meter assets through smart						
			sensors, smart plugs, smart						
			meters and field-level interfaces.						
2a	Submission of data	Sends real-time	HEMS, FEID-Plus or other localized	CREATE	HEMS	IANOS iVPP	1,2,3,4		
		data	energy management systems						
			send real time data to the iVPP.						
2b	Submission of local	Sends local	Forecast Provider sends local	CREATE	Weather	IANOS İVPP	5		
	weather forecasts	meteorological	meteorological forecasts.		Forecast				
		forecasts			Provider				
2c	Submission of data	Send data from	Dispatchable units such as micro-	GET	Production-	IANOS İVPP	6		
	from dispatchable	dispatchable units	CHP and fuel cells send production		Side Assets				
	units		profiles to the iVPP.						

3a	Data forecasting	Forecasts energy	iVPP servers or the FEID-PLUS	CREATE	IANOS iVPP,	IANOS İVPP	7, 8
		generation and	forecast energy generation and		FEID-PLUS		
		prices	price				
3b	Submission of	Sends forecasting	FEID-PLUS sends forecasting data	GET	FEID-PLUS	IANOS İVPP	
	forecasting data	data	to the iVPP.				
4	Optimization of	Optimizes asset's	iVPP optimizes the consumption of	EXECUT	IANOS iVPP	IANOS iVPP	-
	asset's	consumption	all the demand-side assets in order	Е			
	consumption		to minimize energy curtailment,				
			maximize self-consumption and				
			meeting end-user consumption				
			needs.				
5	Submission of	Sends setpoint	iVPP sends the optimal setpoint to	CREATE	IANOS iVPP	HEMS	9
	optimal setpoints		the HEMS, FEID-Plus or other				
			localized management systems.				

	Scenario						
Scena	Scenario name: No. 2 - Self-consumption maximization through P2P energy trading based on DLT						
Step	Event	Name of process/ Description of process/ Service Information Information Information					
No.		activity	activity		producer	receiver (actor)	Exchanged
					(actor)		(IDs)
1	Data	Data monitoring	Forecast Service Provider	EXECUTE	Forecast	Prosumer	-
	monitoring		monitors energy data from		Service		

			prosumers.		Provider		
2	Forecasting	Notify	Forecast is calculated.	REPORT	Forecast	IANOS iVPP,	10
	and	overproduction	Overproduction is detected		Service	Prosumer	
	overproductio	'	and reported to prosumers.		Provider		
	n detection						
3a	Submission of	Publish sell bids	Prosumers decide to sell	POST	Prosumer	IANOS İVPP	11
	sell bids in the	into the market	their excess of energy				
	P2P market		production submitting sell				
	. 2		bids into the P2P market.				
3b	Submission of	Publish buy bids	Prosumers want to buy	POST	Prosumer	IANOS İVPP	12
	buy bids in the	into the market	energy submitting sell bids	1 331		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12
	P2P market	The the market	into the P2P market.				
4		A market clearing		CREATE	IANOS İVPP	IANOS IVPP	
4	Clearing price			CREATE	IANOS IVPP	IANOS IVPP	-
	algorithm	price mechanism					
		fixes, at the end of					
		the market	ascending order and the				
		session, the price	energy demand bids in				
		of the energy at	descending order. The				
		which quantity	intersection point between				
		supplied is equal	the two curves gives the				
		to quantity	market-clearing price.				
		demanded					
5	Submission of	Notify market	The platform sends market	REPORT	IANOS iVPP	Prosumer	13
	market results	results	results to prosumers.				

6	Near real-time	Near real-time	HEMS or meter device	EXECUTE	Prosumer	Prosumer	-
	monitoring	monitoring	performs a real-time energy				
			monitoring.				
7	Submission	Report energy	The platform is able to	GET	Prosumer	IANOS iVPP	1, 2
	real time data	production/consu	access consumption and				
		mption data	production data.				
8	Validation	Perform validation	iVPP performs validation.	EXECUTE	IANOS IVPP	IANOS iVPP	-
9	Settlement	Unlock token	The system unlocks the	EXECUTE	Prosumer	Prosumer	14
		transactions	tokens transactions				
			between prosumers at				
			delivery session end time.				

5 Information exchanged

Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Energy Consumption Data	Customer's energy consumption real-
		time data of the several supply and
		demand-side assets.
2	Energy Generation Data	Amount of energy generated (MWh) by
		the energy supply assets such as PV
		panels, wind turbines, Fuel Cells and
		micro-CHP systems.
3	Battery real-time data	State of charge and temperature of BESS.
4	End-User comfort	Restrictions imposed by the user to
	restrictions and operation	increase the comfort regarding assets like
	settings	heat pumps and water heaters.
5	Local meteorological	Expected irradiances and wind speeds for
	forecasts	specific locations.
6	Production profiles	Production profiles from dispatchable
		units.
7	Forecasted Energy	Customer's forecasted energy
	Consumption Data	consumption data of the several
		demand-side assets .
8	Forecasted Energy	Forecasted energy supply data
	Generation Data	from production-side assets such as PV
		panels, wind turbines, Fuel Cells, micro-
		CHP.
9	Optimal Setpoints	Optimal power dispatch computed by
		the iVPP for the supply and demand-side
		assets. It corresponds to the amount of
		power for each asset and the
		corresponding time when it should be
		dispatched.
10	Overproduction Report	Overproduction report based on forecast
		performed for prosumer's energy
		consumption and production.
11	Sell Bid	Sell energy bid from prosumer.
12	Buy Bid	Buy energy bid from prosumer.

13	Market Results	Market-clearing price.
14	Token Transaction	Token Transaction.

6 Requirements

Requirements		
Categories ID	Category name for requirements	Category description
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the
		system.
F-UI	User interface requirements	Requirements related
		to the iVPP user interface.
R-COM	Communication Requirement	Requirements related
		to communication aspects.
Requirement	Requirement name	Requirement description
R-ID		
R-FUN1	Day-ahead load and/or	iVPP can predict the load
	generation forecast	and/or generation of its assets
		for the following day.
R-FUN2	Intraday load and/or	iVPP can predict the load
	generation forecast	and/or generation of its assets
		within the day.
R-FUN3	Flexibility estimation	iVPP can estimate the
		prosumers' flexibility.
R-FUN4	Settlements of intra-iVPP energy	Energy transactions are settled
	transactions	through Smart Contracts.
R-FUN5	Energy transactions recording	Data for Intra-VPP energy
		transactions are recorded on
		the blockchain.
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use
		of KPIs.
R-UI2	Reporting	iVPP can produce reports on
		system performance
		upon iVPP Operator request.

R-COM1	Common Information Model	iVPP adopts a common
		information model to exchange
		data ensuring interoperability.
R-COM2	Integration of energy assets	Communication and
		integrations between all energy
		assets and IVPP platform.

7 Common Terms and Definitions

	Common Terms and Definitions	
Term	Definition	
BESS	Battery Energy Storage System	
BMS	Building Management Systems	
CHP	Combined Heat and Power	
DER	Distributed Energy Resources	
DHW	Domestic Hot Water	
DLT	Distributed Ledger Technology	
ESS	Energy Storage System	
EV	Electric Vehicle	
FEID	Fog-Enabled Intelligent Device	
GPDR	General Data Protection Regulation	
HEMS	Home Energy Management System	
ICT	Information and Communications Technology	
IEPT	IANOS Energy Planning and Transition Suite	
iVPP	Intelligent Virtual Power Plant	
LEC	Local Energy Communities	
P2P	Peer to Peer	
PCM	Phase Change Material	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
SoC	State of Charge	
UI	User Interface	
V2G	Vehicle-to-grid	

6.1.2 Use case 2: Community supply-side optimal dispatch and intra-day services provision

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
2	Energy efficiency and grid	Community supply-side optimal
	support for extremely high-	dispatch and intra-day services provision.
	RES penetration	

1.2 Version management

		Version Mand	agement
Version	Date	Name of	Changes
No.		Author(s)	
1	04.02.2021	EDP NEW	First draft.
2	05.02.2021	Nikolaos Nikolopoulos (CERTH), Dionisios Stefanitsis (CERTH)	Comments and inputs on related UCs, narrative of use case, Diagrams, Actors, Scenarios, Information Exchanged. Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture.
3	09.02.2021	Carlos Patrão (CLEANWATTS)	Comments and inputs on narrative of use case, use case conditions, references and information exchanged.
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios.
5	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements.

	1	T	
6	29.04.2021	Mónica	KPI's added from D2.3.
		Fernandes (EDP	Collecting the new feedback.
		NEW)	
7	10.05.2021	Mónica	Final Version.
		Fernandes (EDP	
		NEW)	
8	01.04.2022	Mónica	Minor changes on the complete
		Fernandes (EDP	description of the Use Case and
		NEW)	update on the KPIs.
9	11.07.2022	Ana Carvalho	Revision and start third version.
		(EDP NEW)	Specification on the works of the iVPP.
			Changes in the description of the Use
			Case
10	12.09.2022	Ana Carvalho	Updated information on Use Case
		(EDP NEW)	description according to feedback
			form EDA. Slight change to Function
			Layer substituting EDA's Dispatch
	_		Centre by the Telemetry System.
11	16/09/2022	Vasilis	Corrections to KPI numbering
		Apostolopoulos	according to final version of D2.9.
		(CERTH)	

1.3 Scope and objectives of use case

Scope and Objectives of Use Case				
Scope	This Use Case utilizes the flexibility from utility-scale supply side-assets to minimize energy curtailment in periods of high renewable generation. For this purpose, it also considers various storage systems such as electrolysers and large-scale BESS to store the energy produced from dispatchable units and use it in periods of high demand.			
Objective	The main goals of this use case are the following: 1. Provide flexibility on the generation-side. 2. Reduce energy curtailment. 3. Avoid grid challenges.			

1.4 Narrative of use case

Narrative of Use Case

Short description

The present Use Case focuses on using the flexibility on the generation side, for utility-scale assets, to minimize energy curtailment in periods of renewable energy surplus. For this purpose, the intelligent Virtual Power Plant (iVPP) calculates the optimal day ahead dispatch and provides suggestions to the grid-assets with the intention of minimizing curtailment and delivering intra-day services to the grid.

Accordingly, the iVPP considers three different types of utility-scale assets for this optimization: i) dispatchable assets, ii) non-dispatchable assets and iii) large-scale storage systems including both BESS and systems producing alternative fuels (electrolyzers), which support the decarbonization of islands with multi-purpose end uses.

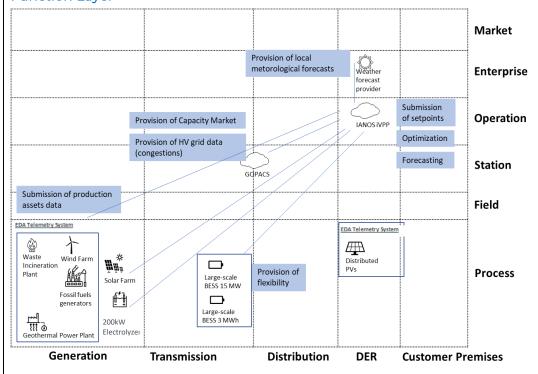
The iVPP computes the optimal dispatch set-point through provided information and delivers it to the dispatchable assets and large-scale storage systems in order to suggest behaviours to ensure the stability of the power system.

Complete description

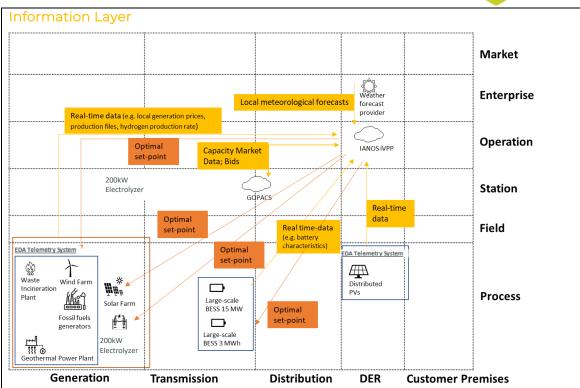
This use case explores the potential of minimizing the energy curtailment in periods of excess of renewable energy generation by using the available flexibility on the generation side of utility-scale assets. In order to achieve this goal, the iVPP computes the optimal dispatch set-point, which aims at performing the day-ahead optimal dispatch, while providing intra-day balancing services to the power system. For this purpose, the iVPP, through its Utility-Scale Assets Scheduler, considers three categories of utility-scale assets:

- i) Dispatchable assets such as diesel engines, waste incinerators, geothermal power generators of utility-scale and any other utility-scale flexibility assets available.
- ii) Non-dispatchable assets as wind and solar PV generators.
- iii) Large-scale BESS and Power to Fuel (H2) storage systems such as electrolyzers.

The calculation of the optimal dispatch is based on several information provided by the different assets. In the case of Terceira, the telemetry system of EDA will be sending the hard-technical constraints such as batteries' State of Charge, non-variable geothermal production and information regarding the waste incineration plant to the iVPP. While in Ameland, this information is obtained directly from the solar farm since the iVPP is directly connected to it. The iVPP is provided with total energy consumption forecasts on the islands, which is based on EDA's and



Alliander's historical load consumption and real-time measurements; and available flexibility forecast of the dispatchable sources. Specifically, for Ameland, the iVPP will be connected with the Grid Operation Platforms for Congestion Solutions interface (GOPACS) to exchange data with the Dutch TSO through the local DSO in order to mitigate grid congestion issues offering local energy producers revenues according to their available flexibility. Thereby, the GOPACS provides a capacity market on which the iVPP can trade.


The dispatchable and non-dispatchable assets supply its local energy generation prices to the iVPP. An external forecast provider is required to provide local energy production forecasts, based on local meteorological forecasts and historical generation data. With all these data provided to the iVPP along with its internal data, the iVPP computes the optimal power dispatch in order to assure the large-scale BESS and other storage systems have enough remaining capacity to maximize penetration of RES, to avoid energy curtailment by utilizing flexibility provided by the dispatchable assets and to procure intra-day services to the grid. Accordingly, the iVPP sends the set-points for the large-scale BESS, other storage systems and dispatchable assets. In Terceira, the iVPP will not interfere with the operation of the dispatchable production units. It will only perform the optimization and send suggestions to EDA and the solar farm.

SGAM LAYERS:

Function Layer

Technological	Information /		
Solutions	Communication	Terceira	Ameland
	Protocols		
Wind Farm	-	X	
Fossil Fuel	-	X	
Generators		^	
Geothermal Plant	-	X	
Electrolyser	-		Х
Solar Farm	-		Х
Waste	-	X	
incineration plant		^	
Small scale	-	X	
distributed PVs		^	
BESS 15 MW	-	X	
BESS 3 MWh	-		X
GOPACS	-		Х

1.5 Key performance indicators (KPIs)

ID	Name	Description	Reference to mentioned
			use case
			objectives
1.1	RES Generation	Calculates the increase of energy	2
		production from renewable energy	
		sources integrated in the energy system	
		compared to the baseline scenario	
		without IANOS interventions.	
1.7	Storage capacity in	Compares the storage capacity with the	1
	the energy grid per	total energy consumption of the island.	
	total island energy		
	consumption		
1.8	Reduced energy	Calculates the reduction of energy	2
	curtailment of RES	curtailment due to technical/operational	
	and DER	problems.	
1.10	Accuracy of energy	This KPI measures the gap between	2,3
	supply and	predicted and actual energy	
	demand prediction	demand/supply at a given time	
1.11	Unbalance of the 3-	Examines the quality of the power	3
	phase	supplied by measuring the supply voltage	
		gap between the three phases which	
		should be 120 deg.	
2.2	Reduced fossil fuel	Measures the amount of fossil fuels which	2,3
	consumption	is not consumed because of IANOS	
		demonstrated solutions (e.g.	
		Electrification of transport, RES	
		penetration).	
4.1	Increased system	Indication of the ability of the system to	1,3
	flexibility for energy	respond to supply and demand in real	
	players	time, as a measure of the demand side	
		participation in energy markets and in	
		energy efficiency intervention since the	
		beginning until the end of the project.	

4.4	Increased hosting	Gives a statement about the additional	1
	capacity for RES,	loads and RES that can be installed in the	
	electric vehicles	system when innovative solutions and	
	and other new	energy management techniques are	
	loads	applied (e.g. VPP platform). The	
		calculation is realized by comparing the	
		network capacity before and after IANOS	
		implementation.	
4.5	Increased	Measures the relative improvement in the	3
	Reliability	number of interruptions.	
7.2	Technical	Examines the extent to which the smart	1,2,3
	compatibility	grid solutions fit with the current existing	
		technological standards/infrastructures.	

1.6 Use case conditions

Use case conditions

Assumptions

- In Ameland the Grid Operation Platforms for Congestion Solutions interface (GOPACS,) will be integrated with the iVPP decision making logic. GOPACS is a unique initiative in Europe and has resulted from active collaboration between the Dutch TSO and the DSOs. This platform is consistent with key European directives to mitigate grid congestion, while offering large and small market parties an easy way to generate revenues with their available flexibility and contribute to solving congestion situations.
- Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP.
- Bidirectional smart meters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time.

Prerequisites

- Establish connection from the iVPP to the EDA's Dispatch Center (Terceira).
- Direct Connection between iVPP and solar farm (Ameland).
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification/mapping

Classification Information

Relation to other use cases

UC1: Community demand-side driven self-consumption maximization.

UC3: Island-wide, any-scale storage utilization for fast response ancillary services.

UC4: DSM and smart grid methods to support power quality optimisation and congestion management services.

UC7: Circular economy, the utilization of waste streams and connection to the local gas grid.

Level of depth

Specialized use case

Prioritisation

High level of priority

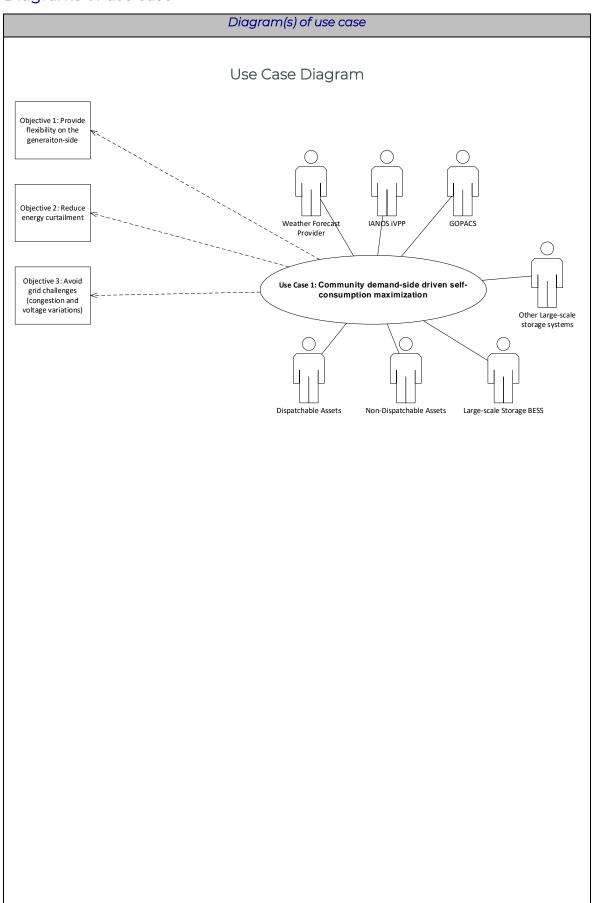
Generic, regional or national relation

Generic

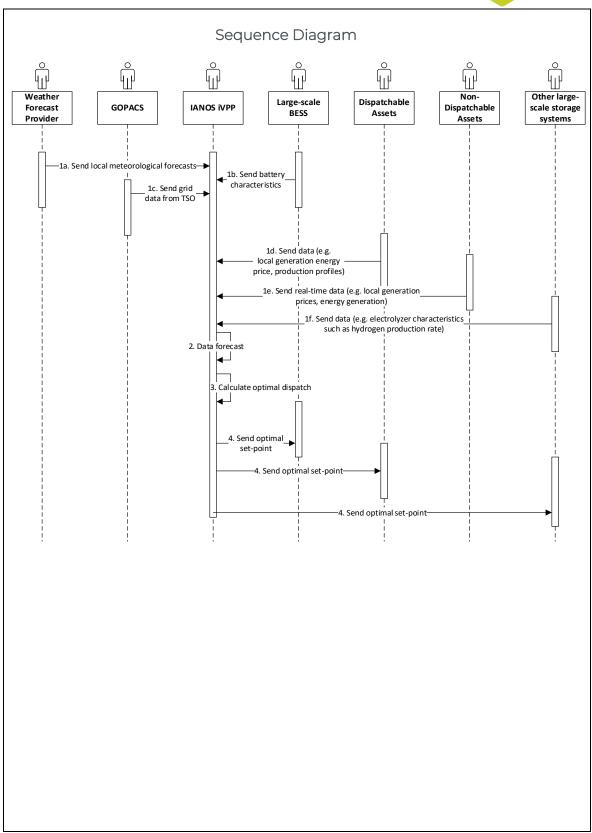
Nature of the use case

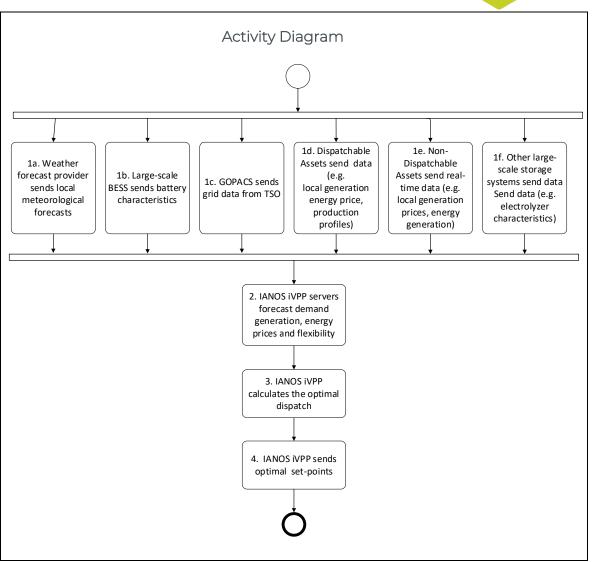
Technical use case

Further keywords for classification


Large-scale storage, VPP, optimization, optimal day-ahead dispatch, intraday balancing services, supply-side, VPP utility scale assets scheduler, flexibility, minimize curtailment

1.8 General Remarks


General Remarks	
-	


2 Diagrams of use case

3 Technical details

3.1 Actors

	Actors				
Actor Name	Actor Type	Actor Description			
Weather Forecast Provider	Role	Provides generation, consumption and weather-related operational risks for a given location and a specific time horizon.			
IANOS iVPP	System	The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and green gas CHP plants. Moreover, the iVPP comprises of Energy Storage Systems (ESS), integrated as a single unit, providing flexibility services and fostering island renewable energy self-consumption. The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making intelligence, complemented by predictive algorithms for smart integration of grid assets into active network management based on relevant energy profiles. For this purpose, the iVPP is composed of 6 different modules: aggregation and classification, forecasting engine, centralized dispatcher, distributed ledger-based energy transactions, virtual energy console and secured enterprise service bus.			
System		Large-scale battery technology system (10.5MWh in Terceira and 3 MWh in Ameland) which stores energy to be used later. It is connected to distribution/transmission networks.			
Other Large- scale storage systems	System	Other large-scale storage systems such as large-scale systems producing alternative fuels (electrolyzers). In Ameland, a 2MW electrolyzer is connected with the 3 MWh BESS using DC grid.			

Dispatchable assets	System	Power generation assets (geothermal power plant, waste incineration plant, fossil fuels generators), which power can be dispatched on demand at the request of grid operators when needed.
Non- Dispatchable assets	System	Power generation assets (Wind and Solar Farm) which power cannot be controlled by grid operators.
GOPACS	System	Grid Operation Platforms for Congestion Solutions interface (GOPACS) is a unique initiative in Europe and has resulted from active collaboration between the Dutch TSO and the DSOs. This platform is consistent with key European directives to mitigate grid congestion, while offering large and small market parties an easy way to generate revenues with their available flexibility and contribute to solving congestion situations.

3.2 References

References						
No.	References	Reference	Status	Impact on use case	Originator/	Link
	Туре				organisation	
	Regulation	Decreto-	Published	Approves the legal regime	Portuguese	https://data.dre.pt/eli/dec-
		Lei n.º		applicable to self-	Government	lei/162/2019/10/25/p/dre
		162/2019		consumption of renewable		
				energy, partially		
				transposing Directive		
				2018/2001.		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions							
No.	Scenario	Scenario description	Primary	Triggering event	Pre-condition		Post-condition	
	name		actor					
1	Supply-side	Performing the optimal	iVPP	Periodically	Power	system	Optimal	day-ahead
	optimal	day-ahead energy			requires	balancing	dispatch ca	alculated.
	dispatch	dispatch and provision of			services		Power syste	em stable.
		intra-day services to the						
		grid in order to minimize						
		energy curtailment and						
		integrate the maximum						
		RES by using the available						
		flexibility on the						
		generation side.						

