

Data Management Plan v3

Authors:

Denisa Ziu, Vincenzo Croce (ENG)

Ellen Hofbauer (TNO)

Sheila Sánchez Mínguez [ETRA]

Nikolaos Nikolopoulos [CERTH]

Philippe Pepin [TERALOOP]

Andrea Soto [EFACEC]

Maarten Berkhout [SEAQURRENT]

H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-EC-ES-SCC EUROPEAN COMMISSION Innovation and Networks Executive Agency Grant agreement no. 957810

PROJECT CONTRACTUAL DETAILS

Project title	IntegrAted SolutioNs for the DecarbOnization and Smartification of Islands
Project acronym	IANOS
Grant agreement no.	957810
Project start date	01-10-2020
Project end date	30-09-2024
Duration	48 months
Project Coordinator	João Gonçalo Maciel (EDP) -JoaoGoncalo.Maciel@edp.com

DOCUMENT DETAILS

Deliverable No	D1.15
Dissemination level	Public
Work Package	WPI – Project Management
Task	П.4 – Data, Ethics and Cyber Security Management
Due date	31/03/2023
Actual submission date	31/03/2023
Lead beneficiary	ENG

v	Date	Beneficiary	Changes
0.1	01/02/2023	ENG	First draft
0.2	10/03/2023	ENG	Added updated datasets from partners
0.3	16/03/2023	ENG	Added section on blockchain and compliance with

			GDPR
1.0	31/03/2023	ENG, NEC	Final version after internal review

Disclaimer: This publication reflects the author's view only and the European Commission is not responsible for any use that may be made of the information it contains.

Executive Summary

This document presents the third version of IANOS Data Management Plan as part of Deliverable D1.15, developed under task TI.4 – Data, Ethics and Cyber Security Management of Work Package 1 – Project Management. The aim of this deliverable is to provide an update with the latest information available on the management of data collected, processed and/or generated during the course of the project.

The approach taken for this document referred to the Guidelines on FAIR Data Management in Horizon 2020: scientific research relies on advancements and improvements in earlier works made public, and FAIR [1] data principles make it possible the scientific dialogue by ensuring that data are Findable, Accessible, Interoperable, and Reusable. The guidelines were used as a reference to define a dataset identification template and a list of questions that were circulated among the project partners to collect the necessary information.

Table of Contents

List of	Tables	7
Notat	ions, abbreviations, and acronyms	8
1 In [.]	troduction	9
1.1	Objectives and Scope	9
1.2	Relation to other activities	9
1.3	Structure of the deliverable	10
2 IA	NOS Datasets	11
2.1	iVPP flexibility data	12
2.2	iVPP market data	13
2.3	Integration between Centralized Dispatcher and P2P market data	14
2.4	Data used by ESSIM simulation platform	15
2.5	Data used by dEF-Pi system