4.2 Steps – Scenarios

	Scenario								
Scend	ario name:	No.1 - Supply-si	No. 1 - Supply-side optimal dispatch						
Step No.	Event	Name of process/activity	Description of process/ activity	Service	Informatio n producer (actor)	Information receiver (actor)	Information Exchanged (IDs)		
la	Submission of local weather forecasts	Send local meteorological forecasts.	Forecast Provider sends local meteorological forecasts.	CREATE	Weather Forecast provider	IANOS IVPP	1		
1b	Submission of battery characteristics	Send battery characteristics	BESS sends battery characteristics to the iVPP.	GET	Large-scale BESS	IANOS İVPP	2,3		
1c	Submission of grid data from TSO	Send grid data from TSO	GOPACS exchange high voltage grid data related to expected congestions with iVPP.	REPORT	GOPACS	IANOS iVPP	4		
1d	Submission of dispatchable assets data	Send data	Dispatchable assets send hard technical constraints and local generation energy prices to the iVPP.	GET	Dispatchabl e Assets	IANOS İVPP	5, 6,7,8		
le	Submission of non- dispatchable assets data	Send data	Non-Dispatchable assets send hard technical constraints and local	GET	Non- Dispatchabl e Assets	IANOS IVPP	8,9		

			generation energy prices to				
			the iVPP.				
٦f	Submission of	Send data	Other large-scale storage	GET	Other large-	IANOS iVPP	10
	other large-scale		systems send real-time data		scale		
	storage systems		to the iVPP.		storage		
	data				system		
2	Data forecast	Forecasts	iVPP servers or the FEID-	EXECUT	IANOS	IANOS iVPP	11,12,13
			PLUS forecasts demand	Е	iVPP, FEID-		
			generation, price and		PLUS		
			flexibility.				
3	Optimal Dispatch	Calculate the	iVPP computes the optimal	EXECUT	IANOS İVPP	IANOS iVPP	-
	Calculation	optimal	dispatch which aims to be	Е			
		dispatch	the optimal day-ahead				
			energy dispatch and to				
			provide intra-day balancing				
			services to the grid in order				
			to minimize energy				
			curtailment by using the				
			available flexibility on the				
			generation side.				
4	Submission of	Send set-	iVPP sends the optimal	CREATE	IANOS İVPP	Dispatchable Assets,	14,15,16
	optimal set-points	points	setpoint to the generation			Large Scale BESS,	
			and large-scale storage			Other large-scale	
			assets.			storage systems	

5 Information exchanged

	Information exchanged					
Information	Name of	Description of information exchanged				
exchanged	information					
(ID)						
1	Local	Expected irradiances and wind speeds for specific				
	meteorological	locations.				
	forecasts					
2	Battery real time-	SoC, temperature, etc				
	data					
3	BESS hard	Min and max SoC; Min and max charging and				
	technical	discharging power.				
	constraints					
4	HV grid data	High voltage grid real-time data related with				
		congestions; Bids.				
5	Production	Production profiles from dispatchable units.				
	profiles					
6	Dispatchable	Amount of energy (MWh) being dispatched in real-				
	assets real-time	time.				
	data					
7	Dispatchable	Maximum and minimum charging and				
	assets hard	discharging power.				
	technical					
	constraints					
8	Local Generation	Price of energy generated in a specific location				
	Energy Prices	(€/MWh).				
9	Non-Dispatchable	Amount of energy (MWh) generated by non-				
	assets data	dispatchable generator assets at real-time.				
10	Electrolyser	Hydrogen production rate, pressure, temperature,				
	characteristics	etc				
11	Forecasted	Forecasted energy supply data from production-				
	Energy	side assets such as PV panels, wind turbines, Fuel				
	Generation Data	Cells, micro-CHP.				
12	Forecasted	Forecasted energy prices from the production				
	Energy Prices	assets.				
13	Forecasted	Forecasted flexibility from the several storage				
	Flexibility Data	assets.				

14	Optimal Set-	Optimal power dispatch computed by the iVPP for
	points for	generation dispatchable assets. It is the amount of
	dispatchable	power that should be generated and supplied to
	assets	the grid from the dispatchable assets.
15	Optimal Set-	Optimal power dispatch computed by the iVPP for
	points for BESS	large-scale BESS. It is the amount of power that
		should be provided to the grid for balancing
		services or stored for later use.
16	Optimal Set-	Optimal power dispatch computed by the iVPP for
	points for other	other large-scale storage assets such as
	large-scale	electrolyzers. It is the amount of power that should
	storage systems	be stored to produce alternative fuels (hydrogen)
		thereafter.

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the
		safety issues.
R-UI	User Interface Requirement	Requirements related
		with the iVPP user interface.
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the system.
R-COM	Communication Requirement	Requirements related
		with communication aspects.
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible
		from personnel with specialized
		authorization rights .
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus)
		to enhance data cybersecurity.

-		
R-SEC3	iVPP data privacy	Utilization of good practices to
		ensure compliance with
		GDPR regulations.
R-UI1	Graphical visualization of iVPP	iVPP operation can be visually
	operation	inspected through the use
		of KPIs.
R-UI2	Reporting	iVPP can produce reports on
		system performance
		upon iVPP Operator request.
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of
		its assets for the following day.
R-FUN2	Intraday generation forecast	iVPP can predict the generation of
		its assets within the day.
R-FUN3	Flexibility estimation	iVPP can estimate the
		dispatchable production units'
		flexibility.
R-FUN4	Dispatch prioritization	iVPP can select the most
		appropriate asset(s) to deliver the
		requested service.
R-COM1	Common Information Model	iVPP adopts a common
		information model to exchange
		data ensuring interoperability.
R-COM2	Integration of energy assets	Communication and integrations
		between all energy assets and
		IVPP platform.

7 Common Terms and Definitions

Common Terms and Definitions				
Term	Definition			
BESS	Battery Energy Storage Systems			
CHP	Combined Heat and Power			
DSO	Distribution System Operator			
GOPACS	Grid Operation Platforms for Congestion Solutions			
GPDR	General Data Protection Regulation			
iVPP	Intelligent Virtual Power Plant			
RES	Renewable Energy Sources			

SGAM	Smart Grid Architecture Model	
SoC	State of Charge	
TSO	Transmission System Operator	
UC	Use Case	
UI	User Interface	

6.1.3 Use case 3: Island-wide, any-scale storage utilization for fast response ancillary services

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
3	Energy efficiency and grid	Island-wide, any-scale storage utilization for
	support for extremely	fast response ancillary services
	high RES penetration	

1.2 Version management

		Version Mana	gement
Version	Date	Name of	Changes
No.		Author(s)	
1	04.02.2021	EDP NEW	First draft.
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on Narrative of Use Case, Diagrams, Information Exchanged. Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture.
3	09.02.2021	Carlos Patrão (CLEANWATTS)	Comments and inputs on Related Use Cases, Use Case conditions, References.
4	19.02.2021	Philippe Pépin (Teraloop)	Add flywheel requirements, and data exchanged.
5	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios.

6	16.03.2021	Ioannis Moschos (CERTH)	iVPP Requirements.
7	29.04.2021	Mónica	KPIs added from D2.3.
		Fernandes (EDP	Collecting the new feedback.
		NEW)	
8	10.05.2021	Mónica	Final Version.
		Fernandes (EDP	
		NEW)	
9	01.04.2022	Mónica	Minor changes and updates on the
		Fernandes (EDP	KPIs.
		NEW)	
10	12.04.2022	Ana Carvalho	Revision and minor changes.
		(EDP NEW)	
11	16/09/2022	Vasilis	Corrections to KPI numbering
		Apostolopoulos	according to final version of D2.9.
		(CERTH)	

1.3 Scope and objectives of use case

Scope and Objectives of Use Case				
	This Use Case demonstrates the provision of fast ancillary services to the			
	grid, when grid reliability and safety is compromised, through storage			
	systems of any-scale.			
Scope	These storage systems help balancing the power system by either			
	storing energy for later use when there are high levels of energy			
	generation or by providing energy to the grid in periods of high energy			
	demand.			
	This Use Case orients at providing fast ancillary services to the grid when			
	required to achieve the following objectives:			
Objective(s)	1. Improve power quality and continuity of power supply.			
	2. Reduce energy curtailment.			
	3. Avoid grid challenges such as congestion and voltage variations.			

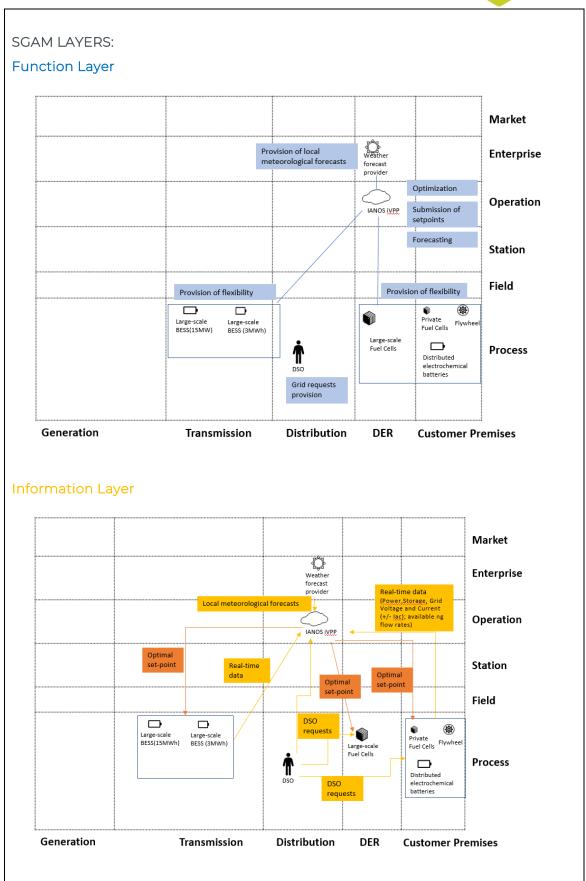
1.4 Narrative of use case

Narrative of Use Case

Short description

This use case focus on providing fast balancing services to the grid by capacitating the power system with storage technologies, including small and large-scale BESS, but also very fast responsive assets such as flywheels and other means of very flexible production units as those of Fuel Cells, fully dispatchable. Storage technologies allow to store energy in periods of renewable energy surplus that will be used afterwards to assist the grid by contributing to frequency and voltage control

The intelligent Virtual Power Plant (iVPP) is responsible for coordinating the energy fluxes between the grid and the storage assets.


Complete description

The present use case describes how the iVPP manages the provision of fast ancillary services to the grid when required through various storage assets of any-scale. These storage technologies have capabilities of frequency and voltage control allowing to improve the quality and stability of the power system. The storage technologies that will be used are centralized and distributed electrochemical batteries, flywheels and fuel cells.

The iVPP aggregates the various storage systems to provide fast balancing services to the grid such as FFR (Fast Frequency Response) and voltage deviations. On the other hand, the iVPP needs to continually ensure that there is a pre-defined capacity reserved for these services, which can vary according to the status and situation forecast of the power system in a short window of time such as one day. Accordingly, the iVPP will be provided with data from the grid in order to be able to calculate the set-point for the storage assets which will supply energy to the grid when required. This set-point will work as a suggestion in order to not interfere with assets daily operations.

Apart from the global optimization performed by the iVPP, a local optimization will also be executed through locally implemented actuators placed in the storage assets which will trigger the actual service when required.

Technological	Information /		
Solutions	Communication	Terceira	Ameland
	Protocols		
Private Fuel Cells	-		X
Large-scale Fuel	-		
Cell			X
BESS (3MWh)	-		X
Flywheel	Data collection		
	will be achieved		
	through a TCP/IP		
	as a hardware		
	layer, provided by		
	an outsourced		
	vendor (e.g.		
	Siemens),		
	enhanced with	X	
	multiple possible		
	software		
	protocols.		
	However, the		
	exact		
	definition will be		
	done in the		
	course of IANOS."		
Distributed	-		
Electrochemical		X	
Batteries			
BESS (15MW)	-	X	

1.5 Key performance indicators (KPIs)

ID	Name	Description	Reference to mentioned use case objectives
1.7	Storage capacity of the island's energy grid per total island energy consumption	Compares the storage capacity with the total energy consumption of the island.	1,3
1.8	Reduced energy curtailment of RES and DER	KPI calculates the reduction of energy curtailment due to technical/operational problems.	
1.9	Peak Load Reduction	Calculates the peak load reduction before the IANOS implementation (baseline) and after its interventions (DSM programs and storage system management).	3
1.11	Unbalance of the 3-phase	Examines the quality of the power supplied by measuring the supply voltage gap between the three phases which should be 120 deg. Compares the results with the scenario before IANOS interventions.	1,3
4.5	Increased Reliability	Measures the relative improvement in the number of interruptions.	1,3
7.3	Ease of use for end users of the solution	Provides an indication of the complexity of the implemented solution within the IANOS project for the end-users.	1,2,3

1.6 Use case conditions

Use case conditions
Assumptions

• Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP.

 Bidirectional smart meters capable of monitoring network voltage parameters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP in real-time.

Prerequisites

- Establish connection between the iVPP and storage assets (global optimization).
- Establish connection between grid and storage assets (local optimization).
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

UC1: Community demand-side driven self-consumption maximization.

UC2: Community supply-side optimal dispatch and intra-day services provision.

UC4: Demand Side Management and Smart Grid methods to support power quality and congestion management services.

Level of depth

Specialized use case

Prioritisation

High level of priority

Generic, regional or national relation

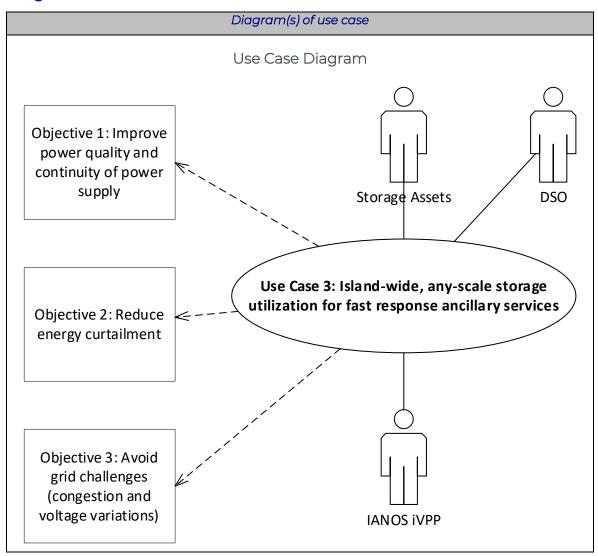
Generic

Nature of the use case

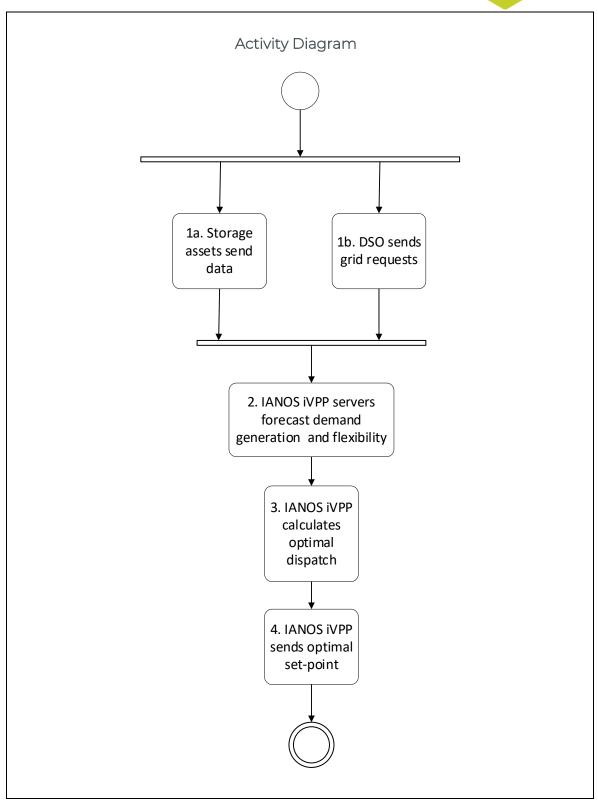
Technical use case

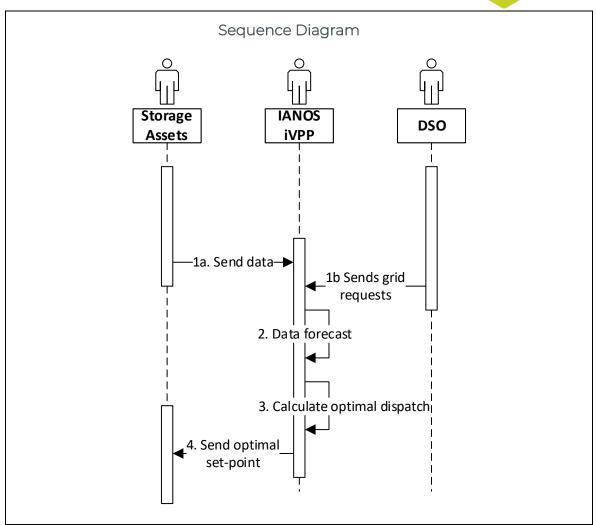
Further keywords for classification

Storage, balancing services, flywheels, batteries, fast ancillary services, CH4 fuel cells, distributed storage


1.8 General Remarks

General Remarks	
-	




2 Diagrams of use case

3 Technical details

3.1 Actors

	Actors				
Actor Name	Actor Type	Actor Description			
		Assets of any-scale that can store energy for later use such as flywheels, distributed and centralized			
Storage assets	System	electrochemical batteries. Other means of very flexible production units such as Fuel Cells are also			
		included. These assets are aggregated and controlled by the IANOS iVPP.			
		The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-			
		dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and			
		green gas CHP plants. Moreover, the iVPP comprises Energy Storage Systems (ESS), integrated as a			
		single unit, providing flexibility services and fostering island renewable energy self-consumption.			
	Civatana	The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making			
IANOS IVPP	System	intelligence, complemented by predictive algorithms for smart integration of grid assets into active			
		network management based on relevant energy profiles. For this purpose, the iVPP is composed of			
		6 different modules: aggregation and classification, forecasting engine, centralized dispatcher,			
		distributed ledger-based energy transactions, virtual energy console and secured enterprise service			
		bus.			
DSO	Role	Distribution System Operator			

3.2 References

	References						
No	No References Reference Status		Status	Impact on use case	Originator/	Link	
	Туре				organisation		
1	European	EN 50160	Revised	Definition of the voltage characteristics	CENELEC	https://www.cenelec.eu/dyn/ww	
	Standard		1 July	of electricity supplied by public electricity		w/f?p=104:110:959538371060101::::	
			2010	networks.		FSP_ORG_ID,FSP_LANG_ID,FSP	
						_PROJECT:1258595,25,51993	
2	Regulation	Decreto-Lei	Publish	Approves the legal regime applicable to	Portuguese	https://data.dre.pt/eli/dec-	
		n.º 162/2019	ed	self-consumption of renewable energy,	Government	lei/162/2019/10/25/p/dre	
				partially transposing Directive 2018/2001.			

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions						
No.	Scenario name	Scenario description	Primary	Triggering	Pre-condition	Post-condition	
			actor	event			
1	Provision of fast	iVPP computes the	IANOS iVPP	Periodically	Power system	Distributed storage	
	ancillary services	optimal set-point for			requires balancing	systems allow the	
	through storage	distributed storage			services.	provision of fast ancillary	
	systems of any-scale	technologies that			No power fluxes	services to the grid.	
		provide fast ancillary			from decentralized		
		services to the grid.			storage systems.		

4.2 Steps – Scenarios

	Scenario							
Scena	rio name :	No.1 - Provis	No. 1 - Provision of fast ancillary services through storage systems of any-scale					
Step	Event	Name of	Description of process/ activity	Service	ervice Information	Information	Information	
No.		process/act			producer	receiver	Exchanged (IDs)	
		ivity			(actor)	(actor)		
la	Submission of	Sends data	Storage assets send data to the iVPP.		Storage	IANOS IVPP	1,2,3,4,5,6	
	storage assets			GET	assets			
	data							
1b	Submission of	Sends grid	DSO sends grid requests to the iVPP.	GET	DSO	IANOS IVPP	7	
	grid requests	requests						
2	Data	Forecasts	iVPP servers forecast demand	EXECUTE	IANOS İVPP	IANOS iVPP	8,9	
	forecasting		generation and flexibility.					
3	Computation	Computes	iVPP computes the optimal dispatch	EXECUTE	IANOS İVPP	IANOS IVPP	-	
	of optimal	optimal	for the storage assets in order to					
	dispatch	dispatch	assure the provision of fast balancing					
			services to the grid. Moreover, the					
			optimization performed by the iVPP					
			also considers that must exist a pre-					
			defined capacity reserved for the					
			balancing services.					
4	Submission of	Sends set-	iVPP sends the optimal setpoint to	CREATE	IANOS İVPP	Storage	10	
	optimal set-	points	the storage assets.			Assets		
	points							

5 Information exchanged

	Informat	ion exchanged
Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Flywheel hard technical	Minimum and maximum power rating (kW),
	constraints	energy capacity (kWh or kJ), efficiency (%),
		self-discharge time (h), operating
		temperature (°C), dimensions (m), weight
		(kg), noise (dBA), connectivity, maximum
		rotational speed (rpm).
2	Fuel Cells hard technical	Minimum and maximum natural gas and
	constraints	hydrogen flow rates; temperature range,
		maximum total power output (kW).
3	BESS hard technical	Minimum and maximum SoC, and charging
	constraints	and discharging power; temperature range.
4	Flywheel real-time data	Real-time Power (+/- kW) and Storage (kWh);
		Grid Voltage (Vac); Grid Current (+/- lac); Grid
		Power (+/- kW); Flywheel System Warnings /
		Errors.
5	Fuel Cells real-time data	Available NG flow rates; temperature at FC
		Anode.
6	BESS real-time data	SoC, temperature.
7	Grid Requests	Grid requests.
8	Forecasted Energy	Forecasted energy supply data
	Generation Data	from production-side assets such Fuel Cells.
9	Forecasted Flexibility	Forecasted flexibility from the several storage
	Data	assets.
10	Optimal Setpoints	Optimal power dispatch computed by the
		iVPP for storage assets. It is the amount of
		power from the grid that will be stored in the
		storage assets or the amount of power sent
		to the grid from the storage assets to provide
		balancing services.

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the
		safety issues.
R-BUS	Business Requirement	Business requirements to
		achieve operational state
		of iVPP per UC.
R-UI	User Interface Requirement	Requirements related
		to the iVPP UI.
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the system.
R-COM	Communication Requirement	Requirements related
		to communication aspects
R-CONF.	Configuration Requirement	Requirements applicable to the
		electrical, physical and digital
		configuration applicable to enable
		the asset's operation.
R-D	Data requirements and operation	Requirements related to data
	settings	exchange and operation settings.
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible
		from personnel with specialized
		authorization rights.
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus)
		to enhance data cybersecurity.
R-SEC3	iVPP data privacy	Utilization of good practices to
		ensure compliance with
		GDPR regulations.
R-SEC4	Network security measures for	Establishes the ways in which
	data exchange with flywheel	communication between the
		iVPP and the flywheel control
		system can be done safely,

		mitigating risks of external
		interference.
R-SEC5	Flywheel site safety	Establishes the safety guidelines
N SECS	Trywincer site surety	applicable to the physical location
		where the flywheel is installed. It
		further establishes the safety
		guidelines applicable to all
		personnel in the local vicinity to
		ensure safe operation of the
		flywheel.
R-BUS1	Assets optimal location	Specification of the
		candidate assets location in pilot
		sites.
R-BUS2	Physical installation and grid	The storage asset provider or
	integration	operator or integrator will
		physically integrate the asset with
		the local energy system.
R-BUS3	Installation of monitoring	The necessary monitoring
	infrastructure	infrastructure will be installed.
R-BUS4	Prequalification of asset with the	Assets should follow grid code
	transmission code requirements	requirements according to the
		services to be provided.
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use
		of KPIs.
R-UI2	Reporting	iVPP can produce reports on
		system performance
		upon iVPP Operator request.
R-FUN1	Receive Operator's requests	iVPP having the ability to receive
		requests for service activation
		(e.g. FRR) from System Operator
		(TSO or DSO).
R-FUN2	Capacity reserves allocation for fast	iVPP can allocate storage Assets
	ancillary services (AS)	into different reserves/AS.
R-FUN3	Dispatch prioritization	iVPP can select the most
		appropriate asset(s) to deliver the
		requested service.
		'

R-FUN4	Activation of iVPP distributed	BESS/FC/Flywheel assets can be
	storage Asset to provide	automatically triggered to provide
	primary regulation	Frequency Containment Reserves
		(FCR) automatically
		within seconds.
R-FUN5	Activation of iVPP distributed	iVPP having the ability to activate
1010	storage Asset to provide	BESS/FC/Flywheel assets to
	secondary regulation	provide Frequency Restoration
	Secondary regulation	Reserves (FRR) within 5-15
		minutes.
R-FUN6	Activation of flywheel to provide	Flywheel can be automatically
1010	voltage support	triggered to absorb/provide
	voltage support	reactive power for voltage control
		within seconds.
R-FUN7	Activation of electrochemical	Assets' inverters can be
10107	storage inverters to provide	automatically triggered to
	voltage support	absorb/provide reactive power for
	voltage support	voltage control within seconds.
R-COM1	Common Information Model	iVPP adopts a common
		information model to exchange
		data ensuring interoperability.
R-COM2	iVPP minimum communication	Bandwidth and latency are
	requirements	ensured to follow min.
	,	requirements according to the
		level of service to be delivered
		(e.g. mFRR, aFRR).
R-CONF1	Flywheel electrical connection	Defines the electrical connection
		parameters required to integrate
		the flywheel to the End User and
		Grid's electricity network.
R-CONF2	Flywheel control communication	Defines how the iVPP
		communicates with the flywheel,
		either activating
		charge/discharge events, or idling
		mode.
R-D.1	Grid frequency and voltage real	Defines how the iVPP collects the
	time data	electric grid's real time data.

7 Common Terms and Definitions

Common Terms and Definitions		
Term	Definition	
BESS	Battery Energy Storage System	
FFR	Firm Frequency Response	
GPDR	General Data Protection Regulation	
IoT	Internet of Things	
IVPP	Intelligent Virtual Power Plant	
PV	Photovoltaic	
SGAM	Smart Grid Architecture Model	
SoC	State of Charge	
UC	Use Case	
UI	User Interface	
WT	Wind Turbine	

6.1.4 Use case 4: Demand Side Management and Smart Grid methods to support Power quality and congestion management services

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
4	Energy efficiency	DSM and smart grid methods to support power
	and grid support for	quality optimization and congestion
	extremely high RES	management services
	penetration	

1.2 Version management

	Version Management			
Version	Date	Name of	Changes	
No.		Author(s)		
1	04.02.2021	EDP NEW	First draft.	
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams, Actors, Scenarios. Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture.	
3	10.02.2021	Carlos Patrão (CLEANWATTS)	Comments on Use Case conditions, References.	
4	23.02.2021	Rui Lopes (UNINOVA)	Comments on the Narrative of the Use Case, Scenarios. Add assumptions and pre-requisites for the smart energy router. Add information exchanged from the smart energy router.	

5	23.03.2021	Andrea Soto (EFACEC Energia)	Add assumptions and pre-requisites for the hybrid transformer. Add information exchanged from the hybrid transformer.
6	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios.
7	16.03.2021	Ioannis Moschos (CERTH)	IVPP Requirements.
8	29.04.2021	Mónica Fernandes (EDP NEW)	KPIs added from D2.3. Collecting the new feedback.
9	11.05.2021	Mónica Fernandes (EDP NEW	Final Version.
10	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes on the description and the actors of the Use Case and updates on the KPIs.
11	15/07/2022	Ana Carvalho (EDP NEW)	Revision and start of the third version.
12	16/09/2022	Vasilis Apostolopoulos (CERTH)	Corrections to KPI numbering according to final version of D2.9.

1.3 Scope and objectives of use case

Scope and Objectives of Use Case		
	The scope of this Use Case is the provision of slow ancillary services to the	
Scope	grid using available energy flexibility from demand resources of the	
эсорс	island. Additionally, this Use Case also demonstrates smart grid methods	
	with interesting functionalities for the stability of the power system such	

	as allowing an optimised control of the user's local production and
	storage and also the ability to regulate active and reactive power.
	This Use Case is crucial when the optimal dispatch is not enough to
	assure the stability of the power system. The main objectives are the
	following:
Objectives	1. Ensure stability of the power system.
	2. Minimize energy curtailment.
	3. Support congestion management services by utilizing demand
	flexibility as a mean to provide slow ancillary services to the grid.

1.4 Narrative of use case

Narrative of Use Case

Short description

This use case reports the methods to provide slow ancillary services to the power system through demand-side management and smart grid methods.

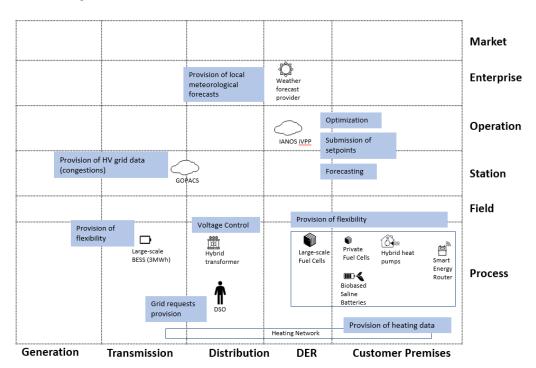
The intelligent Virtual Power Plant (iVPP) performs a global optimization which will consider the 4 following assets: storage assets, fuel cells, hybrid transformer and smart energy router. For each one of these assets, the iVPP computes an optimal setpoint in order to ensure the stability and quality of the power system.

Complete description

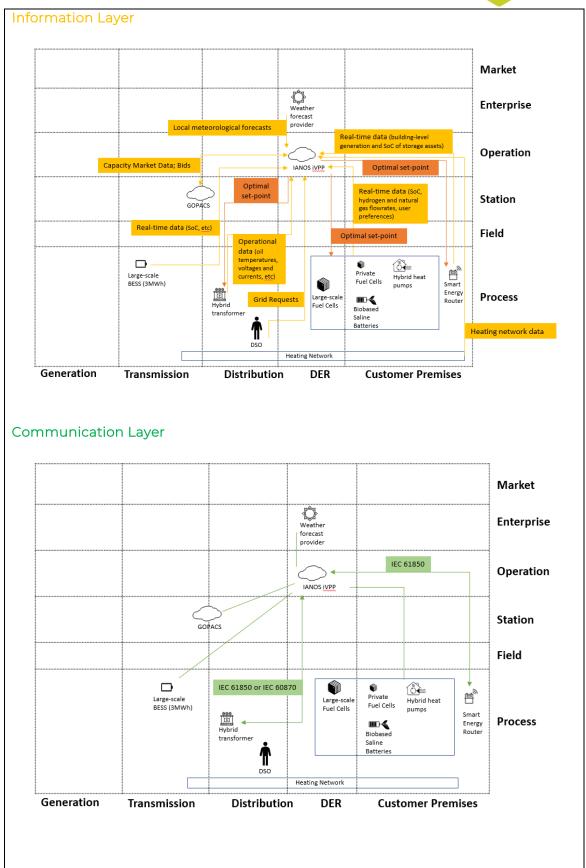
The present use case describes the methods to support power quality optimization and congestion management services through demand-side management. For this purpose, the iVPP performs an optimization that considers 4 different types of assets: i) storage assets, not only electrochemical but also Power-to-X, (ii) other means of very flexible electric production units as those of Fuel Cells, fully dispatchable iii) hybrid transformer and iv) smart energy router. Accordingly, the iVPP computes the optimal dispatch for each one of these assets and delivers the respective setpoint in order to ensure the stability and quality of the power system.

The electrochemical storage assets considered are battery storage systems and biobased batteries while the Power-to-X ones are hybrid heat pumps. On top of those, fuel cells (both distributed of small-scale, but also centralized of large-scale) will offer slow ancillary services to the electricity grid.

The optimization is performed by the iVPP through its DSM modules to optimize the energy dispatch of each client based on certain criteria (e.g. minimization of RES curtailment or reduction of system's operation cost) which must be defined by the system operator since the beginning of the implementation of the Use Case.


DSM modules use: i) energy consumption forecasts based on historical load consumption and real time measurements, ii) energy production forecasts based on local meteorological forecasts provided by an external forecast provider and iii) historical generation data from the available RES assets.

The hybrid transformer allows to fix the voltage between phases, provides reactive power regulation and thereby complies with the voltage setpoint computed by the iVPP.


The smart energy router controls power flows between the grid and its storage assets and enables the possibility of providing balancing services to the grid taking into consideration local restrictions from storage assets. The iVPP calculates the optimal dispatch for the smart energy router in order to manage the energy services provided to the grid and the consumer.

SGAM LAYERS:

Function Layer

Technological	Information /		
Solutions	Communication	Terceira	Ameland
	Protocols		
Private Fuel Cells			X
Large-scale Fuel			
Cell			X
Hybrid Heat			· ·
Pumps			X
Biobased Saline			X
Batteries			X
BESS (3MWh)	-		X
BESS (15MW)		X	
Smart Energy	Uses the IEC 61850		
Router	protocol,		
	nevertheless, the		
	protocol used can		
	be adjusted		
	according to the		
	needs and	X	
	specifications of		
	the iVPP as long as		
	it is supported by a		
	Wi-Fi connection		
	at the installation		
	site.		
Hybrid	Based in		
Transformer	substation		
	automation	V	
	protocols (IEC	X	
	61850 or IEC		
	60870).		

1.5 Key performance indicators (KPIs)

ID	Name	Description	Reference to mentioned use case objectives
1.3	System Average Interruption	Calculates the annual average number of power interruptions	
	Frequency Index	encountered by each end-user.	
1.4	System Average	Calculates the average time duration	1
	Interruption	of the power interruptions	
	Duration Index	encountered by the end-users each	
		year.	
1.8	Reduced energy	Calculates the reduction of energy	2
	curtailment of RES	curtailment due to	
	and DER	technical/operational problems.	
1.9	Peak Load	Calculates the peak load reduction	3
	Reduction	before the IANOS implementation	
		(baseline) and after its interventions	
		(DSM programs and storage system	
		management).	
1.10	Accuracy of energy	This KPI measures the gap between	2,3
	supply and	predicted and actual energy	
	demand prediction	demand/supply at a given time	
1.11	Unbalance of the 3-	Examines the quality of the power	1,3
	phase	supplied by measuring the supply	
		voltage gap between the three phases	
/ 1	Ingressed system	which should be 120 deg.	1 7
4.1	Increased system	Indication of the ability of the system	1,3
	flexibility for energy players	to respond to supply and demand in real time, as a measure of the demand	
	Piayers	side participation in energy markets	
		and in energy efficiency intervention	
		since the beginning until the end of	
		the project.	
4.5	Increased	Measures the relative improvement in	3
	Reliability	the number of interruptions.	

5.1	People Reached	Percentage of people in the target	1,2,3
		group that have been reached and/or	
		are activated by the project.	
7.1	Social	Refers to the extent to which the	1,2,3
	Compatibility	project's solution fits with people's	
		'frame of mind' and does not negatively	
		challenge people's values or the ways	
		they are used to do things.	
7.2	Technical	Examines the extent to which the smart	1,2,3
	compatibility	grid solutions fit with the current	
		existing technological	
		standards/infrastructures.	
7.3	Ease of use for end	Provides an indication of the complexity	1,2,3
	users of the	of the implemented solution within the	
	solution	IANOS project for the end-users.	

1.6 Use case conditions

Use case conditions

Assumptions

- Access to DSO's energy data or retailer's smart meters capable of monitoring network voltage parameters according to the EN 50160 standard.
- Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP.
- End-user's permission to shift demand periods.
- In Ameland the Grid Operation Platforms for Congestion Solutions interface (GOPACS,) will be integrated with the iVPP decision making logic. GOPACS is a unique initiative in Europe and has resulted from active collaboration between the Dutch TSO and the DSOs. This platform is consistent with key European directives to mitigate grid congestion, while offering large and small market parties an easy way to generate revenues with their available flexibility and contribute to solving congestion situations.
- PV systems' power, voltage and current respect Smart Energy Router specifications.
- Appliances and other loads to be managed by the Smart Energy Router have communication and interaction capabilities (e.g., REST API) so monitoring and control activities can be conducted.

- iVPP setpoints to Smart Energy Router take into consideration local restrictions such as storage devices' state of charge or maximum and minimum charging/discharging power.
- Close surveillance of the hybrid transformer during operation on the grid.

Prerequisites

- The criteria for optimization must be defined by the system operator for each island
- Connection from the VPP to storage assets and power production units (hybrid heat pumps, fuel cells, BESS and biobased batteries) in Ameland.
- Hybrid Transformer is connected to the iVPP.
- Smart Energy Router is connected to the iVPP.
- Acceptance and/or certification by the corresponding authority for the installation on the electric distribution grid of the hybrid transformer.
- Hybrid transformer monitoring system communicates with EFACEC asset management platform with cellular communication connection.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

UC1: Community demand-side driven self-consumption maximization.

UC2: Community supply-side optimal dispatch and intra-day services provision.

UC3: Island-wide, any-scale storage utilization for fast response ancillary services distributed storage technologies to help balancing the grid; flywheels, batteries.

UC5: Decarbonization of transport and the role of electric mobility in stabilizing the energy system.

UC9: Active Citizen and LEC Engagement into Decarbonization Transition.

Level of depth

Specialized use case

Prioritisation

High level of priority

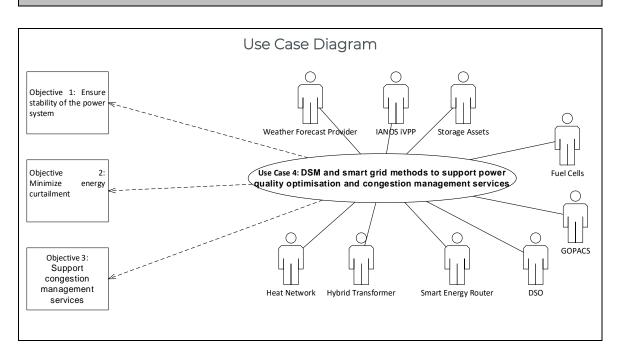
Generic, regional or national relation

Generic

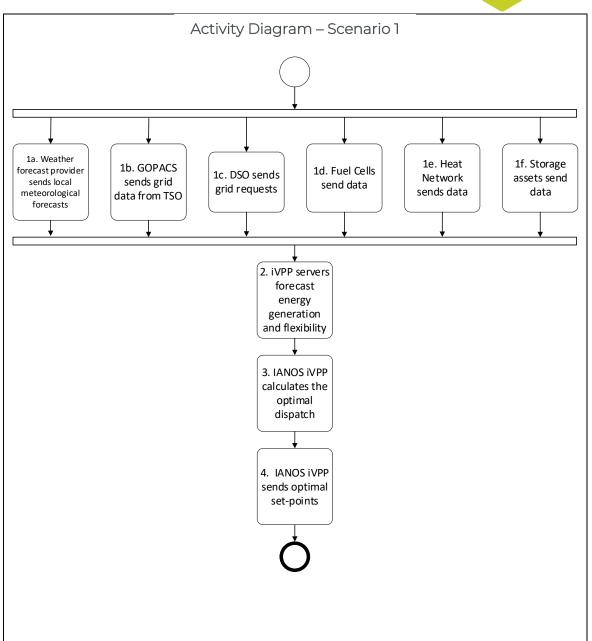
Nature of the use case

Technical use case

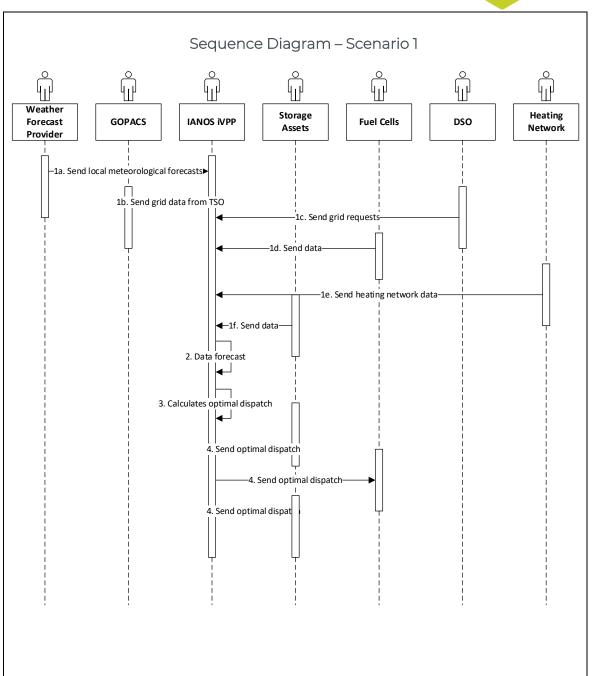
Further keywords for classification

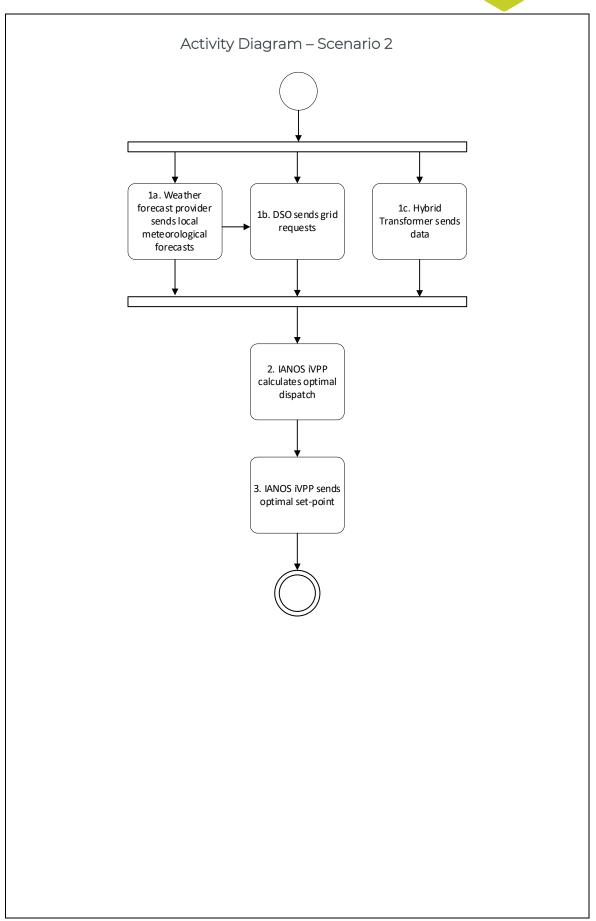

Demand side management, smart grids, smart energy router, hybrid transformer, ancillary services, demand flexibility

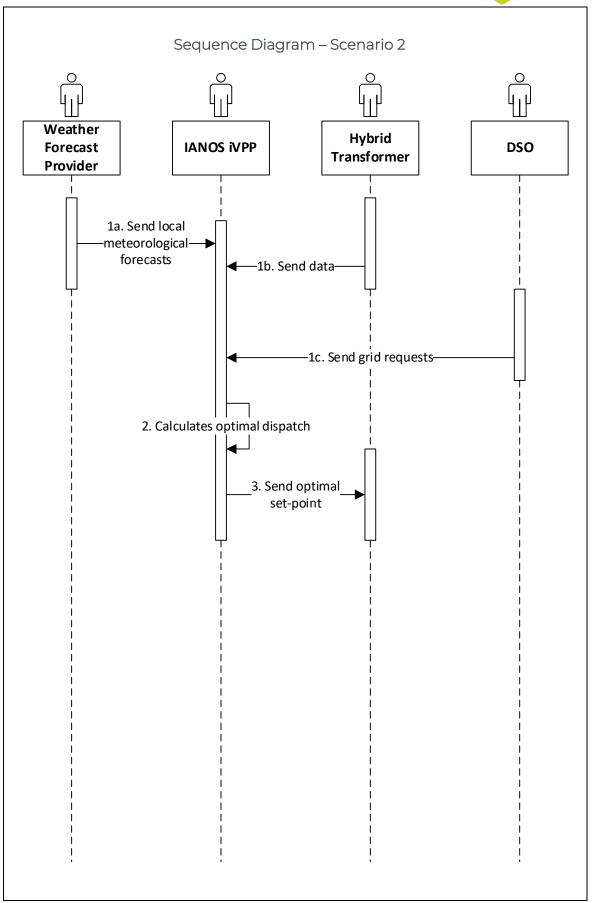
1.8 General Remarks

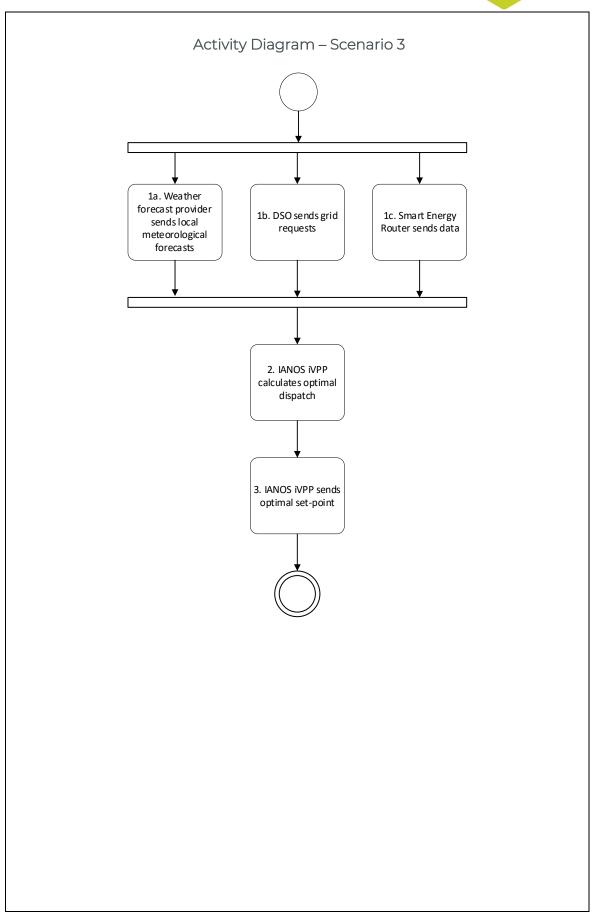

General	Remarks
	-

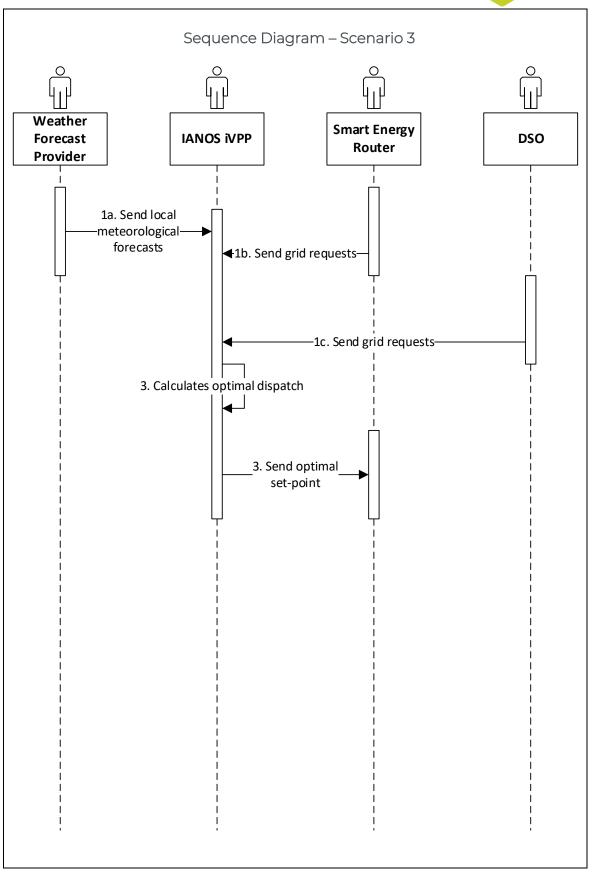
2 Diagrams of use case


Diagram(s) of use case









3 Technical details

3.1 Actors

Actors						
Actor Name	Actor Type	Actor Description				
Weather Forecast	Role	Provides generation, consumption and weather-related operational risks, for a given				
Provider	roc	location and a specific time horizon.				
		The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both				
		non-dispatchable such as wind, solar, tidal resources and dispatchable ones such as				
		geothermal and green gas CHP plants. Moreover, the iVPP comprises of Energy Storage				
		Systems (ESS), integrated as a single unit, providing flexibility services and fostering island				
		renewable energy self-consumption.				
IANOS iVPP	System	The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision				
		making intelligence, complemented by predictive algorithms for smart integration of grid				
		assets into active network management based on relevant energy profiles. For this purpose,				
		the iVPP is composed of 6 different modules: aggregation and classification, forecasting				
		engine, centralized dispatcher, distributed ledger-based energy transactions, virtual energy				
		console and secured enterprise service bus.				
Storage Assets	System	Assets with the ability of storing energy to be used later such as hybrid heat pumps, BESS				
Storage Assets	Systerri	and biobased batteries.				
Fuel Cells	System	Assets with the ability of offering electricity, when necessary, while also supporting the				
I del Cells	Jysterri	synergy between energy grids (NG and electricity in the specific case).				
Hybrid Transformer	Device	Device with the capability of regulating voltage during operation. This hybrid				
TIYOTA HAHSIOHITE	Device	transformer employs independent control of each phase and features such as reactive				

		never or unbalanced companies, which cannot be provided by conventional	
		power or unbalanced compensation, which cannot be provided by conventional	
		transformers.	
		It is able to implement a dynamic voltage regulation actuation, in each phase, with	
		unlimited number of operations and with the addition of other features such as the	
		contribution to reactive power compensation, unbalance correction and improvement	
		in the voltage profile quality.	
		Power electronic device that provides grid-to-grid communication, load management and	
Smart Energy Router	Device	integration of multiple generation and storage units, heterogeneous appliances an	
		existing distribution grid. Moreover, it also allows to provide ancillary services to the grid.	
DSO	Role	Distribution System Operator.	
Heat Network	System	System which distributes centralized heat to consumers through a system of insulated pipes	
neat Network	System	carrying hot water.	
		Grid Operation Platforms for Congestion Solutions interface (GOPACS) is an unique initiative	
		in Europe and has resulted from active collaboration between the Dutch TSO and the DSOs.	
GOPACS	System	This platform is consistent with key European directives to mitigate grid congestion, while	
		offering large and small market parties an easy way to generate revenues with their available	
		flexibility and contribute to solving congestion situations.	

3.2 References

				References		
No.	References	Reference	Status	Impact on use case	Originator/	Link
	Туре				organisation	
7	European	EN 50160	Revised	Definition of the voltage	CENELEC	https://www.cenelec.eu/dyn/www/f?
	Standard		, 1 July	characteristics of electricity		p=104:110:959538371060101::::FSP_OR
			2010	supplied by public electricity		G_ID,FSP_LANG_ID,FSP_PROJECT:12
				networks.		<u>58595,25,51993</u>
2	Internation	IEC		Power transformers - Part 1:	International	https://webstore.iec.ch/publication/5
	al	60076-		General.	Electrotechnic	<u>88</u>
	Standard	1:2011			al Commission	
					(IEC)	
3	Commissio	No		Commission regulation (EU)		https://ec.europa.eu/growth/single-
	n regulation	548/2014		No 548/2014 of 21 May 2014		market/european-
	(EU)	of 21 May		implementing Directive		standards/harmonised-
		2014		2009/125/EC of the European		standards/ecodesign/transformers_e
				Parliament and of the Council		<u>n</u>
				with regard to small, medium		
				and large power transformers.		
4	Internation	IEC	Edition	Power transformers –	International	https://webstore.iec.ch/publication/3
	al	60076-24	1.0,	Part 24: Specification of	Electrotechnic	<u>0367</u>
	Standard		2020-0	voltage regulating distribution	al Commission	
			7	transformers (VRDT).	(IEC)	

4 Step by step analysis of use case

4.1 Overview of scenarios

		Scenar	io conditions			
No.	Scenario name	Scenario description	Primary	Triggering event	Pre-condition	Post-condition
			actor			
1	Demand-side	The iVPP computes the optimal	IANOS iVPP	Periodically	Power system	Power system
	management capable	set-point which allows to			requires	is stable and
	of providing slow	provide slow balancing services			balancing	controlled.
	ancillary services	to the grid through storage			services.	
		assets by using demand-side			No power	
		flexibility.			fluxes from or	
					to storage	
					assets.	
2	Voltage control to	The hybrid transformer	Hybrid	Periodically	Power system	Voltage is
	support power quality	complies with the voltage	Transformer		requires	regulated.
	optimisation and	setpoint computed by the iVPP			voltage control.	
	congestion	in order to ensure a continuous				
	management services	power.				
3	Localized energy	iVPP calculates the optimal	Smart	Periodically	Power system	Smart Energy
	routing management	dispatch to the smart energy	Energy		requires	Router
	capable of providing	router which manages the	Router		balancing	contribute to
	ancillary services	energy transfer from and to			services. No	stabilize and
		different sources (RES			power fluxes	

	generators and distribution		from	or t	to	control	the
	grid), loads and storage systems		storage	assets	S.	power syst	em.
	in order to provide services to						
	the grid and the consumer.						

4.2 Steps – Scenarios

	Scenario								
Scen	Scenario name : No. 1 - Demand-side management capable of providing slow ancillary services								
Ste	Event	Name of process/	Description of process/	Service	Information	Informati	Informat	Require	
p		activity	activity		producer	on	ion	ment, R-	
No.					(actor)	receiver	Exchang	IDs	
						(actor)	ed (IDs)		
la	Submission	Sends local	Weather forecast		Weather	IANOS	1		
	of local	meteorological	provider sends local	CREATE	forecast	iVPP			
	weather	forecasts	meteorological forecasts.		provider				
	forecasts								
1b	Submission	Send grid data	GOPACS exchange high	REPORT	GOPACS	IANOS	2		
	of grid data	from TSO	voltage grid data related			iVPP			
	from TSO		to congestions with iVPP.						
1c	Submission	Sends data	DSO sends grid requests	GET	DSO	IANOS	3		
	of grid		to the iVPP.			iVPP			
	requests								
1d	Submission	Sends data	Fuel Cells send its data to	GET	Fuel Cells	IANOS	4,5		
	of fuel cell's		the iVPP.			iVPP			

	data							
1e	Submission	Sends data	Heat Network sends its	GET	Heat	IANOS	6	
	of heat		data to the iVPP.		Network	iVPP		
	network							
	data							
1f	Submission	Sends data	Storage assets send data		Storage	IANOS	7,8	
	of storage		to the iVPP.	GET	assets	iVPP		
	asset's data							
2	Data	Forecasts energy	iVPP servers forecast	EXECUTE	IANOS İVPP	IANOS	9,10	
	Forecasting	generation and	energy generation from			iVPP		
		flexibility	production-side assets					
			such as fuel cells and					
			flexibility forecasts from					
			storage assets					
3	Calculation	Calculates	iVPP computes the	EXECUTE	IANOS İVPP	IANOS	-	
	of optimal	optimal dispatch	optimal dispatch for the			iVPP		
	dispatch		storage assets					
			considering the provision					
			of slow balancing services					
			to the grid.					
4	Submission	Sends set-points	iVPP sends the optimal	CREATE	IANOS İVPP	Storage	11,12	
	of optimal		setpoint to storage assets			Assets,		
	set-points		and fuel cells.			Fuel Cells		

Scenario

No. 2 - Voltage control to support power quality optimisation and congestion management services

Name of process/ activity	Description of process/activity	Service	Information producer (actor)	Information receiver (actor)	Information Exchanged (IDs)
Sends local meteorological forecasts	Forecast Provider sends local meteorological forecasts.	CREATE	Forecast provider	IANOS İVPP	1
Sends requests	DSO sends grid requests to the iVPP.	GET	DSO	IANOS İVPP	3
Sends data	Hybrid Transformer sends data to the iVPP.	GET	Hybrid Transformer	IANOS İVPP	13
Calculates optimal dispatch	iVPP computes the optimal voltage dispatch for the hybrid transformer in order to fix the voltage between phases and regulate the voltage in the power system.	EXECUTE	IANOS İVPP	IANOS İVPP	-
Sends set-points	iVPP sends the optimal setpoint to the hybrid transformer.	CREATE	IANOS İVPP	Hybrid Transformer	14

	Scenario							
Scenario name: No. 3 - Localized energy routing management capable of providing ancillary services								
Step	Event	Name of	Description of process/	Service	Information	Information	Information	
No.		process/	activity		producer	receiver	Exchanged	
		activity			(actor)	(actor)	(IDs)	
la	Submission of	Sends local	Forecast Provider sends		Forecast	IANOS iVPP	1	
	local weather	meteorological	local meteorological	CREATE	provider			
	forecasts	forecasts	forecasts.					
1b	Submission of grid	Sends grid	DSO sends grid requests	GET	DSO	IANOS iVPP	3	
	requests	requests	to the iVPP .					
1c	Submission of	Sends data	Smart Energy Router		Smart Energy	IANOS iVPP	15	
	smart energy		sends data to the iVPP.	CREATE	Router			
	router data							
2	Calculation of	Calculates	iVPP computes the	EXECUT	IANOS İVPP	IANOS iVPP	-	
	optimal dispatch	optimal	optimal dispatch for the	Е				
		dispatch	smart energy router.					
3	Submission of	Sends set-	iVPP sends the optimal	CREATE	IANOS İVPP	Smart Energy	16	
	optimal set-point	point	setpoint to the smart			Router		
			energy router.					

5 Information exchanged

Information exchanged (ID)	Name of information	Description of information exchanged
1	Local meteorological	Expected irradiances and wind speeds for
	forecasts	specific locations.
2	HV grid data	High voltage grid real-time data related
		with congestions; Bids.
3	Grid Requests	Grid requests.
4	Fuel Cells hard technical	Minimum and maximum natural gas and
	constraints	hydrogen flow rates; temperature range,
		maximum total power output (kW).
5	Fuel Cells real-time data	Available NG flow rates; temperature at
		FC Anode.
6	Heating Network Data	Heating network status, real-time data.
7	Storage Assets hard	Minimum and maximum SoC and
	technical constraints	charging and discharging power; User
		preferences.
8	Storage Assets real-time	SoC, temperature, etc
	data	
9	Forecasted Energy	Forecasted energy supply data
	Generation Data	from production-side assets such as Fuel
		Cells.
10	Forecasted Flexibility Data	Forecasted flexibility from the several
		storage assets.
11	Optimal Set-points for	Optimal power dispatch computed by
	storage assets	the iVPP for storage assets. It is the
		amount of power from the grid that will
		be stored in the storage assets or the
		amount of power sent to the grid from
		the storage assets to provide slow
		balancing services.
12	Optimal Set-points for fuel	Optimal power dispatch computed by
	cells	the iVPP for fuel cells. It is the amount of
		power sent to the grid from fuel cells to
		provide balancing services.

13	Hybrid Transformer real-	Operational data (oil temperatures and
	time data	dissolved moisture; voltages and currents
		measured on LV side) and ambient
		related operational data (temperature
		and humidity; noise and vibration) from
		transformer to iVPP.
14	Optimal Set-point for hybrid	Optimal voltage dispatch computed by
	transformer	the iVPP for the hybrid transformer. It
		corresponds to the voltage required to fix
		the voltage between phases.
15	Smart Energy Router Data	Real-time building-level generation and
		local storage state of charge data.
16	Optimal Set-point for Smart	Optimal energy dispatch computed by
	Energy Router	the iVPP for the smart energy router. It
		corresponds to the amount of power that
		will be provided to the grid or to the loads
		or storage systems.

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the
		safety issues.
R-BUS	Business Requirement	Business requirements to
		achieve operational state
		of iVPP per UC.
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the
		system.
R-CONF.	Configuration Requirement	Requirements applicable to the
		electrical, physical and digital
		configuration applicable to
		enable the asset's operation.
R-UI	User Interface Requirement	Requirements related
		to the iVPP UI.

R-USER	User requirement	Requirements related to the user.
R-COM	Communication Requirement	Requirements related
		to communication aspects.
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible
		from personnel with specialized
		authorization rights.
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus)
		to enhance data cybersecurity.
R-SEC3	iVPP data privacy	Utilization of good practices to
		ensure compliance with
		GDPR regulations.
R-SEC4	Network security measures for	Establishes the ways in which
	data exchange with hybrid	communication between the
	transformer	iVPP and the
		hybrid transformer system can be
		done safely.
R-SEC5	Hybrid transformer site safety	Establishes the safety guidelines
		applicable to the physical
		location where the hybrid
		transformer is installed.
R-BUS1	Assets optimal location	Specification of the
		candidate assets location in pilot
		sites.
R-BUS2	Physical installation and grid	Storage assets providers or
	integration	operators or integrators will
		physically integrate the asset
		with the local energy system.
R-BUS3	Installation of monitoring	The necessary monitoring
	infrastructure	infrastructure will be installed.
R-BUS4	Prequalification of asset with the	Assets should follow grid code
	transmission code requirements	requirements according to the
		services to be provided.

R-FUN1	Day-ahead load and/or generation	iVPP can predict the load and/or
	forecast	generation of its assets for the
		following day.
R-FUN2	Intraday load and/or generation	iVPP can predict the load and/or
	forecast	generation of its assets within the
		day.
R-FUN3	Flexibility estimation	iVPP can estimate the
		prosumers' flexibility.
R-FUN4	Flexibility segmentation	iVPP can break down the total DR
		requirement into the available
		assets.
R-FUN5	3-phase balancing	Ability of Smart Energy Router to
		provide 3-phase load balancing.
R-FUN6	Dispatch prioritization	iVPP can select the most
		appropriate asset(s) to deliver the
		requested service.
R-CONF1	Hybrid transformer electrical	Defines the electrical connection
	connection	parameters required to install the
		hybrid transformer to the grid.
R-CONF2	Hybrid transformer control	Defines how the iVPP
	communication	communicates with the hybrid
		transformer.
R-UI1	Graphical visualization of iVPP	iVPP operation can be visually
	operation	inspected through the use of
		KPIs.
R-UI2	Reporting	iVPP can produce reports on
		system performance upon iVPP
		Operator request.
R-USER1	Opt-out option from DR service	Prosumer having the option to
		opt-out from demand response
		service before activation (and a
		certain time).
R-COM1	Common Information Model	iVPP adopts a common
		information model to exchange
		data ensuring interoperability.
R-COM2	Smart Energy Router interaction	Appliances and other loads to be
	with appliances and other loads	managed by the Smart Energy

	Router have communication and
	interaction capabilities (e.g., REST
	API) so monitoring and control
	activities can be conducted.

7 Common Terms and Definitions

Common Terms and Definitions			
Term	Definition		
BESS	Battery Energy Storage Systems		
CHP	Combined Heat and Power		
DR	Demand Response		
DSM	Demand-Side Management		
DSO	Distribution System Operator		
FC	Fuel Cell		
GDPR	General Data Protection Regulation		
GOPACS	Grid Operation Platforms for Congestion Solutions		
HVAC	Heating, Ventilating and Air Conditioning		
iVPP	Intelligent Virtual Power Plant		
LEC	Local Energy Communities		
LV	Low Voltage		
MV	Medium Voltage		
NG	Natural Gas		
RES	Renewable Energy Sources		
SGAM	Smart Grid Architecture Model		
SoC	State of Charge		
TSO	Transmission System Operator		
UC	Use Case		
UI	User Interface		

6.2 Transition Track 2: Use Cases

Transition Track 2 comprises of all the Use Cases that demonstrate the potential of electrification as a means to decarbonize relevant sectors along with non-emitting fuels utilization for cross-resource integration (e.g. hydrogen) and circular economy. Thereby, the decarbonization of the transport (UC5) and industry sector (UC6) as well as means to decarbonize the gas grid through the utilization of waste streams for energy production (UC7) and the heating network (UC8) are demonstrated in four Use Cases.

6.2.1 Use case 5: Decarbonization of transport and the role of electric mobility in stabilizing the energy system

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
5	Energy efficiency	Decarbonization of transport and the role of
	and grid support for	electric mobility in stabilizing the energy system
	extremely high-RES	
	penetration	

1.2 Version management

	Version Management			
Version	Date	Name of	Changes	
No.		Author(s)		
1	04.02.2021	EDP NEW	First draft.	
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on Actors, Scenarios Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture.	

3	08.03.2021	Nuno Costa (EFACEC MOBILITY)	Comments on Use Case conditions Information Exchanged.
4	09.03.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios.
5	16.03.2021	Ioannis Moschos (CERTH)	iVPP Requirements.
6	29.04.2021	Mónica Fernandes (EDP NEW)	KPIs added from D2.3. Collecting the new feedback.
7	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version.
8	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs. Changes on the description of the Use Case and in the scenarios.
9	15.04.2022	Ana Carvalho	Revision and start of third version.
10	16/09/2022	Vasilis Apostolopoulos (CERTH)	Corrections to KPI numbering according to final version of D2.9.

1.3 Scope and objectives of use case

Scope and Objectives of Use Case			
The scope of this Use Case is the decarbonization of the transport sector.			
Accordingly, it aims to install electric chargers in the islands to promote			
electric mobility. Moreover, it also aims to demonstrate the provision of			
grid services from electric vehicles leveraging charging stations with			
V2G capabilities.			

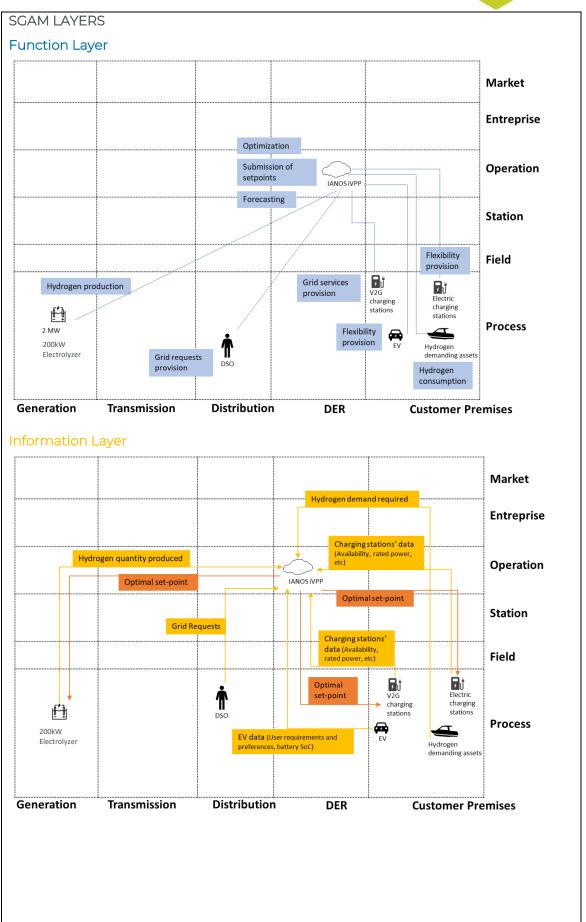
	Apart from electrification, this use case also demonstrates other	
	alternative fuels such as hydrogen to fuel vehicles.	
	This Use Case focuses on the decarbonization of the transport sector on the islands, therefore it has the following objectives:	
Objectives	1. Present a clear roadmap to decarbonize the transport sector.	
Objectives	2. Study the potential of electric chargers, hydrogen fuelled vehicles, V2G and smart charging schemes to reach decarbonization targets.	
	3. Offer flexibility in the electricity grid.	

1.4 Narrative of use case

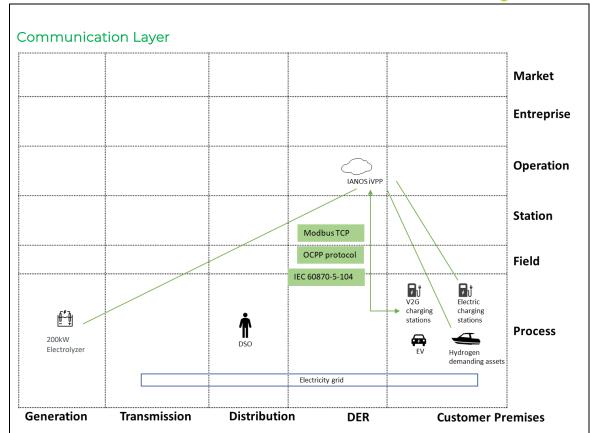
Narrative of Use Case

Short description

This Use Case aims to define a roadmap to reach decarbonization in the transport sector on the islands. Moreover, it explores the growth potential of EV chargers with or without V2G capabilities and smart charging schemes. The Intelligent Virtual Power Plant (iVPP) will manage the power flows of these chargers in order to ensure the stability of the power system.


Complete description

This Use Case intends to define a roadmap to decarbonize the transport sector of Ameland and Terceira islands, while also offering flexibility in the electricity grid. For this purpose, EV charging stations are installed to evaluate its growth potential. All the EV charging stations are connected to the iVPP which controls their charging and discharging modes. Some of these charging stations have V2G technology and therefore allow the provision of grid services such as load shifting and demand side management. Apart from V2G charging stations, smart charging schemes will also be analysed with the aim of providing flexibility to the power system.


Since the iVPP will not receive real-time data from EDA dispatch center, the optimal setpoints will be sent as a suggestion to the V2G chargers.

Moreover, this Use Case will also study the potential of hydrogen fuelled vehicles, to support the decarbonization of the transport sector, taking advantage of the hydrogen produced from the electrolyser in the case of Ameland (UC2).

Technological	Information /		
Solutions	Communication	Terceira	Ameland
	Protocols		
Electric charging			X
stations			^
V2G charging	Usually, the EV		
stations	Chargers are		
	equipped with the		
	OCPP protocol.		
	These V2G		
	chargers also		
	support some field	×	
	buses (Modbus	×	
	TCP) for the		
	interface with		
	other		
	management		
	systems.		
	Automation		

	protocols such as		
	the IEC 60870-5-		
	104 can also be		
	considered.		
EV	-	X	
Hydrogen			
Demanding Assets			X
(such as vehicles)			
Electrolyser			X

1.5 Key performance indicators (KPI)

ID	Name	Description	Reference to mentioned use case objectives
1.11	Unbalance of the	Examines the quality of the power supplied	3
	3-phase	by measuring the supply voltage gap	
		between the three phases which should be	
		120 deg.	
2.1	Reduced	The greenhouse gas emissions of a system	1,2
	Greenhouse Gas	correspond to the emissions that are	
	Emissions	caused by different areas of application. In	
		different variants of this indicator the	
		emissions caused by the production of the	
		system components are included or	
		excluded. In this case it measures the	
		reduction in GHG emissions due to the	
		transport sector.	
2.2	Reduced fossil fuel	Measures the amount of fossil fuels which	1,2
	consumption	is not consumed anymore in the transport	
		sector because of IANOS demonstrated	

1			
	solutions (electric chargers, V2G chargers,		
	hydrogen fuelled vehicles).		
Increased system	Indication of the ability of the system to	2,3	
flexibility for	respond to supply and demand in real		
energy players	time, as a measure of the demand side		
	participation in energy markets and in		
	energy efficiency intervention, from the		
	beginning until the end of the project.		
Increased	Measures the relative improvement in the	3	
Reliability	number of interruptions.		
Social	Refers to the extent to which the project's	1,2,3	
Compatibility	solution fits with people's 'frame of mind'		
	and does not negatively challenge people's		
	values or the ways they are used to do		
	things.		
Technical	Examines the extent to which the smart	1,2,3	
compatibility	grid solutions fit with the current existing		
	technological standards/infrastructures.		
Ease of use for end	ase of use for end Provides an indication of the complexity o		
users of the	the implemented solution within the IANOS		
solution	project for the end-users.		
	flexibility for energy players Increased Reliability Social Compatibility Technical compatibility Ease of use for end users of the	Increased system Indication of the ability of the system to respond to supply and demand in real time, as a measure of the demand side participation in energy markets and in energy efficiency intervention, from the beginning until the end of the project. Increased Measures the relative improvement in the number of interruptions. Social Refers to the extent to which the project's solution fits with people's 'frame of mind' and does not negatively challenge people's values or the ways they are used to do things. Technical Examines the extent to which the smart grid solutions fit with the current existing technological standards/infrastructures. Ease of use for end Provides an indication of the complexity of the implemented solution within the IANOS	

1.6 Use case conditions

Use case conditions

Assumptions

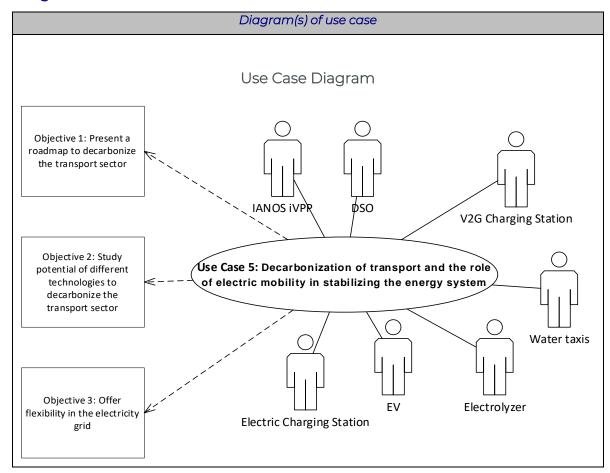
- Existence of distributed energy assets available in the island, capable of being integrated and remotely managed or controlled by the iVPP.
- Bidirectional smart meters are installed on buildings and on relevant energy assets, and their readings are available for the iVPP.
- There are EVs and charging stations on the islands, including models with the V2G operation mode.
- Some charging stations have V2G technology.

Prerequisites

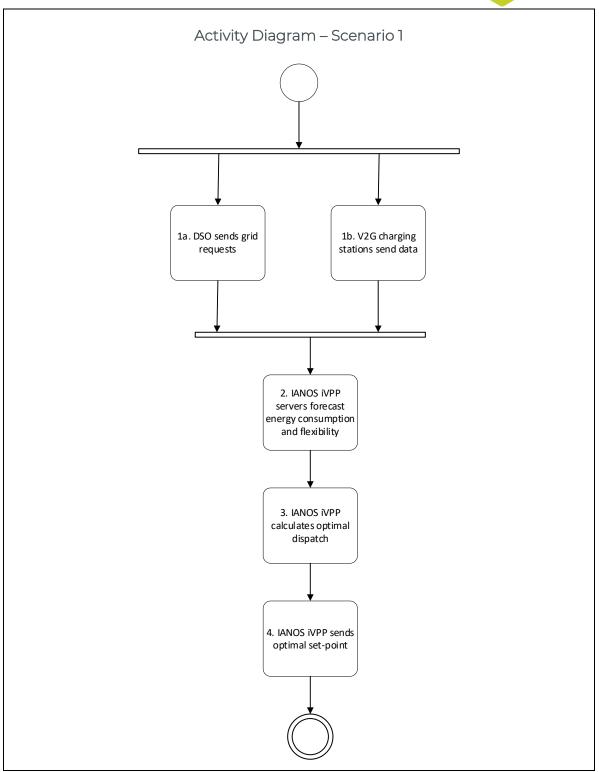
- All available energy assets can be integrated on the iVPP platform.
- Communication between charging station and EV is established for all EV types.

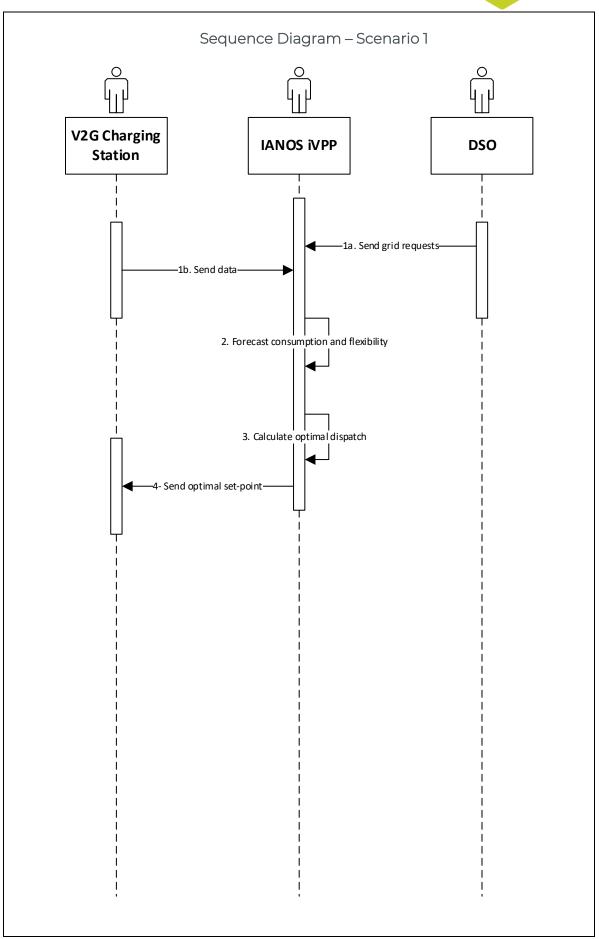
- For the V2G scenario, the EV allows the bidirectional power flow with the grid and is authorized to operate on this mode.
- Connection between iVPP and the EV manufacturer API with the battery SoC information.
- Communication between all energy assets and the iVPP.
- Connection between iVPP and charging stations.
- A (physical) hosting environment on which the iVPP can be established.

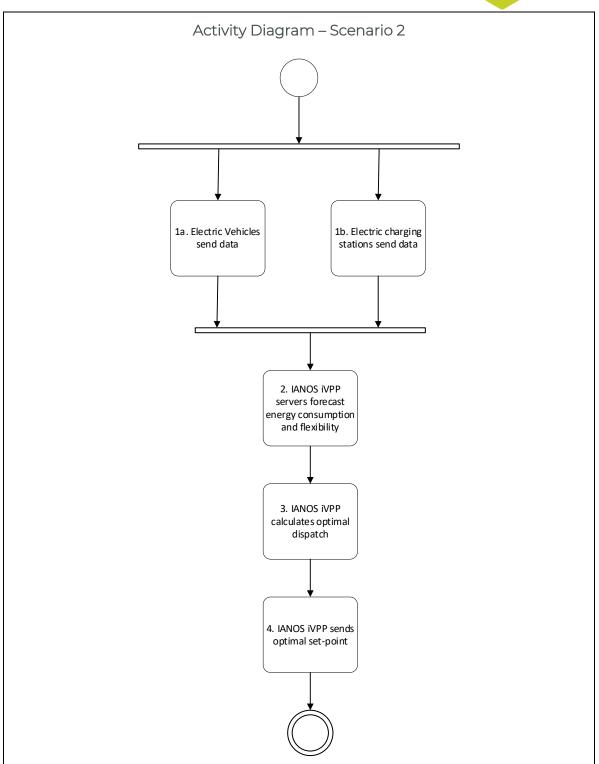
1.7 Further Information to the use case for classification / mapping

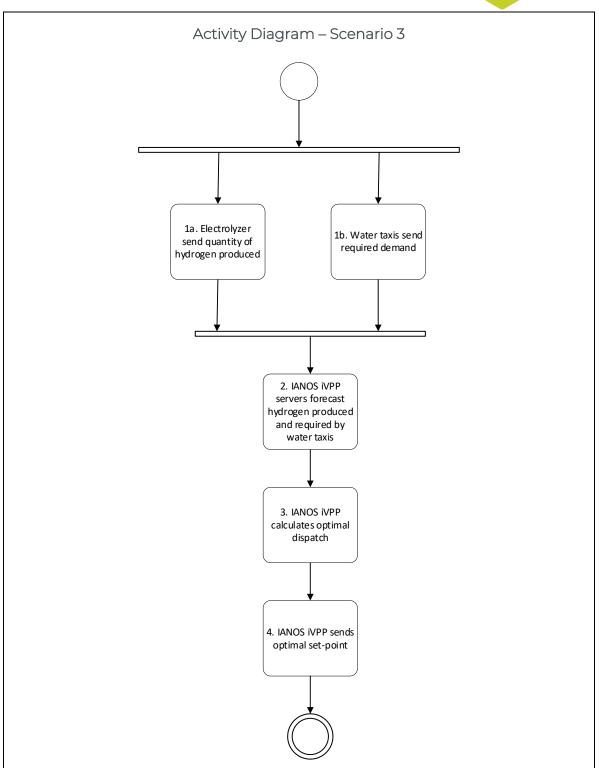

Classification Information					
Relation to other use cases					
UC1: Community demand-side driven self-consumption maximization.					
UC4: Demand Side Management and Smart Grid methods to support Power quality					
and congestion management services.					
Level of depth					
High level use case					
Prioritisation					
High level of priority					
Generic, regional or national relation					
Generic					
Nature of the use case					
Technical use case					
Further keywords for classification					
Electric vehicles, V2G, decarbonization, transport sector, smart charging, EV chargers,					
hydrogen taxis, electric mobility					

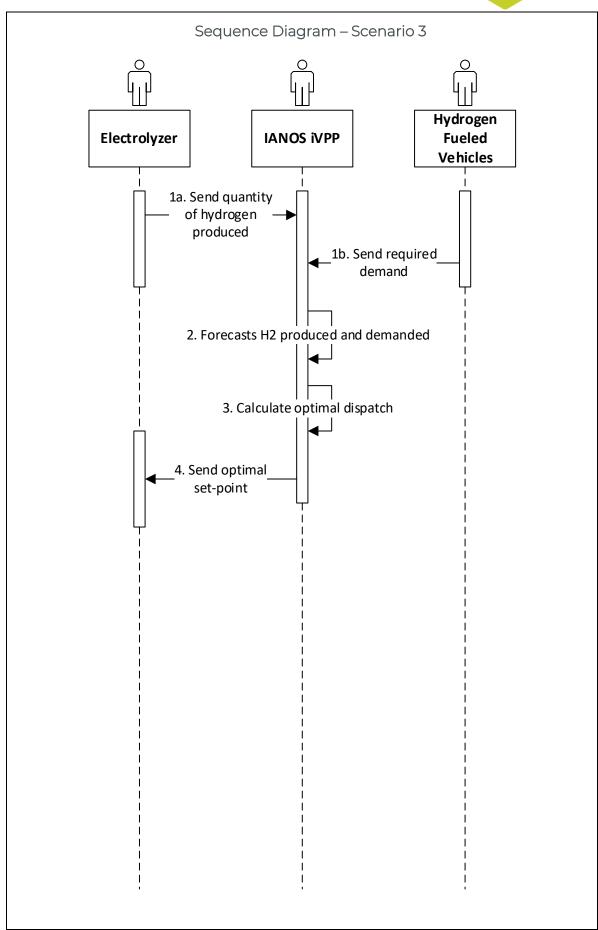
1.8 General Remarks


General Remarks						
	-					


2 Diagrams of use case







3 Technical details

3.1 Actors

		Actors			
Actor Name	Actor	Actor Description			
	Туре				
		The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-			
		dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and green gas			
		CHP plants. Moreover, the iVPP comprises of Energy Storage Systems (ESS), integrated as a single unit,			
		providing flexibility services and fostering island renewable energy self-consumption.			
IANOS İVPP	System	The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making			
		intelligence, complemented by predictive algorithms for smart integration of grid assets into active			
		network management based on relevant energy profiles. For this purpose, the iVPP is composed of 6			
		different modules: aggregation & classification, forecasting engine, centralized dispatcher, distributed			
		ledger-based energy transactions, virtual energy console and secured enterprise service bus.			
DSO	Role	Distribution System Operator.			
V2G		Bidirectional system that connects an electric vehicle (EV) to a source of electricity. Besides recharging the			
Charging	System	vehicle's battery, it enables the provision of balancing services.			
Station		verticle's battery, it enables the provision of balancing services.			
Electric					
Charging	System	A system that connects an electric vehicle (EV) to a source of electricity to recharge the vehicle's battery.			
Station					
Electric	System	A vehicle with an electric drive and a battery which can be charged at a charging station.			
Vehicle	Эузсент	A verticle with an electric drive and a pattery writer can be charged at a charging station.			

Electrolyser	System	A system which produces hydrogen from electricity through water electrolysis.
Water Taxis	System	Hydrogen fueled water taxis with a capacity of 12 people.

3.2 References

	References						
No. References Type Reference Status Impact on use case Originator / organisation							

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions							
No.	Scenario name	Scenario description	Primary	Triggering	Pre-condition	Post-condition		
			actor	event				
1	The use of V2G for	iVPP is connected to V2G	IANOS IVPP	EV is	Power system	V2G charging		
	power system	charging stations and manages		connected	requires balancing	station charges EVs		
	stabilization	power fluxes allowing the		to the	services.	or provides energy		
		provision of balancing services to		charging	No power fluxes	to the grid for		
		the grid.		station.	between the grid	balancing services.		
					and the charging	Power system is		
					station.	stable.		

2	The use of smart	iVPP is connected to electric	IANOS iVPP	EV is	No power fluxes	Electric charging
	charging for	charging stations and manages		connected	between the electric	station charges the
	power system	power fluxes from the grid to the		to the	charging station and	EV.
	stabilization	station considering the end-user		charging	the EV.	
		profile and ensuring the stability		station.		
		of the power system.				
3	The use of	iVPP is connected to the	IANOS iVPP	Available	Water taxis need to	Transport of H2
	hydrogen for	electrolyzer and manages the		H2	be fuelled.	from the
	mobility in order	hydrogen quantity which can be		quantities.		electrolyser to the
	to decarbonize	used to fuel hydrogen water taxis				water taxis harbour.
	the transport	and the possible transport mean				
	sector	to transport the hydrogen to				
		water taxis (e.g. trucks).				

4.2 Steps – Scenarios

	Scenario							
Scenario name : No. 1 - The use of V2G for power system stabilization								
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Informatio n producer (actor)	Information receiver (actor)	Information Exchanged (IDs)	
la	Submission of grid data	Sends grid requests	DSO sends grid requests to the iVPP.	GET	DSO	IANOS İVPP	1	

1b	Submission	Sends data	V2G charging station sends data to	GET	V2G	IANOS İVPP	2,3
	of V2G		the iVPP.		charging		
	charging				station		
	station data						
2	Data	Forecasts	iVPP servers forecast energy	EXECUTE	IANOS İVPP	IANOS IVPP	4,5
	forecast		consumption and flexibility.				
3	Calculation	Calculates the	iVPP computes the optimal	EXECUTE	IANOS İVPP	IANOS İVPP	-
	of optimal	optimal dispatch	dispatch for V2G charging stations				
	dispatch		in order to ensure energy supply to				
			EVs and also the provision of				
			balancing services to the grid by				
			the V2G chargers when required.				
4	Submission	Sends set-points	iVPP sends the optimal setpoint to	CREATE	IANOS İVPP	V2G charging	6
	of optimal		the V2G charging stations.			stations	
	set-points						

	Scenario						
Scenario name : No. 2 - The use of smart charging for power system stabilization							
Step	Event	Name of process/	Description of process/activity	Service	Information	Information	Information
No.		activity			producer	receiver	Exchanged
					(actor)	(actor)	(IDs)
la	Submission	Send user preferences	EVs send user preferences and	REPORT	EV	IANOS iVPP	7
	of EV's data	and battery data	battery data such as SoC.				

1b	Submission	Sends data	Electric charging station sends	GET	Electric	IANOS iVPP	8,9
	of electric		data to the iVPP.		charging		
	charging				station		
	station data						
2	Data	Forecasts	iVPP servers forecast energy	EXECUT	IANOS iVPP	IANOS İVPP	4,5
	forecast		consumption and flexibility.	Е			
3	Calculation	Calculates the	iVPP computes the optimal	EXECUT	IANOS İVPP	IANOS İVPP	-
	of optimal	optimal dispatch	dispatch for electric charging	Е			
	dispatch		stations in order to stabilize the				
			energy system while				
			simultaneously ensuring user's				
			preferences and requirements.				
4	Submission	Sends set-point	iVPP sends the optimal set-	CREATE	IANOS iVPP	Electric	10
	of optimal		point to the electric charging			charging	
	set-points		stations.			stations	

	Scenario						
Scena	Scenario name: No. 3 - The use of hydrogen for mobility in order to decarbonize the transport sector						
Step	Event	Name of process/	Description of process/ activity	Service	Information	Informati	Information
No.		activity			producer	on	Exchanged
					(actor)	receiver	(IDs)
						(actor)	
la	Submission of	Send quantity	Electrolyser sends quantity of	GET	Electrolyser	IANOS	11
	electrolyser data	of hydrogen produced	hydrogen produced to the iVPP.			iVPP	

1b	Submission of	Sends required	Hydrogen fuelled vehicles send	GET	Water Taxis	IANOS	12
	hydrogen	demand	required demand to the iVPP.			iVPP	
	fuelled vehicles						
	data						
2	Data forecast	Forecasts	iVPP servers forecast hydrogen	EXECUTE	IANOS iVPP	IANOS	13,14
			produced and hydrogen			iVPP	
			required for transportation.				
3	Calculation of	Calculates the optimal	iVPP computes the optimal	EXECUTE	IANOS İVPP	IANOS	-
	optimal	dispatch	dispatch for the electrolyser in			iVPP	
	dispatch		order to ensure hydrogen				
			fuelled vehicles demand.				
4	Submission of	Sends set-points	iVPP sends the optimal setpoint	CREAT	IANOS İVPP	Electrolys	15
	optimal set-		to the electrolyser.			er	
	points						

5 Information exchanged

Information Name of Description of information exchanged exchanged information	
exchanged information	
(ID)	
1 Grid Requests Grid requests.	
2 V2G charging Availability, EV battery state of charge, c	harging
station real-time current, etc	
data	
3 V2G charging Rated power, etc	
station hard	
technical	
constraints	
4 Forecasted Energy EV's forecasted energy consumption data	
Consumption Data	
5 Forecasted Forecasted flexibility from EVs.	
Flexibility Data	
6 Optimal Setpoints Optimal energy dispatch computed by t	he iVPP
for V2G charging for V2G charging stations. It is the am	ount of
stations power from the grid that will be provided	d to the
V2G charger to charge EVs or to be stored	for later
use. Moreover, it may also represent the	amount
of energy used for providing balancing se	rvices to
the grid from the V2G charger (if the EV all	ows the
bidirectional power flow with the grid	and is
authorized to operate on this mode).	
7 EV data User preferences, battery SoC.	
8 Electric charging Availability, charging current, etc	
station real-time	
data	
9 Electric charging Rated power, etc	
station hard	
technical	
constraints	
10 Optimal Setpoints Optimal energy dispatch computed by t	he iVPP
for electric charging for electric charging stations. It is the am	nount of
stations power from the grid that will be provided	d to the

		electric charger to charge EVs or to be stored for
		later use. Additionally, it may also represent the
		start and the end of the charging and discharging
		modes.
11	Hydrogen quantity	Hydrogen produced at real-time.
12	Hydrogen fuelled	Hydrogen consumption and expected demand
	vehicles demand	from hydrogen fuelled vehicles.
13	Forecasted H2	Forecasted hydrogen production from the
	production	electrolyser.
14	Forecasted H2	Forecasted hydrogen demand from water taxis.
	demand	
15	Optimal Set-point	Optimal power dispatch computed by the iVPP
	for electrolyser	for the electrolyser. It corresponds to the amount
		of hydrogen that should be transported to
		hydrogen fuelled vehicles to meet their demand.

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the
		system.
R-COM	Communication Requirement	Requirements related
		to communication aspects.
R-UI	User Interface Requirement	Requirements related
		to the iVPP UI.
R-SEC.	Security Requirement	Requirements related to the
		safety issues.
Requirement	Requirement name	Requirement description
R-ID		
R-FUN1	Charging/discharging constraints	Defines the period for
		charging/discharging the EV,
		including the considerations
		related to the user authorisation

		and battery SoC expectation after
		the charging process.
R-FUN2	Receive Operator's requests	iVPP having the ability to receive
		requests for service activation
		(e.g. congestion management)
		from System Operator (TSO or
		DSO).
R-FUN4	Activation of iVPP EV assets to	iVPP having the ability to activate
	provide secondary regulation	EVs to provide Frequency
		Restoration Reserves (FRR)
		within 5-15 minutes.
R-FUN5	Activation of iVPP EV assets to	EV battery inverter can be
	provide voltage support	automatically triggered to
		provide voltage control within
		seconds.
R-COM1	Common Information Model	iVPP adopts a common
		information model to exchange
		data ensuring interoperability
R-COM2	iVPP minimum communication	Bandwidth and latency are
	requirements	ensured to follow min.
		requirements according to the
		level of service to be delivered
		(e.g. mFRR, aFRR).
R-UI1	Graphical visualization of iVPP	iVPP operation can be visually
	operation	inspected through the use of
		KPIs.
R-UI2	Reporting	iVPP can produce reports on
		system performance upon iVPP
		Operator request.
R-SEC1	Access Control	iVPP functions are accessible
		from personnel with specialized
		authorization rights.
R-SEC2	iVPP cybersecurity	Utilization of good practices (e.g.
		secure communication bus) to
		enhance data cybersecurity.

R-SEC3	iVPP data privacy	Utilization of good practices to
		ensure compliance with GDPR
		regulations.

7 Common Terms and Definitions

	Common Terms and Definitions	
Term	Definition	
DER	Distributed Energy Resource	
EV	Electric Vehicle	
GDPR	General Data Protection Regulation	
iVPP	Intelligent Virtual Power Plant	
LV	Low Voltage	
MV	Medium Voltage	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
SoC	State of Charge	
UC	Use Case	
UI	User Interface	
V2G	Vehicle-to-grid	

6.2.2 Use case 6: Decarbonising large industrial continuous loads through electrification and locally induced generation

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
6	Decarbonization	Decarbonising large industrial continuous
	through electrification	energy consumers through electrification and
	and support from non-	local generation
	emitting fuels	

1.2 Version management

		Version Mana	gement
Version No.	Date	Name of Author(s)	Changes
1	04.02.2021	EDP NEW	First draft.
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture.
3	12.02.2021	Bastiaan Vreijsen (NEROA), Luuk Meijer (NEROA)	Comments on the Narrative of the Use Case, Diagrams.
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization and requirements. Improve diagrams, description, information exchanged and scenarios.

5	29.04.2021	Mónica Fernandes (EDP NEW)	KPIs added from D2.3. Collecting the new feedback.
6	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version.
7	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs.
8	15.04.2022	Ana Carvalho (EDP NEW)	Revision and start of the third version.
9	16/09/2022	Vasilis Apostolopoulos (CERTH)	Corrections to KPI numbering according to final version of D2.9.

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case						
	The scope of this Use Case is to use electrification and local generation						
	for decarbonizing large industrial energy consumers located in the						
Scope	islands.						
	This Use Case is limited to the decarbonization of the natural ga						
	platform located off the coast of Ameland.						
	This Use Case orients at decarbonising large industrial sites which tend						
	to be very difficult sites to eliminate emissions, due to their requirements						
Objective	for stable electricity. Therefore, the main objectives are the following:						
	1. Maximize consumption from local RES.						
	2. Decarbonize the industrial sector.						

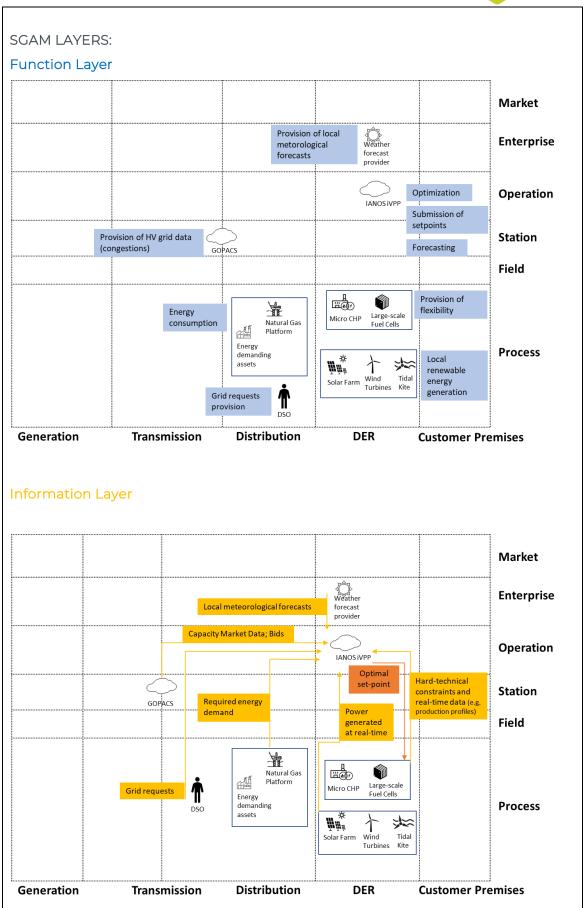
1.4 Narrative of use case

Narrative of Use Case

Short description

The present use case aims to decarbonize large industrial continuous and power intensive energy consumers, either located in the island or interconnected as in the case of the AWG natural gas platform off the coast of Ameland. The electrification and local renewable generation will be the main drivers to reach decarbonization in this site and will allow the maximization of renewable sources in the local grid.

Complete description


This use case intends to explore means to decarbonize large industrial sites which have a huge impact on global emissions due to their high levels of energy consumption.

In Ameland, there is the AWG natural gas platform which is located off the coast of Ameland and will be electrified until the end of 2022. For this purpose, its gas-powered modules will be replaced by electric drives and the facilities will be connected to Ameland's electricity grid.

This use case focuses on supporting the decarbonization process of the AWG platform, by exploring the potential of local renewable generation such as tidal, wind and solar to replace fossil-based power consumed by the platform. Furthermore, fuel cells and CHP also contribute to the provision of flexibility to the system and thereby allowing the maximization of renewable energy penetration.

The intelligent Virtual Power Plant (iVPP) is responsible for distributing energy throughout the whole of Ameland. Since the demand of electricity from the AWG platform has a big impact on the energy supply of the island, the iVPP needs to safeguard a steady flow of energy to this platform. The iVPP has a facilitating role in making the AWG platform as green as possible by contributing to the maximization of renewable energy utilization. For this purpose, the iVPP optimizes energy flows to the platform by sending set-points to the dispatchable assets (fuel cells and CHP) according to the data that will be received from the platform, the dispatchable and the non-dispatchable assets.

Technological Solutions	Information / Communication Protocols	Ameland	
Large-scale Fuel Cell	-	X	
Micro CHP	-	X	
Solar Farm	-	X	
Wind Turbines	-	X	
Tidal Kite	-	X	
AWG Natural Gas Platform	-	×	

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned
,,,	7147776	Bessingtion	use case
			objectives
1.5	Degree of energetic	Ratio of locally produced energy from	1
	self-supply by RES	RES and the final energy consumption	
		over a period of time (e.g. month, year).	
2.1	Reduced	In different variants of this indicator the	2
	Greenhouse Gas	emissions caused by the production of	
	Emissions	the system components are included or	
		excluded. In this case, it measures the	
		reduction of greenhouse gas emissions	
		in the industrial sector.	
2.2	Reduced fossil fuel	Measures the amount of fossil fuels	2
	consumption	which is now not consumed in the	
		industrial sector because of IANOS	
		demonstrated solutions.	
7.2	Technical	Examines the extent to which the smart	2
	compatibility	grid solutions fit with the current existing	
		technological standards/infrastructures.	
7.3	Ease of use for end	Provides an indication of the complexity of	2
	users of the solution	the implemented solution within the	
		IANOS project for the end-users.	

1.6 Use case conditions

Use case conditions

Assumptions

- It is considered that the island has a natural gas platform.
- The connection between the platform and the electricity grid of Ameland is established.
- The platform will be electrified in the end of 2021.

Prerequisites

- Direct connection between the iVPP, the solar farm and the platform.
- Direct connection between the iVPP, the tidal kite and the platform.
- Direct connection between the iVPP, the small turbines and the platform.
- Direct connection between the iVPP, the CHP systems and Fuel cells and the platform.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

-

Level of depth

Specialised use case

Prioritisation

High level of priority

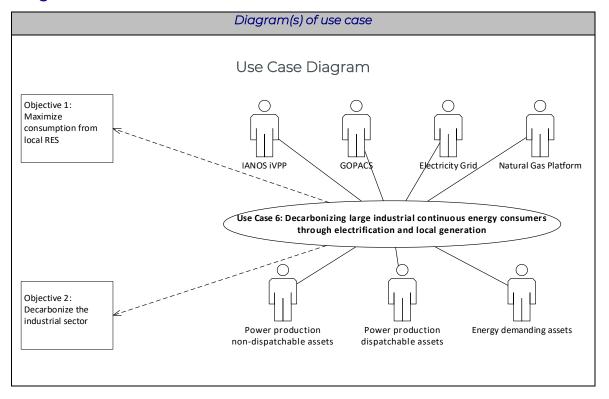
Generic, regional or national relation

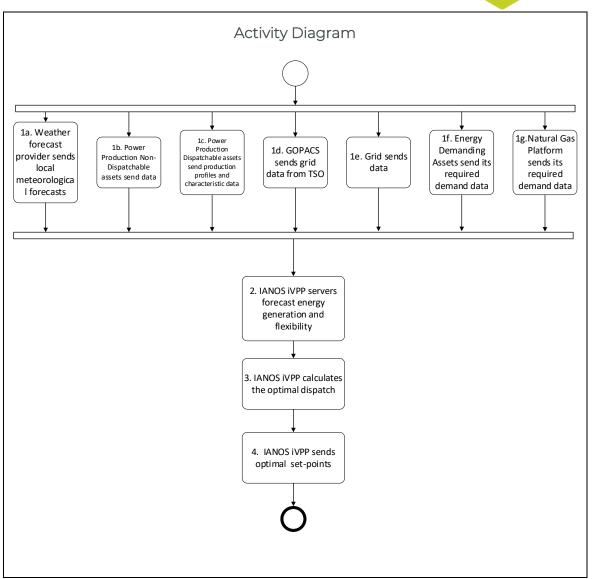
Generic

Nature of the use case

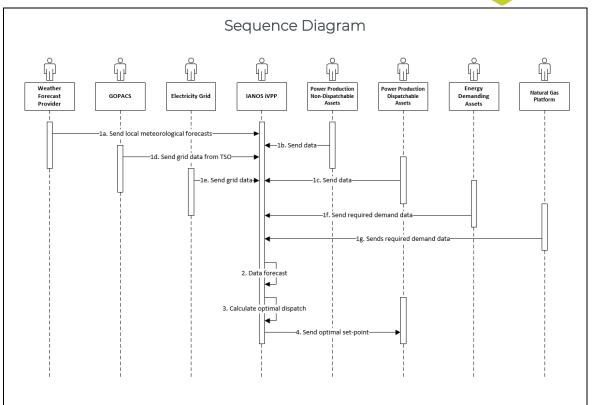
Technical use case

Further keywords for classification


Decarbonization, industry, natural gas platform, tidal kite, local renewable generation, wind turbines, solar farm, grid connection, electrification


1.8 General Remarks

General Remarks					
	-				


2 Diagrams of use case

3 Technical details

3.1 Actors

	Actors						
Actor Name	Actor Type	Actor Description					
Weather		Provides generation, consumption and weather-related operational risks, for a given location and					
Forecast	Role	a specific time horizon.					
Provider							
		The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-					
		dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and					
		green gas CHP plants. Moreover, the iVPP comprises of Energy Storage Systems (ESS), integrated					
		as a single unit, providing flexibility services and fostering island renewable energy self-					
		consumption.					
IANOS iVPP	System	The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making					
		intelligence, complemented by predictive algorithms for smart integration of grid assets into					
		active network management based on relevant energy profiles. For this purpose, the iVPP is					
		composed of 6 different modules: aggregation and classification, forecasting engine, centralized					
		dispatcher, distributed ledger-based energy transactions, virtual energy console and secured					
		enterprise service bus.					
		Grid Operation Platforms for Congestion Solutions interface (GOPACS) is a unique initiative in					
GOPACS	System	Europe and has resulted from active collaboration between the Dutch TSO and the DSOs. This					
		platform is consistent with key European directives to mitigate grid congestion, while offering					

		large and small market parties an easy way to generate revenues with their available flexibility and				
		contribute to solving congestion situations.				
Electricity Grid	System	Power system including power generation units, transmission system and MV/LV distribution				
Liectricity ond	Systerri	grids.				
		Power intensive energy consumers from the industrial sector.				
Natural Gas		In the case of Ameland, there is a Natural gas platform located in Ameland's coast which has been				
Platform	System	operated by the Nederlandse Aardolie Maatschappij (NAM) since 1986. Current natural gas				
Plation		production is close to 1 million m³/day, of which 100k m³/day is used as fuel to power the platform				
		(mainly compression).				
Energy						
demanding	System	Energy demanding assets of the island.				
assets						
Power						
production	System	Assets whose power can be dispatched on demand at the request of grid operators when needed.				
dispatchable	System	For instance fuel cells and CHPs.				
assets						
Power						
production		Local power generation assets whose power cannot be controlled by grid operators such as wind,				
non-	System	solar and tidal power generators.				
dispatchable		solal and tidal power generators.				
assets						

3.2 References

	References						
No.	References Type	Reference	Impact on use case	Originator/ organisation	Link		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions									
No.	Scenario	Scenario description	Primary	Triggering	Pre-condition	Post-				
	name		actor	event		condition				
1	Electrification	iVPP computes the optimal setpoint for	IANOS IVPP	Natural Gas	Natural Gas	Steady				
	of Natural gas	production dispatchable assets to supply		Platform runs	Platform	energy flux of				
	Platform	energy to all energy demanding assets		on electricity.	requires	natural gas				
		present in the island (including the			electricity to	platform.				
		natural gas platform), while ensuring the			operate.					
		maximization of renewable penetration in								
		the power system.								

4.2 Steps – Scenarios

	Scenario									
Scene	ario name :	No.1 - Reference	No.1 - Reference scenario							
Ste p No.	Event	Name of process/activity	Description of process/activity	Service	Informat ion produce r (actor)	Informat ion receiver (actor)	Informati on Exchange d (IDs)	Requirem ent, R-IDs		
la	Submission of local weather forecasts	Send local meteorologica I forecasts	Weather Forecast Provider sends local meteorological forecasts.	CREATE	Weather Forecast provider	IANOS iVPP	1			
16	Submission of power production non-dispatchable assets data	Sends data	Power Production Non- Dispatchable Assets send real- time data to the iVPP regarding its status.	GET	Power Producti on Non- Dispatch able Asses	IANOS iVPP	2			
1c	Submission of power production dispatchable assets data		Power Production Dispatchable Assets send real-time data to the iVPP regarding its status.	GET	Power Producti on Dispatch able Asses	IANOS iVPP	3,4			
1d	Submission of	Send grid data	GOPACS exchange high voltage	REPORT	GOPACS	IANOS	5			

	grid data from	from TSO	grid data with iVPP.			iVPP		
	TSO							
1e	Submission of	Send grid data	Grid sends data regarding its	GET	Electricit	IANOS	6	
	grid data		status to the iVPP.		y Grid	iVPP		
٦f	Submission of	Send data	Energy demanding assets send	REPORT	Energy	IANOS	7	
	required		its required demand data to the		Demand	iVPP		
	demand data		iVPP.		ing			
	from energy				Assets			
	demanding							
	assets							
1g	Submission of	Sends data	Natural Gas platform sends data	REPORT	Natural	IANOS	8	
	required		regarding its required demand		gas	iVPP		
	demand data		to the iVPP.		platform			
	from the natural							
	gas platform							
2	Data forecast	Forecasts	iVPP servers forecast energy	EXECUTE	IANOS	IANOS	9,10	
			generation and flexibility.		iVPP	iVPP		
3	Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS	IANOS	-	
	optimal	optimal	dispatch for the dispatchable		iVPP	iVPP		
	dispatch	dispatch	assets in order to ensure a					
			steady energy flux for all the					
			assets present in the island and					
			a maximum penetration of the					
			RES in the power system.					

4	Submission of	Sends set-	iVPP sends the optimal setpoint	CREATE	IANOS	Dispatch	11	
	optimal set-	points	to the dispatchable assets.		iVPP	able		
	points					Assets		

5 Information exchanged

	Information exchanged				
Information exchanged (ID)	Name of information	Description of information exchanged			
1	Local meteorological forecasts	Expected irradiances and wind speeds for specific locations.			
2	Non-Dispatchable assets data	Amount of energy (MWh) generated by non- dispatchable generator assets (wind, solar and tidal) in real-time.			
3	Fuel Cells and CHP hard technical constraints	Maximum power, electrical and thermal efficiency, heat to power ratio and operating temperature.			
4	Fuel Cells and CHP real-time data	Amount of existent fuel (hydrogen or methane) and production profiles.			
5	HV grid data	High voltage grid real-time data.			
6	Grid data	Grid status.			
7	Energy demanding data	Required demand from energy demanding assets.			
8	Natural gas platform required demand	Energy consumption and required demand from natural gas platform.			
9	Forecasted Energy Generation Data	Forecasted energy supply data from production- side assets (wind, solar and tidal generators, fuel cells and micro CHP).			
10	Forecasted Flexibility Data	Forecasted flexibility from production units and energy demanding assets.			
11	Optimal Setpoints	Optimal power dispatch computed by the iVPP for dispatchable assets such as fuel cells and CHPs.			

6 Requirements

	Requirements		
Categories	Category name for requirements	Category description	
ID			
R-SEC.	Security Requirement	Requirements related to the	
		safety issues.	
R-UI	User Interface Requirement	Requirements related	
		to the iVPP UI.	
R-FUN	Functional Requirement	Requirements that capture the	
		intended behaviour of the	
		system.	
R-COM	Communication Requirement	Requirements related	
		to communication aspects.	
Requirement	Requirement name	Requirement description	
R-ID			
R-SEC1	Access Control	iVPP functions are accessible	
		from personnel with specialized	
		authorization rights.	
R-SEC2	iVPP cybersecurity	Utilization of good practices	
		(e.g. secure communication bus)	
		to enhance data cybersecurity.	
R-SEC3	iVPP data privacy	Utilization of good practices to	
		ensure compliance with	
		GDPR regulations.	
R-UII	Graphical visualization	iVPP operation can be visually	
	of iVPP operation	inspected through the use	
		of KPIs.	
R-UI2	Reporting	iVPP can produce reports on	
		system performance	
		upon iVPP Operator request	
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation	
		of its assets for the following day.	
R-FUN2	Intraday generation forecast	iVPP can predict the generation	
		of its assets within the day.	

R-FUN3	Flexibility estimation	iVPP can estimate the
		dispatchable production units'
		flexibility.
R-COM1	Common Information Model	iVPP adopts a common
		information model to exchange
		data ensuring interoperability.

7 Common Terms and Definitions

Common Terms and Definitions			
Term	Definition		
CHP	Combined Heat and Power		
DER	Distributed Energy Resources		
GOPACS	Grid Operation Platforms for Congestion Solutions		
GPDR	General Data Protection Regulation		
iVPP	Intelligent Virtual Power Plant		
SGAM	Smart Grid Architecture Model		
TSO	Transmission System Operator		
UC	Use Case		
UI	User Interface		

6.2.3 Use case 7: Circular economy, utilization of waste streams and gas grid decarbonization

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
7	Decarbonization	Circular economy, the utilisation of waste
	through electrification	streams and connection to the local gas grid
	and support from non-	
	emitting fuels	

1.2 Version management

	Version Management				
Version	Date	Name of	Changes		
No.		Author(s)			
1	04.02.2021	EDP NEW	First draft.		
2	05.02.2021	Nikolaos Nikolopoulos (CERTH)	Comments and inputs on the Narrative of the Use Case, Diagrams, Actors, Scenarios Suggestion of inclusion of information regarding protocols for communication/information data exchange according to SGAM architecture.		
3	15.02.2021	Johan Boekema (AME)	Comments and inputs on Scope and Objectives of Use Case, the Narrative of the Use Case, Diagrams, Scenarios, Information Exchanged. Add digester's data.		
4	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback and start second version. Add SGAM layers characterization and requirements.		

			Improve diagrams, description, information exchanged and scenarios.	
5	29.04.2021	Mónica Fernandes (EDP NEW)	KPIs added from D2.3. Collect the new feedback.	
6	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version.	
7	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs. Changes on the description of the Use Case.	
8	18.07.2022	Ana Carvalho (EDP NEW)	Revision and start of the third version.	
	16.09.2022	Vasilis Apostolopoulos (CERTH)	Corrections to KPI numbering according to final version of D2.9.	

1.3 Scope and objectives of use case

Scope and Objectives of Use Case			
Scope	This use case is limited to the use of the small-scale digester in Ameland and the research into remaining waste streams with potential to produce		
	green energy.		
	The main objectives of this Use Case are the following:		
Objective	1. Reduce the negative impact of waste streams produced on the island		
Objective	by reusing them to produce green energy.		
	2. Foster gas and electricity grid decarbonization.		

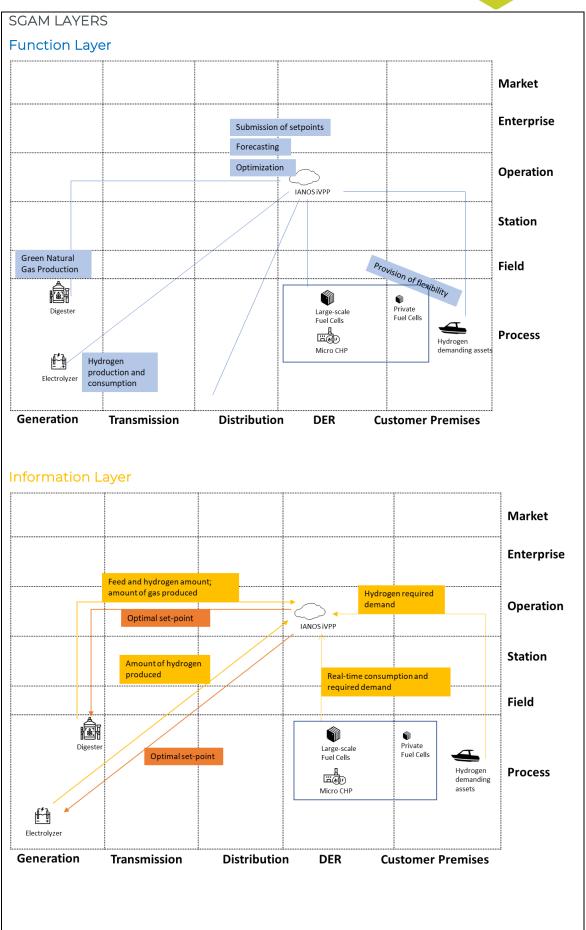
1.4 Narrative of use case

Narrative of Use Case
Short description
The present use case describes how waste streams are used to produce renewable
energy and help to decarbonize the local grid either for electricity production and/or

energy and help to decarbonize the local grid, either for electricity production and/or heating purposes, using green natural gas. Therefore, a demonstration of a digester will occur at Ameland to exploit the potential of converting organic waste into green

natural gas, while hydrogen produced from the Electrolyser (using excess of RES) can be used to upgrade the remaining CO2 in the digester to natural gas.

Moreover, an investigation regarding the potential of technologies to process biomass for using the remaining streams is also performed.


Complete description

This use case focuses on exploring methods to manage waste streams produced on islands by reusing them to produce renewable energy and allow the decarbonization of the local grid.

Accordingly, a small-scale digester is used in Ameland which allows the conversion of i) sewage from households and businesses, ii) swill from catering industry and hospitals and iii) other organic waste into green natural gas. Moreover, some hydrogen produced from the electrolyser, despite being stored, may also supply the digester in order to convert the CO2 that remains in the digester to natural gas. This green natural gas will feed the gas grid where it is used in Fuel Cells and CHPs. For this purpose, the iVPP is responsible for sending the necessary setpoints to the digester, including any available excess of H2 produced and not consumed by the hydrogen fuelled vehicles. The by-product of the digestion process, the digestate, will be used as fertiliser.

Additionally, this use case also intends to investigate the potential of the remaining waste streams. The main goals consist of mapping all the waste streams, identifying the technologies to process these biomass types, analysing the respective business models and selecting the best ones. This process must occur with the engagement of the local citizens

Technological Solutions	Information / Communication Protocols	Ameland
Private Fuel Cells	-	X
Large-scale Fuel Cell	-	X
Hydrogen Demanding Assets (Water Taxis)	-	Х
Micro CHP	-	X
Small scale AHPD digester	-	X
Electrolyzer	-	X

1.5 Key performance indicators (KPI)

			Reference to
ID	Name	Description	mentioned
טו	Nume	Description	use case
			objectives
1.6	Percentage of total	This KPI calculates the percentage of	1
	amount of waste that	the total amount of waste in the island	
	is used to generate	or district which is used to generate	
	energy.	thermal or electrical energy.	
2.1	Reduced Greenhouse	In different variants of this indicator	2
	Gas Emissions	the emissions caused by the	
		production of the system components	
		are included or excluded. Measures	
		the reduction of greenhouse gas	
		emissions in the electricity and gas	
		grid in order to assess the viability to	
		reach decarbonization targets.	
2.2.	Reduced fossil fuel	Measures the amount of fossil fuels	2
	consumption	which is not consumed because of	
		IANOS demonstrated solutions (e.g.	
		production of green natural).	
2.3	Electrical and thermal	Computes the amount of electrical	1
	energy produced from	and thermal energy that is produced	

	solid waste or other	by the waste exploitation and	
	liquid waste treatment	compares it with the base scenario	
	per capita per year	without any IANOS interventions.	
2.5	Reduction in the	Calculates the percentage reduction	1
	amount of unsorted	in the amount of unsorted waste	
	waste collected	collected due to the project.	

1.6 Use case conditions

LISE	case	cono	litions
030	CUSE	COLIG	11110113

Assumptions

• The feedstock for the digester will be usual post treated sludge and swill from catering industry and hospitals.

Prerequisites

- A small-scale AHPD digester is available.
- Community involvement in the research for the use of the remaining streams.
- Communication between the iVPP and the digester is established.
- Information on flexibility and availability of the digester required.
- The digester is connected to the electrolyser.
- A (physical) hosting environment on which the iVPP can be established.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

UC2: Community supply-side optimal dispatch and intra-day services provision.

Level of depth

Specialized use case

Prioritisation

High level of priority

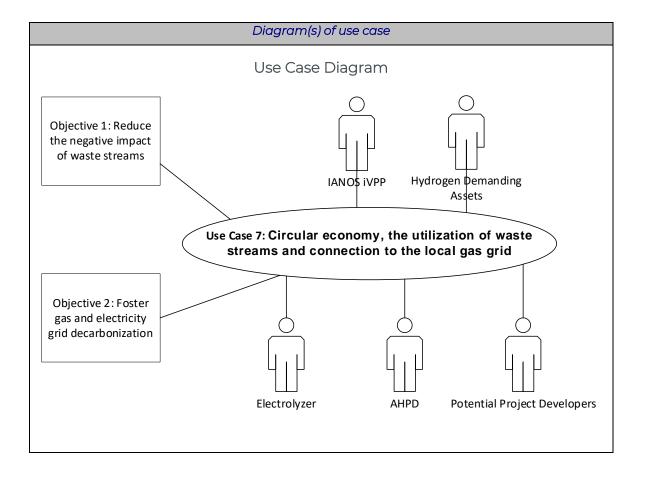
Generic, regional or national relation

Generic

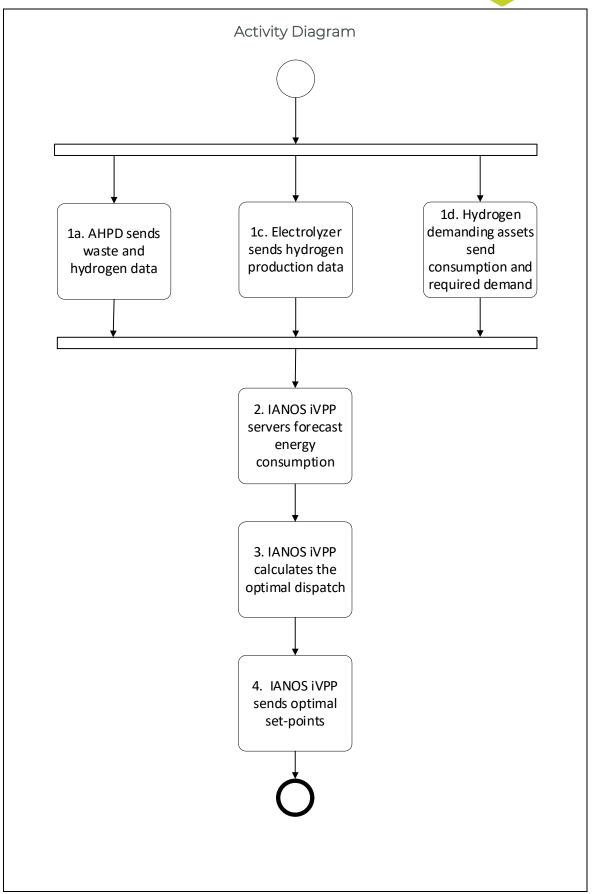
Nature of the use case

Technical

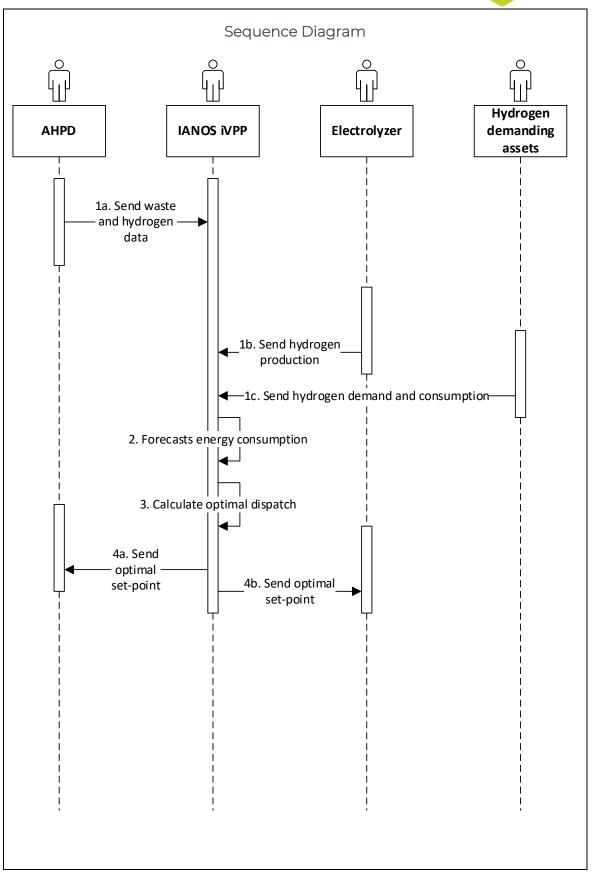
Further keywords for classification



small scale digester, circular economy, waste, green natural gas, gas grid decarbonization, hydrogen


1.8 General Remarks

C	General Remarks
	-


2 Diagrams of use case

3 Technical details

3.1 Actors

Actors					
Actor Name	Actor	Actor Description			
	Туре				
		Digester which converts sewage, swill and other organic waste into green natural gas at high			
Small-scale AHPD	System	pressure, thus allowing the production of high methane content (90% of methane). It			
digester	System	produces 110.000 Nm³ of green gas from 300 tons of dry substance.			
		This digester can also use hydrogen as substrate.			
Electrolyzer	System	The 200kWe BESS-Electrolyser DC connected system, will be used to supply green H2 to the			
Electrolyzer		digestion process.			
	System	The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both			
		non-dispatchable such as wind, solar, tidal resources and dispatchable ones such as			
		geothermal and green gas CHP plants. Moreover, the iVPP comprises of Energy Storage			
		Systems (ESS), integrated as a single unit, providing flexibility services and fostering island			
		renewable energy self-consumption.			
IANOS IVPP		The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision			
		making intelligence, complemented by predictive algorithms for smart integration of grid			
		assets into active network management based on relevant energy profiles. For this purpose,			
		the iVPP is composed of 6 different modules: aggregation and classification, forecasting			
		engine, centralized dispatcher, distributed ledger-based energy transactions, virtual energy			
		console and secured enterprise service bus.			

Hydrogen assets	demanding	System	Assets which consume hydrogen, such as water taxis.	
Potential	Project		Draiget Dayalanars interested in applying his mass tash palagies to reduce waste streems	
Developers		Role	Project Developers interested in applying biomass technologies to reduce waste streams	

3.2 References

	References							
No.	References Type	Reference	Status	Impact on use case	Originator/ organisation	Link		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions								
No.	Scenario name	Scenario description	Primary actor Triggering event		Pre-condition	Post-condition			
1	Green natural	iVPP computes the	Digester, IANOS	Significant costs of	No use of waste	Green natural gas			
	gas production	optimal dispatch for	iVPP	waste treatment	streams for	to feed the gas			
	from waste	the electrolyzer and for		(economic and	energy	grid.			
	streams	the small-scale		environmental).	production.				
		digester regarding the			No power flows in				
		respective amounts of			the digester.				
		gas to be supplied.							

2	Research on	Investigate the most	NEC	Earthquakes (due to	Natural gas is the	Biogas is the main
	biomass	suitable technologies		natural gas	main source for	source for heating
	processing	to process biomass for		extraction) and	heating the built	the built
	technologies	the remaining waste		climate policies	environment on	environment on
		streams of the islands.		force us to minimize	the Island.	the Island.
				the use of natural		
				gas.		

4.2 Steps – Scenarios

	Scenario						
Scene	ario name :	No.1- Green nat	rural gas production from waste stree	ams			
Ste	Event	Name of Description of process/activity S		Service	Informat	Informatio	Informatio
p		process/activity			ion	n receiver	n
No.					producer	(actor)	Exchange
					(actor)		d (IDs)
la	Submission of	Sends waste	Digester sends the data regarding	GET	Digester	IANOS İVPP	1,2
	digester data	and hydrogen	its status to the iVPP.				
		data					
1b	Submission of	Sends data	Electrolyzer sends the amount of	GET	Electroly	IANOS iVPP	3
	Electrolyser data		hydrogen produced to the iVPP.		ser		
1c	Submission of	Send hydrogen	Hydrogen demanding assets send	REPORT	Demand	IANOS İVPP	4
	hydrogen	demand and	their hydrogen demand and		ing		

	demanding assets	consumption	consumption to the iVPP.		Assets		
2	Data forecast	Forecasts	iVPP servers forecast energy	EXECUTE	IANOS	IANOS iVPP	5
			consumption.		iVPP		
3	Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS	IANOS IVPP	-
	optimal dispatch	optimal	dispatch for the digester in order to		iVPP		
		dispatch	ensure the delivery of green natural				
			gas to feed the gas grid. Moreover,				
			the iVPP also calculates the				
			optimal dispatch for the				
			electrolyzer.				
4a	Submission of	Sends set-	iVPP sends the optimal setpoint to	CREATE	IANOS	Digester	6
	optimal set-points	points	the digester.		iVPP		
4b	Submission of	Sends set-	iVPP sends the optimal setpoint to	CREATE	IANOS	Electrolyzer	7
	optimal set-points	points	the electrolyzer.		iVPP		

	Scenario						
Scenario name: No. 2 - Research on biomass processing technologies							
Step	Event	Name of	Description of process/ activity	Service	Informat	Informatio	Informati
No.		process/activity			ion	n receiver	on
					produce	(actor)	Exchange
					r (actor)		d (IDs)
7	Identification of	Makes inventory	Identifying the available biomass	CREATE	NEC	Potential	8

	biomass/waste	of available	streams on the islands.			project	
	streams	biomass				developers	
		streams					
2	Investigation of	Investigates	Investigating the most suitable	EXECUTE	NEC	Potential	9
	biomass processing	technologies	technologies for biomass			project	
	technologies		processing.			developers	
3	Technology	Select best	Selecting the most interesting	REPORT	NEC	Potential	10
	Selection	technologies	business cases related to specific			project	
			biomass/technology			developers	
			combinations.				

5 Information exchanged

	Informat	ion exchanged
Information exchanged (ID)	Name of information	Description of information exchanged
1	Digester hard technical	Maximum and minimum feed per hour and
	constrains	in total, maximum and minimum gas
		production, maximum and minimum
		hydrogen addition.
2	Digester real-time data	Quality and quantity of feed in digester,
		amount of hydrogen in digester, amount of
		hydrogen being added, gas production.
3	Hydrogen production	Amount of hydrogen produced.
4	Hydrogen demanding	Hydrogen demand and consumption in real-
	assets data	time.
5	Forecasted Energy	Loads forecasted energy consumption data.
	Consumption Data	
6	Digester Optimal Set-	Optimal setpoint computed by the iVPP for
	point	the digester which corresponds to the
		amount of natural gas that will feed the gas
		grid.
7	Electrolyzer Optimal	Optimal setpoint computed by the iVPP for
	Set-point	the electrolyzer which corresponds to the
		amount of hydrogen to be sent to the
		digester.
8	Biomass Streams	Database with biomass streams and
		quantities.
9	Biomass Technologies	Technology overview with bio/syngas
		potential.
10	Selected technologies	Description of the top 3 business cases for
		bio/syngas production on the island.

6 Requirements

	Requirements	
Categories	Category name for	Category description
ID	requirements	
R-SEC.	Security Requirement	Requirements related to the safety
		issues.
R-UI	User Interface Requirement	Requirements related
		to the iVPP UI.
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the system.
R-COM	Communication Requirement	Requirements related
		to communication aspects.
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible from
		personnel with specialized
		authorization rights.
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus) to
		enhance data cybersecurity.
R-SEC3	iVPP data privacy	Utilization of good practices to
		ensure compliance with
		GDPR regulations.
R-SEC4	Network security measures for	Establishes the ways in which
	data exchange with digester	communication between the iVPP
		and the digester control system can
		be achieved safely, mitigating risks of
		external interference.
R-SEC5	Digester site safety	Establishes the safety guidelines
		applicable to the physical location
		where the digester is installed. It
		further establishes the safety
		guidelines applicable to all
		personnel in the local vicinity to
		ensure safe operation of the digester.

R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use of KPIs.
R-UI2	Reporting	iVPP can produce reports on system
		performance
		upon iVPP Operator request
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation of
		its assets for the following day.
R-FUN2	Intraday generation forecast	iVPP can predict the generation of
		its assets within the day.
R-FUN3	Flexibility estimation	iVPP can estimate the dispatchable
		production units' flexibility.
R-COM1	Common Information Model	iVPP adopts a common information
		model to exchange data ensuring
		interoperability.

7 Common Terms and Definitions

	Common Terms and Definitions	
Term	Definition	
BESS	Battery Energy Storage Systems	
CHP	Combined Heat and Power	
CO2	Carbon Dioxide	
DER	Distributed Energy Resource	
FC	Fuel Cells	
GDPR	General Data Protection Regulation	
H2	Hydrogen	
iVPP	Intelligent Virtual Power Plant	
LEC	Local Energy Community	
NEC	New Energy Coalition	
NG	Natural Gas	
RES	Renewable Energy Sources	
SGAM	Smart Grid Architecture Model	
UC	Use Case	
UI	User Interface	

6.2.4 Use case 8: Decarbonization of heating network

1 Description of the use case

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
8	Decarbonization through	Decarbonization of heating network
	electrification and support from	
	non-emitting fuels	

1.2 Version management

		Version Mana	gement
Version	Date	Name of	Changes
No.		Author(s)	
1	04.02.2021	EDP NEW	First draft.
2	25.02.2021	Mónica Fernandes (EDP NEW)	Collect all the feedback from relevant partners and start second version. Add SGAM layers characterization. Improve diagrams, description, information exchanged and scenarios. Add iVPP requirements.
3	29.04.2021	Mónica Fernandes (EDP NEW)	KPIs added from D2.3.
4	10.05.2021	Mónica Fernandes (EDP NEW)	Final Version.
5	01.04.2022	Mónica Fernandes (EDP NEW)	Minor changes and updates on the KPIs.
6	18.07.2022	Ana Carvalho (EDP NEW)	Revision and start of the third version.

7	16.09.2022	Vasilis	Corrections to KPI numbering
		Apostolopoulos	according to final version of D2.9.
		(CERTH)	

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case
	The scope of this Use Case is to decarbonize the heating network in
	Ameland which currently runs on natural gas. For this purpose, this Use
Coopo	Case focuses on the installation of equipment that allows the reduction
Scope	of emissions such as hybrid heat pumps to be powered by local RES.
	Moreover, it also explores further possibilities to phase-out natural gas of
	certain villages.
Objective	This Use Case aims to decarbonize the existent heating grid in Ameland
Objective	which currently mainly uses natural gas as fuel (Objective 1).

1.4 Narrative of use case

Narrative of Use Case

Short description

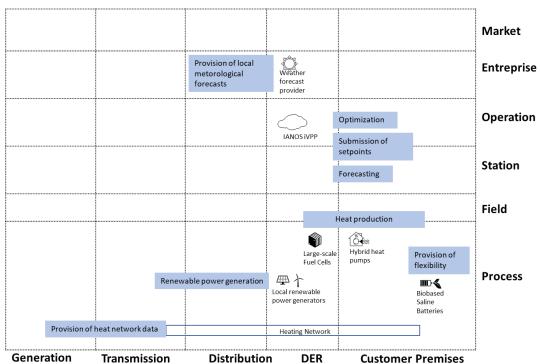
This Use Case focuses on decarbonizing the existent heating network in Ameland which currently mainly runs on natural gas. Therefore, this Use Case explores different strategies such as installation of heat pumps and hybrid heat pumps powered by local RES and research work regarding the potential of phasing-out natural gas in particular sites.

Complete description

The present use case describes the methods that aim to decarbonize the existent heating network in Ameland, which currently mainly runs on natural gas. Accordingly, 4 strategies are implemented to achieve this goal.

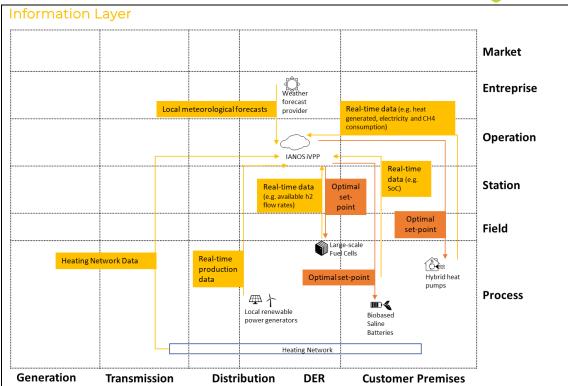
Firstly, hybrid heat pumps composed of a $20kW_{th}$ boiler and a $1.1kW_e/5kW_{th}$ heat pump each, are installed in residential neighbourhoods. The intelligent Virtual Power Plant (iVPP) manages the power fluxes of these hybrid heat pumps according to the data received from them.

Moreover, the Klein Vaarwater holiday park will create an integrated design of a $500kW_e$ fuel cell, H_2 storage and additional heat pumps for peak demands which


allow the expansion of the current heating grid in the site. The fuel cell will provide heat and electricity to support the heating network.

Another strategy is to study different means of phasing out natural gas from Buren Aardgasvrij village by selecting a technical approach with communities' collaboration.

Finally, the last strategy consists of installing an innovative heating grid infrastructure in Nes city by using heat pumps that are powered by local RES. Furthermore, an organic hybrid battery will be used to store excess energy in periods of high levels of renewable generation. The iVPP is responsible for sending the set-points to the heat pumps and storage assets as well as from the local RES assets, according to the data provided.


SGAM LAYERS

Function Layer

Technological Solutions	Information /	Ameland
	Communication	
	Protocols	
Large-scale Fuel Cell	-	Х
Biobased saline batteries	-	×
Hybrid Heat Pumps	-	Х

1.5 Key performance indicators (KPI)

Description Description Description Description Supply by RES				Reference to
1.5 Degree of Ratio of locally produced energy from energetic self-supply by RES over a period of time for the heating sector (e.g. month, year). 2.1 Reduced In different variants of this indicator the emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 compatibility solution fits with people's 'frame of mind'	ID	Name	Description	mentioned
1.5 Degree of energetic self-supply by RES and the final energy consumption over a period of time for the heating sector (e.g. month, year). 2.1 Reduced In different variants of this indicator the emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of the island administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'				
energetic self-supply by RES RES and the final energy consumption over a period of time for the heating sector (e.g. month, year). 2.1 Reduced In different variants of this indicator the emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'				objectives
supply by RES over a period of time for the heating sector (e.g. month, year). 2.1 Reduced In different variants of this indicator the emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'	1.5	Degree of		7
sector (e.g. month, year). 2.1 Reduced In different variants of this indicator the Greenhouse Gas emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel Measures the amount of fossil fuels which is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project. 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'		energetic self-	RES and the final energy consumption	
2.1 Reduced In different variants of this indicator the Greenhouse Gas Emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'		supply by RES	over a period of time for the heating	
Greenhouse Gas emissions caused by the production of the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project. 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'			sector (e.g. month, year).	
Emissions the system components are included or excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of the island administration Examines the extent to which the local authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'	2.1	Reduced	In different variants of this indicator the	1
excluded. In this case, it measures the reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'		Greenhouse Gas	emissions caused by the production of	
reduction of greenhouse gas emissions in the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'		Emissions	the system components are included or	
the heating grid. 2.2 Reduced fossil fuel consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's Compatibility solution fits with people's 'frame of mind'			excluded. In this case, it measures the	
2.2 Reduced fossil fuel consumption Social Reduced fossil fuel Measures the amount of fossil fuels which is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's solution fits with people's 'frame of mind'			reduction of greenhouse gas emissions in	
consumption is not consumed anymore for heating purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's Compatibility solution fits with people's 'frame of mind'			the heating grid.	
purposes because of IANOS demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 solution fits with people's 'frame of mind'	2.2	Reduced fossil fuel	Measures the amount of fossil fuels which	7
demonstrated solutions (e.g. hybrid heat pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group 1 that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered 1 heating/cooling service. 6.1 Involvement of Examines the extent to which the local 1 the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 compatibility solution fits with people's 'frame of mind'		consumption	is not consumed anymore for heating	
pumps, fuel cells, etc.). 5.1 People Reached Percentage of people in the target group 1 that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered 1 heating/cooling service. 6.1 Involvement of Examines the extent to which the local 1 the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 solution fits with people's 'frame of mind'			purposes because of IANOS	
5.1 People Reached Percentage of people in the target group 1 that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered 1 heating/cooling service. 6.1 Involvement of Examines the extent to which the local 1 the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 solution fits with people's 'frame of mind'			demonstrated solutions (e.g. hybrid heat	
that have been reached and/or are activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's Compatibility solution fits with people's 'frame of mind'			pumps, fuel cells, etc.).	
activated by the project.t 5.2 Thermal Comfort Estimates the quality of the delivered 1 heating/cooling service. 6.1 Involvement of Examines the extent to which the local 1 authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 solution fits with people's 'frame of mind'	5.1	People Reached	Percentage of people in the target group	7
5.2 Thermal Comfort Estimates the quality of the delivered heating/cooling service. 6.1 Involvement of Examines the extent to which the local the island authority is involved in the development of administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's Compatibility solution fits with people's 'frame of mind'			that have been reached and/or are	
heating/cooling service. 6.1 Involvement of Examines the extent to which the local 1 the island authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 solution fits with people's 'frame of mind'			activated by the project.t	
6.1 Involvement of Examines the extent to which the local 1 the island authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 solution fits with people's 'frame of mind'	5.2	Thermal Comfort	Estimates the quality of the delivered	7
the island authority is involved in the development of the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 compatibility solution fits with people's 'frame of mind'			heating/cooling service.	
administration the project, other than financial, and how many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 compatibility solution fits with people's 'frame of mind'	6.1	Involvement of	Examines the extent to which the local	7
many departments are contributing. 7.1 Social Refers to the extent to which the project's 1 Compatibility solution fits with people's 'frame of mind'		the island	authority is involved in the development of	
7.1 Social Refers to the extent to which the project's 1 Compatibility solution fits with people's 'frame of mind'		administration	the project, other than financial, and how	
Compatibility solution fits with people's 'frame of mind'			many departments are contributing.	
	7.1	Social	Refers to the extent to which the project's	1
and does not negatively challenge people's		Compatibility	solution fits with people's 'frame of mind'	
			and does not negatively challenge people's	
values or the ways they are used to do			values or the ways they are used to do	
things.			things.	
7.2 Technical Examines the extent to which the smart 1	7.2	Technical	Examines the extent to which the smart	1
compatibility grid solutions fit with the current existing		compatibility	grid solutions fit with the current existing	
technological standards/infrastructures.			technological standards/infrastructures.	

7.3	Ease of use for end			Prov	ides an indicatio	on of the c	complexi	ty of	1
	users	of	the	the	implemented	solution	within	the	
	solution			IANC	DS project for the	e end-use	rs.		

1.6 Use case conditions

I Ico	case	conc	ditio	ne
USE	CUSE	COLIC	aicio	כו וי

Assumptions

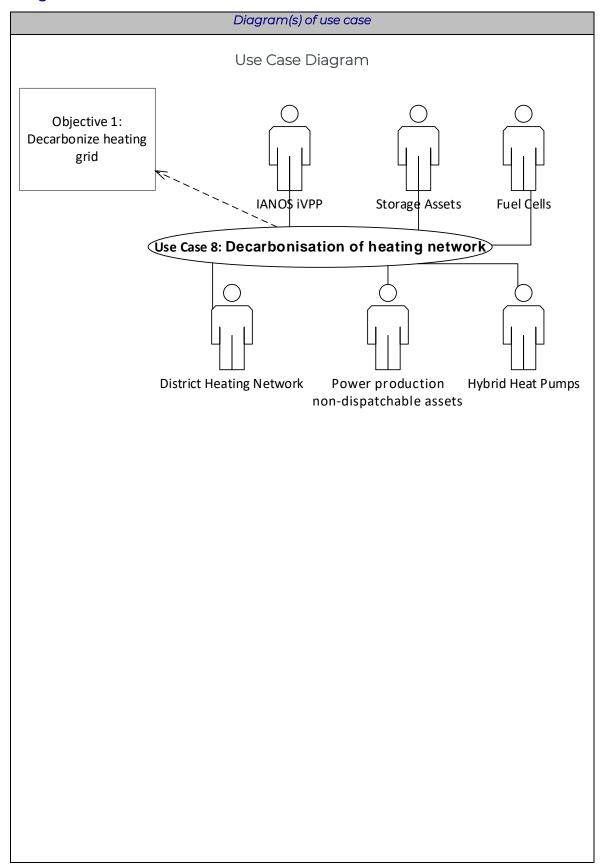
- Community engagement for studying the possibilities for phasing out natural gas from Buren Aardgasvrij village.
- Local RES supply electricity to heat pumps.

Prerequisites

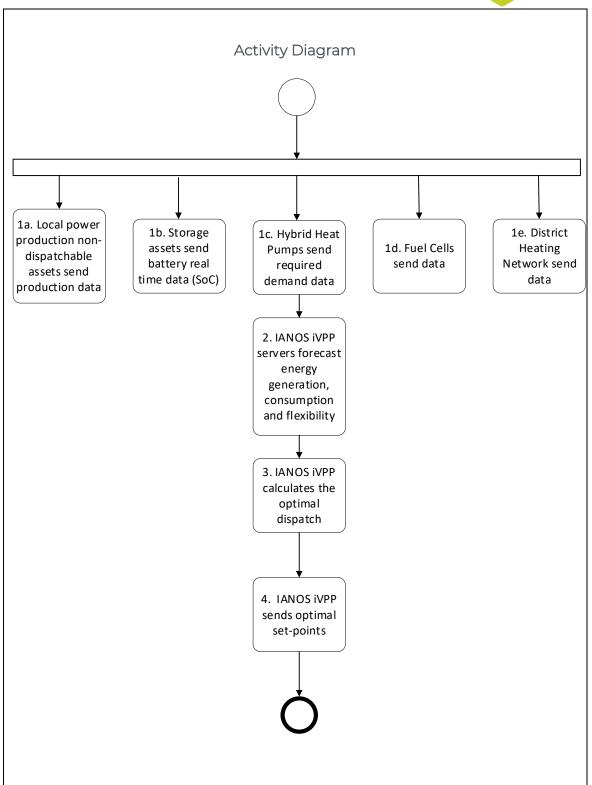
- Direct connection between the iVPP, the heat pumps and the hybrid heat pumps.
- Connection between the iVPP and the biobased saline batteries.
- A (physical) hosting environment on which the iVPP can be established.

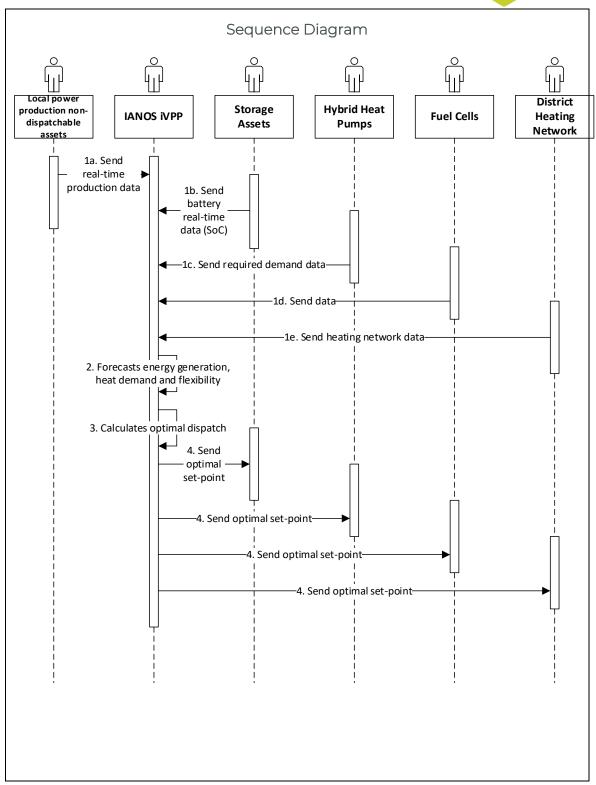
1.7 Further Information to the use case for classification / mapping

Classification Information
Relation to other use cases
-
Level of depth
High level use case
Prioritisation
High level of priority
Generic, regional or national relation
Generic
Nature of the use case
Technical use case
Further keywords for classification
Heating network, hybrid heat pumps, fuel cell, phasing out natural gas, local RES


1.8 General Remarks

General Remarks					
	-				




2 Diagrams of use case

3 Technical details

3.1 Actors

	Actors					
Actor Name	Actor	Actor Description				
	Туре					
		The IANOS iVPP sets up a virtual network of decentralized renewable energy resources, both non-				
		dispatchable such as wind, solar, tidal resources and dispatchable ones such as geothermal and				
		green gas CHP plants. Moreover, the iVPP comprises of Energy Storage Systems (ESS), integrated as				
		a single unit, providing flexibility services and fostering island renewable energy self-consumption.				
	Constant	The optimal, autonomous, real-time iVPP operation will be driven by multi-level decision making				
IANOS iVPP	System	intelligence, complemented by predictive algorithms for smart integration of grid assets into active				
		network management, based on relevant energy profiles. For this purpose, the iVPP is composed of				
		6 different modules: aggregation and classification, forecasting engine, centralized dispatcher,				
		distributed ledger-based energy transactions, virtual energy console and secured enterprise service				
		bus.				
Ctorogo Agosto	Cycholog	Assets, such as biobased saline batteries that store energy in periods of energy excess to be used later				
Storage Assets	System	by the dispatchable assets, such as hybrid heat pumps.				
Fuel Cells	System	Assets with the ability of offering electricity or heat, when necessary.				
		Hybrid heat pumps run on both electricity and natural gas and are composed of a 20 kW $_{th}$ boiler and				
Hybrid Heat Pumps	System	a 1.1kW _e /5kW _{th} heat pump, thereby allowing switching between gas and electricity operation. Hybrid				
		heat pumps can also run on biogas.				

Local power production non-dispatchable assets	System	Local power generation assets whose power cannot be controlled by grid operators, such as wind and solar power generators.
District Heating Network	System	Pipe network which provides heating and hot water from a central power plant for connected consumers.

3.2 References

	References							
No.	References Type	Reference	Status	Impact on use case	Originator/ organisation	Link		

4 Step by step analysis of use case

4.1 Overview of scenarios

	Scenario conditions								
No.	Scenario	Scenario description	Primary	Triggering	Pre-condition	Post-			
	name		actor	event		condition			
1	Decarbonizat	Decarbonization of the heating network by	IANOS iVPP	Periodically	No power fluxes	District			
	ion of	installing heat and hybrid pumps, which use			between	heating			
	heating	electricity generated by local RES. The iVPP			dispatchable	network is			
	network	manages the steady energy flow from the			assets and local	stable and			
						energy			

	local RES to the heat pumps, ensuring heat		renewable	curtailment
	and hot water is provided to the buildings.		generators.	is avoided.

4.2 Steps – Scenarios

	Scenario								
Scenc	Scenario name : No. 1 - Reference scenario								
Step	Event	Name of process/	Description of process/ activity	Service	Informati	Information	Informati		
No.		activity			on	receiver	on		
					producer	(actor)	Exchang		
					(actor)		ed (IDs)		
la	Submission of	Send real-time	Local Power Production Non-	GET	Local	IANOS İVPP	1		
	Local Power	production data	Dispatchable Assets send real-		power				
	Production		time production data to the		productio				
	Assets		iVPP.		n non-				
					dispatcha				
					ble assets				
1b	Submission of	Send battery real-	Storage assets send battery real-		Storage	IANOS İVPP	2,3		
	Storage	time data	time data (e.g. SoC) to the iVPP.	GET	Assets				
	Assets data								
1c	Submission of	Send required	Hybrid Heat Pumps send		Hybrid	IANOS İVPP			
	Hybrid Heat	demand data	required demand data to the	GET	Heat		4		
	Pumps data		iVPP.		Pumps				

1d	Submission of	Send data	Fuel Cells send data regarding	GET	Fuel Cells	IANOS iVPP	5,6
	Fuel Cells'		their status to the iVPP.				
	data						
1e	Submission of	Send heating	District Heating Network sends	GET	District	IANOS IVPP	7
	heating	network data	data regarding its status to the		Heating		
	network data		iVPP.		Network		
2	Data Forecast	Forecasts energy	iVPP servers forecast energy	EXECUTE	IANOS	IANOS İVPP	8, 9,10
		generation,	generation from production-side		iVPP		
		consumption and	assets, consumption from heat				
		flexibility	demanding assets and flexibility				
			forecasts from storage assets.				
3	Calculation of	Calculates the	iVPP computes the optimal	EXECUTE	IANOS	IANOS iVPP	-
	optimal	optimal dispatch	dispatch for the dispatchable		iVPP		
	dispatch		and storage assets in order to				
			ensure a steady heat and hot				
			water supply for the community				
			and also to avoid energy				
			curtailment by utilizing local				
			renewable energy as a fuel for				
			hybrid and heat pumps.				
4	Submission of	Sends set-points	iVPP sends the optimal setpoint	CREATE	IANOS	Dispatchable	11, 12,13
	optimal set-		to the dispatchable and storage		iVPP	Assets,	
	points		assets.			Storage	
						Assets	

5 Information exchanged

	Informa	ition exchanged
Information	Name of information	Description of information exchanged
exchanged		
(ID)		
1	Local power production	Amount of energy generated by non-
	non-dispatchable	dispatchable generator assets (MWh) in real-
	assets data	time.
2	Storage Assets hard	Min and Max SoC, Min and max charging and
	technical constraints	discharging power.
3	Storage Assets real-	SoC, temperature, etc
	time data	
4	Heat and hybrid pumps	Electricity and natural gas consumption.
	real-time data and hard	Heat generated.
	technical constraints	
5	Fuel Cells and CHP	Minimum and maximum natural gas and
	hard technical	hydrogen flow rates, temperature range,
	constraints	maximum total power output (kW).
6	Fuel Cells and CHP real-	Available natural gas and hydrogen flow rates,
	time data	temperature at FC Anode.
7	District Heating	District Heating Network status.
	Network data	
8	Forecasted Energy	Forecasted energy supply data
	Generation Data	from production-side assets such as Fuel Cells.
9	Forecasted required	Forecasted required demand from heat
	demand data	demanding assets which are present in the
		district heating network.
10	Forecasted Flexibility	Forecasted flexibility from storage assets.
	Data	
11	Storage Assets Optimal	Optimal power dispatch computed by the
	Set-point	iVPP for storage assets such as biobased saline
		batteries. It corresponds to the power
		generated by RES that will be stored or
		provided to the dispatchable assets such as
		hybrid and heat pumps.
12	Hybrid Heat Pumps	Optimal power dispatch computed by the
	Optimal Set-points	iVPP for heat and hybrid heat pumps. It
	<u>'</u>	· ' '

		corresponds to the power used for hybrid and		
		heat pumps to generate heat.		
13	Fuel Cells Optimal Set-	Optimal power dispatch computed by the		
	points	iVPP for fuel cells. It corresponds to the		
		amount of hydrogen used to produce a certain		
		amount of heat.		

6 Requirements

	Requirements	
Categories	Category name for requirements	Category description
ID		
R-SEC.	Security Requirement	Requirements related to the
		safety issues.
R-UI	User Interface Requirement	Requirements related
		to the iVPP UI.
R-FUN	Functional Requirement	Requirements that capture the
		intended behaviour of the
		system.
R-COM	Communication Requirement	Requirements related
		to communication aspects.
Requirement	Requirement name	Requirement description
R-ID		
R-SEC1	Access Control	iVPP functions are accessible
		from personnel with specialized
		authorization rights.
R-SEC2	iVPP cybersecurity	Utilization of good practices
		(e.g. secure communication bus)
		to enhance data cybersecurity.
R-SEC3	iVPP data privacy	Utilization of good practices to
		ensure compliance with
		GDPR regulations.
R-UI1	Graphical visualization	iVPP operation can be visually
	of iVPP operation	inspected through the use
		of KPIs.

R-UI2	Reporting	iVPP can produce reports on		
		system performance		
		upon iVPP Operator request		
R-FUN1	Day-ahead generation forecast	iVPP can predict the generation		
		of its assets for the following day.		
R-FUN2	Intraday generation forecast	iVPP can predict the generation		
		of its assets within the day.		
R-FUN3	Flexibility estimation	iVPP can estimate the		
		dispatchable production units'		
		flexibility.		
R-COM1	Common Information Model	iVPP adopts a common		
		information model to exchange		
		data ensuring interoperability		

7 Common Terms and Definitions

Common Terms and Definitions				
Term	Definition			
CHP	Combined Heat and Power			
GDPR	General Data Protection Regulation			
iVPP	Intelligent Virtual Power Plant			
RES	Renewable Energy Sources			
SGAM	Smart Grid Architecture Model			
SoC	State of Charge			
UC	Use Case			
UI	User Interface			

6.3 Transition Track 3: Use Cases

Transition Track 3 includes the Use Case 9 related with Local Energy Communities engagement and involvement of local citizens into island's energy transition.

6.3.1 Use case 9: Active Citizen and LEC Engagement into Decarbonization Transition

1 Description of the use case

1.1 Name of the use case

11	D	Area / Domain(s)	Name of Use Case					
9)	Empowered LECs	Active	Citizen	and	LEC	Engagement	into
			Decarbonization Transition					

1.2 Version management

	Version Management						
Version	Date	Name of	Changes				
No.		Author(s)					
1	04.02.2021	EDP NEW	First draft.				
2	11.05.2021	EDP NEW	Final version.				
3	18.07.2022	Ana Carvalho (EDP NEW)	Revision.				
4	16.09.2022	Vasilis Apostolopoulos (CERTH)	Corrections to KPI numbering according to final version of D2.9.				

1.3 Scope and objectives of use case

Scope and Objectives of Use Case							
	The scope of this Use Case is the promotion of citizen engagement in the						
Scope	local community by involving them in the island's energy transition.						
Scope	The maximum reach of the use case refers to the whole island's						
	inhabitants (both permanent or otherwise), while the first target will be						

	just a part of them, directly involved with the IANOS activities. Technical					
	staff and IANOS partners will facilitate the activities and the community					
	engagement, supported by the relevant local authorities.					
	The main goals of this use case focus on:					
	1. Promoting the engagement of the local community in island's					
	energy transition.					
Objectives	2. Raising customer's environmental and energy efficiency					
	awareness.					
	3. Supporting local generation.					
	4. Promoting DSM programs.					

1.4 Narrative of use case

Narrative of Use Case

Short description

This Use Case aims to promote an active role and engagement of the community in the island's energy transition. Accordingly, it uses Local Energy Cooperatives to fulfil this purpose where various strategies will be applied, such as involving the community in DSM programs and raising the customer's environmental and energy efficiency awareness through dissemination actions for local homeowners and young people.

Complete description

This Use Case describes the methodologies that will be used to promote the engagement of local communities in the island's energy transition. For this purpose, a Local Energy Cooperative is simulated (in the case of Terceira) or improved (in the case of Ameland) that fosters local generation and the participation of its members in DSM programs.

The Local Energy Cooperative aims to increase local renewable generation by cooperative members through the organization of group meetings, workshops and discussions. Moreover, it would allow the connection of members to the local DSM programs, through the development of useful indicators and the provision of interfaces to monitor their power consumption (carefully respecting data ownership) and providing them with an economic/environmental feedback signal for their actions.

Furthermore, in the case of Ameland, a new cooperatively owned DC-solar farm combined with storage will also be developed. A business model value will be

demonstrated where revenues coming from the solar farm will be reinvested into green energy projects on the island.

Additionally, this Use Case also focuses on raising the customer's environmental and energy efficiency awareness and therefore intends to provide capacity building and training for local homeowners and children through targeted promotion campaigns.

1.5 Key performance indicators (KPI)

		Reference to
Name	Description	mentioned
		use case
		objectives
		3
supply by RES	of locally produced energy from	
	RES and the final energy	
	consumption over a period of time	
	(e.g. month, year) in the LEC or in	
	the target residential area.	
Peak photovoltaic power	Measures the installed capacity of	1,3
installed per 100	photovoltaic interpolated to 100	
inhabitants	inhabitants. To be assessed per	
	sector (residential, tertiary,	
	industrial and public).	
Data privacy - Data Safety	This indicator analyses the extent	4
and Level of	to which regulations on data	
Improvement (Improved	protection are followed and to	
Data Privacy)	which proper procedures to	
	protect personal or private data are	
	implemented.	
People Reached	Percentage of people in the target	1,2,4
	group that have been reached	
	and/or are activated by the project.	
Increased citizen	Measures the increased citizen	1,2
awareness of the	awareness of the socio-cultural	
potential of smart grid	potential of smart city projects and	
projects	of the environmental and energy	
	efficiency challenges.	
	Degree of energetic self- supply by RES Peak photovoltaic power installed per 100 inhabitants Data privacy - Data Safety and Level of Improvement (Improved Data Privacy) People Reached Increased citizen awareness of the potential of smart grid	Degree of energetic self- supply by RES Measures the increase on the ratio of locally produced energy from RES and the final energy consumption over a period of time (e.g. month, year) in the LEC or in the target residential area. Peak photovoltaic power installed per 100 photovoltaic interpolated to 100 inhabitants Measures the installed capacity of photovoltaic interpolated to 100 inhabitants. To be assessed per sector (residential, tertiary, industrial and public). Data privacy - Data Safety and Level of to which regulations on data Improvement (Improved protection are followed and to which proper procedures to protect personal or private data are implemented. People Reached Percentage of people in the target group that have been reached and/or are activated by the project. Increased citizen awareness of the socio-cultural potential of smart grid potential of smart city projects and of the environmental and energy

7.1	Social Compatibility	Refers to the extent to which the	1,2,3,4
		project's solution fits with people's	
		'frame of mind' and does not	
		negatively challenge people's values	
		or the ways they are used to do	
		things.	

1.6 Use case conditions

-11	SA	case	con	d	ıtı	on	9

Assumptions

 A national regulation for LEC should be in place before the use case reaches its objectives, while it could be initiated without it being fully developed.

Prerequisites

• The materials for the group meetings and workshops should be developed as far as possible in the local language to maximize its reach and guarantee the inclusion of the citizens.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

UC1: Community demand-side driven self-consumption maximization.

UC4: Demand Side Management and Smart Grid methods to support Power quality and congestion management services.

Level of depth

High level use case

Prioritisation

High level of priority

Generic, regional or national relation

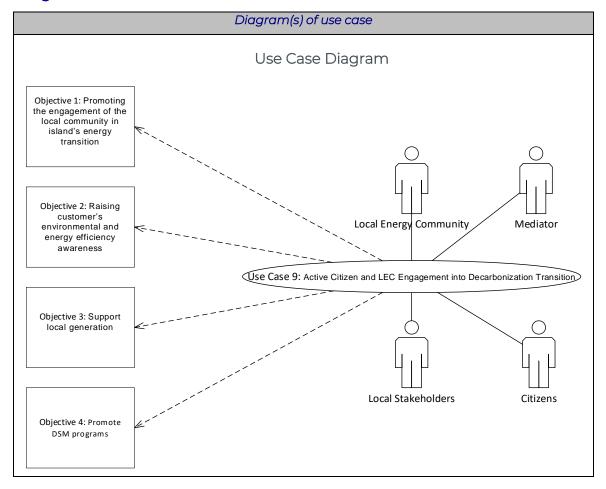
Generic

Nature of the use case

Social use case

Further keywords for classification

Local energy cooperative, community engagement, local generation, DSM programs, local community, training, raising awareness



1.8 General Remarks

General Remarks
-

2 Diagrams of use case

3 Technical details

3.1 Actors

	Actors				
Actor Name	Actor	Actor Description			
	Туре				
		Decentralized cooperatives of local communities and citizens that promote the production and			
Local Energy	Role	consumption of local energy. Local energy communities share a common long-term goal for a			
Community		sustainable future of energy and work to advance the transition through active citizenship			
		engagement. In Terceira there is not a LEC yet, while in Ameland one already exists.			
Mediator (e.g. local	Role	A person who helps connecting the community and the project.			
authority)	Role	A person who helps connecting the community and the project.			
Citizens	Role	Citizens who live in the community.			
Local Stakeholders	Role	Local stakeholders present in the community.			

3.2 References

	References							
No. References Reference			Status	Impact on	Originator/	Link		
	Туре			use case	organisation			
	Decree-Law	Legal		9	Council of			
	no. 15/2022,	documentation			Ministers	https://files.dre.pt/ls/2022/01/01000/0000300185.pdf		
	14th January							

4 Common Terms and Definitions

Common Terms and Definitions			
Term Definition			
LEC Local Energy Communities			
DSM	Demand Side Management		

7 Conclusions and Next Steps

This deliverable identifies the requirements for each Lighthouse Island to deploy all the hardware solutions in the demonstrator sites. Additionally, it defines the 9 Use Cases of IANOS project in detail according to IEC-62559 standards.

The requirements for the LH islands are defined for each hardware solution that will be demonstrated. Most of the solutions are innovative elements and therefore some might be tested for the first time, therefore it is crucial to list all the requirements needed for the LH islands to ensure that the implementation of the solutions in their pilot sites runs smoothly and most of the risks are mitigated.

The Use Cases of IANOS describe the functionality level of the system, therefore they are technical use cases. All the Use Cases (except UC9) are connected to the intelligent Virtual Power Plant (iVPP) platform and what differentiates them is their scope and aim. The Use Cases are divided into 3 Transition Tracks which represent the main areas that IANOS addresses: #TTI: Energy efficiency and grid support for extremely high-RES penetration, #TT2: Decarbonization through electrification and support from non-emitting fuels and #TT3: Empowered LECs. The Use Cases might be implemented in both LH islands or in only one of them.

The Use Cases are defined in a general way to ensure the possibility of replicability in different islands. Thereby, these Use Cases will also be replicated in some of the Fellow Islands (Lampedusa, Bora-Bora and Nisyros). The success of these Use Cases implementation should be measured using the indicated KPIs, as well as the success of the project in itself can be measure using the PSIs presented in Deliverable D2.9.

The present deliverable D2.3 is being developed at a stage of the project in which technologies are being tested and their deployment is being prepared. Developments have been made to the use cases since the first

version and first update of the report and have been reported in this last version. Further developments to the technologies and Use Cases are still under evaluation and, if need so, will be described in a latter update of this deliverable.

The descriptions of the use cases, list of actors, scenarios, information exchanged, and requirements represent a quality foundation for other tasks in this Work Package and others. They enable the definition of the System's Architecture (T2.5), the development of the Decarbonization Master Plan (T2.4), the definition of the multi-layer iVPP operational framework (T4.1, T4.3, T4.4) and the realization of the Use Cases (T5.1, T5.2, T5.3, T6.1, T6.2, T6.3).

8 References

1. CEN-CENELEC-ETSI Smart Grid Coordination Group (SG-CG), "Smart Grid Architecture Model (SGAM) Reference Architecture," 2012.

9 Annex I

1 Description of the use case

Use case describes functions of a system in a technology-neutral way. It identifies participating actors who can for instance be other systems or human actors which are playing a role within a use case. Use cases can be specified on different levels of granularity and are, according to their level of technological abstraction and granularity, either described as High Level Use Cases (HL-UCs) or Primary Use Cases (PUCs).

1.1 Name of the use case

ID	Area / Domain(s)	Name of Use Case
	Select from: (1) Energy efficiency and grid	
	support for extremely high RES	
	penetration; (2) Decarbonization through	
	electrification and support from non-	
	emitting fuels; (3) Empowered Local	
	Energy Communities;	

1.2 Version management

	Version Management					
Version Date Name of Changes						
No.		Author(s)				
	DD.MM.YYYY					

1.3 Scope and objectives of use case

	Scope and Objectives of Use Case					
Scope	The scope defines the limits of the use case.					
Objective(s)	List of objectives of the use case.					
Related business case(s)	Provides a description or reference with some rationale for the suggested use case. Usually the business case is related to several use cases. Therefore, an external reference or link to a business case/business requirements might be more efficient and can be added here.					

1.4 Narrative of use case

Narrative of Use Case

Short description

Short text intended to summarize the main idea as service for the reader who is searching for a use case or looking for an overview. <u>Recommendation: This short description should</u> not have more than 150 words.

Complete description

<u>Complete Description</u> provides a complete narrative of the use case from a user's point of view, describing what occurs, when, why, with what expectation, and under what conditions. This narrative should be written in plain text so that non-domain experts can understand it. The complete description of the Use Case can range from a few sentences to a few pages.

This section often helps the domain expert to think through the user requirements for the function before getting into the details required by the next sections of the Use Case.

1.5 Key performance indicators (KPIs)

The KPIs defined in the D2.3 will be used in this Section.

ID	Name	Description	Reference to mentioned use case objectives
		The description specifies the KPI and may include specific targets in relation	Here is the link to one of the objectives which are specified
		to one of the objectives of the use case	in the targets and the KPI
		and the calculation of these targets.	before.

1.6 Use case conditions

Use case conditions

Assumptions

May be used to define further, general assumption for this use case. In some use cases, it is critical to understand which preconditions or other assumptions are being made.

- Any assumptions shall be identified, such as: which systems already exist, which contractual relations exist, and which configurations of systems are probably in place.
- Any initial states of information exchanged in the steps in the next section shall be identified.

Prerequisites

Describes what condition(s) should have been met prior to the initiation of the use case, such as prior state of the actors and activities.

1.7 Further Information to the use case for classification / mapping

Classification Information

Relation to other use cases

Known relations to other use cases can be provided here.

Level of depth

Defines the level of depth of the use case:

High level use case (HL-UC): use case which describes a general requirement, idea or concept independently from a specific technical realization, like an architectural solution.

Primary use case (PUC): use case which describes in detail the functionality of (a part of) a business process.

Specialized use case (SUC): use case which is using specific technological solutions/implementations.

Prioritisation

Considering a larger number of use cases, it might be interesting to cluster them according to priority. This prioritisation might be different for each country.

Generic, regional or national relation

<u>Generic, regional or national relation</u>: On international level, the use case description might be generic enough to describe a use case in a more general way, independently from the national or regional market design. But use cases might be used to describe regional or national specific circumstances, like laws or even project-specific details. If the use case reflects those circumstances, it should be characterized accordingly.

Note: Use Cases demonstrated in more than one DSO (country) should be classified and written as <u>Generic</u>.

Nature of the use case

This field can help to classify the main focus of the use case. EXAMPLE: Technical/system use case, business use cases (e.g. market processes), political, test use cases.

Further keywords for classification

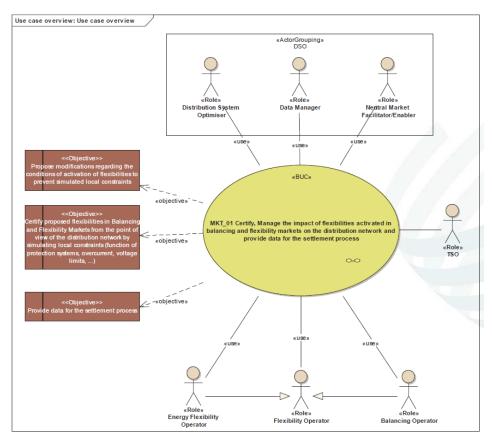
Keywords can be defined in order to support extended search functionalities within a use case repository. Multiple keywords should be provided as a comma-separated list.

EXAMPLE: Smart grid, electric vehicles, loading of vehicles, electricity metering, storage, renewables.

1.8 General Remarks

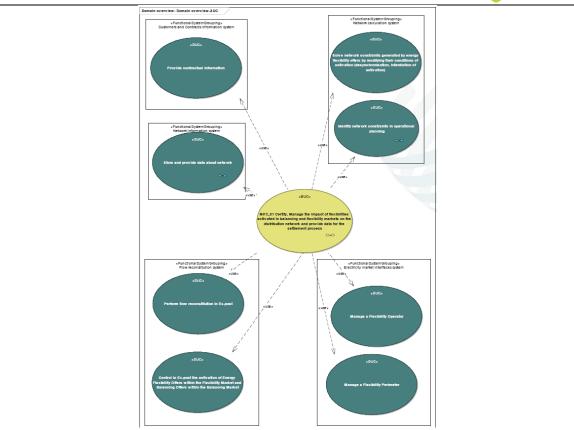
General Remarks

Is used for further comments which are not considered elsewhere.

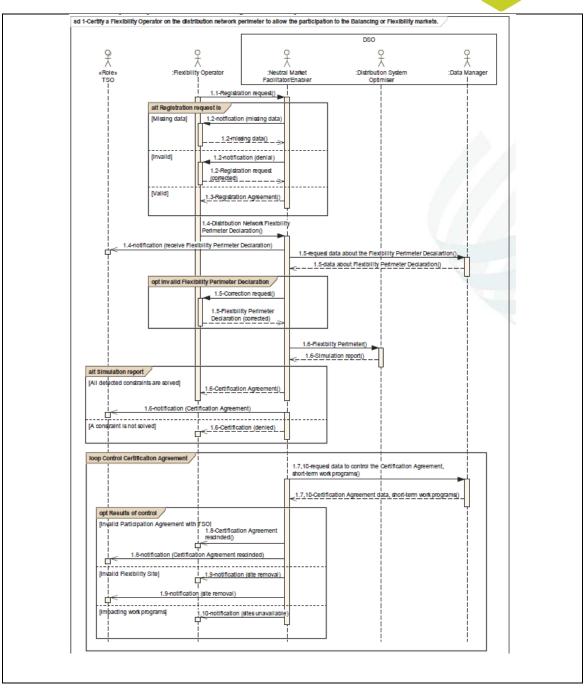


2 Diagrams of use case

For clarification, in general, it is recommended to provide drawing(s) by hand, by a graphic or as UML graphics. The drawing should show interactions which identify the steps where possible.


Diagram(s) of use case

Please paste below the <u>Use Case Diagram</u>: shows how actors interact within the Use Case by participating in the technical functions.


Please paste below the <u>HLUC-PUC Relations Diagram</u>: shows which primary use cases (PUC) are used by the High Level Use Case (HLUC). <u>This is diagram is only included in HLUC</u>.

Please paste below the <u>Sequence Diagram</u>: shows the dynamic sequence of the activities (information exchanges/internal operations) required in the sub-functionality.

3 Technical details

3.1 Actors

In this section 3.1, actors who are involved in the use case are listed and described. These can for instance include roles, systems, applications, databases, devices, etc.

	Actors						
Actor	Actor	Actor Description					
Name	Туре						

3.2 References

References (which are standards, reports, mandates and regulatory constraints) associated with the Use Case. The writers <u>must</u> identify the standards that should be used to realize the Use Case and improve the replicability of the solution.

Identify any legal issues that might affect the design and requirements of the function, including contracts, regulations, policies, financial considerations, engineering constraints, pollution constraints and other environmental quality issues.

	References							
No.	No. References Type Reference Status Impact on use case Originator/organisation Link							
			The status of the	e.g. copy				
			referenced	right, IPR				
			document.					

4 Step by step analysis of use case

Template section 4 focuses on describing scenarios of the use case with a step-step analysis (sequence description). There should be a clear correlation between the narrative and these scenarios and steps.

4.1 Overview of scenarios

The table provides an overview of the different scenarios of the use case like normal and alternative scenarios which are described in section 4.2 of the template.

In general, the writer of the use case starts with the normal sequence (success). In case precondition or post-condition does not provide the expected output (e.g. no success = failure), alternative scenarios have to be defined.

	Scenario conditions					
No.	Scenario name	Scenario	Primary actor	Triggering event	Pre-condition	Post-condition
		description				
			Refers to the actor that	Event that triggers the	Describes the	Describes the
			triggers the scenario. For	scenario. It can be a real	state of the	expected state of
			instance, a function called	event such as, "a fault	system before	the system after the
			"Protection" would	occurs in the grid", or it is	the scenario	scenario is realized.
			probably be triggered by	also possible to define	starts.	
			an "Intelligent Electronic	scenarios that occur		
			Device (IED)".	periodically.		

4.2 Steps – Scenarios

For this scenario, all the steps performed shall be described going from start to end using simple verbs like – get, put, cancel, subscribe etc. Steps shall be numbered sequentially – 1, 2, 3 and so on. Further steps can be added to the table, if needed (number of steps is not limited). Should the scenario require detailed descriptions of steps that are also used by other use cases, it should be considered creating a new "sub" use case, then referring to that "subroutine" in this scenario.

	Scenario							
Scenario name :		No. 1 - Reference scenario						
Ste	Event	Name of	Description of process/	Service	Informatio	Informatio	Information	Requireme
p		process/	activity		n producer	n receiver	Exchanged (IDs)	nt, R-IDs
No.		activity			(actor)	(actor)		
	Event that	Label that	This describes what	Identifies the	Name of	Name of	Here the	
	triggers the	would appear	action takes place in this	nature of	the actor	the actor	information can	
	activity. This	in a process	step. The focus should be	flow of	that	that	use a short ID	
	triggering event	diagram.	less on the algorithms of	information	produces	receives	referring to	
	can be an event,	Action verbs	the applications and	and the	the	the	template	
	such as "a fault	should	more on the interactions	originator of	information	information	section 5 for	
	that occurs in the	be used when	and information flows	the			further details.	
	grid", or it may	naming	between actors.	information			Several	
	refer to an activity	activity.		(*).			information	
	that occurs	EXAMPLE:					exchanged IDs	
	"periodically".	"Fault occurs					can be listed,	
		in the grid".					comma	
							separated.	
	1							

(*) Available options are:

• CREATE means that an information object is to be created at the Producer.

- GET (this is the default value if none is populated) means that the Receiver requests information from the Producer (default).
- CHANGE means that information is to be updated. Producer updates the Receiver's information.
- DELETE means that information is to be deleted. Producer deletes information from the Receiver.
- CANCEL, CLOSE imply actions related to processes, such as the closure of a work order or the cancellation of a control request.
- EXECUTE is used when a complex transaction is being conveyed using a service, which potentially contains more than one verb.
- REPORT is used to represent transferral of unsolicited information or asynchronous information flows. Producer provides information to the Receiver.
- TIMER is used to represent a waiting period. When using the TIMER service, the Information Producer and Information Receiver fields shall refer to the same actor.
- REPEAT is used to indicate that a series of steps is repeated until a condition or trigger event. The condition is specified as the text in the "Event" column for this row or step. Following the word REPEAT, shall appear, in parenthesis, the first and last step numbers of the series to be repeated in the following form REPEAT(X-Y) where X is the first step and Y is the last step.

5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

Information exchanged				
Information Name of information		Description of information	Requirement, R-IDs	
exchanged		exchanged		
(ID)				
Refers to an	Is a unique ID which	Brief description. In case of a	Can be used to define	
identifier	identifies the selected	reference to existing data	requirements	
used in the	information in the	models/information classes	referring to the	
field	context of the use	should be added. Using existing	information and not	
"Information	case.	canonical data models is	to the step as in the	
Exchanged"		recommended.	step by step analysis	
of Table 4.2.			(see template section	
			6 below): EXAMPLE:	
			Data protection class	
			corresponding to this	
			information object.	

6 Requirements

This table summarizes the requirements of all steps in the use case and it is linked to template section 4 "Step by Step Analysis".

	Requirements	
Categories	Category name for requirements	Category description
ID		
Unique	Name for the category of requirements.	Description of the requirement
identifier for		category.
the category.		
Requirement	Requirement name	Requirement description
R-ID		
Unique	A name for the requirement.	Description of the requirement (this
identifier		might be populated automatically
which		from the repository, if the requirement
identifies the		has already been described in the
requirement		external document before).
within its		

category and	
which	
can link the	
requirement	
to an	
external	
requirement	
document.	

7 Common Terms and Definitions

Should be defined in a common glossary for all use cases. Here relevant terms belonging to this use case are listed. Using a database repository for the glossary, the definitions might be filled automatically based on existing information.

Common Terms and Definitions		
Term	Definition	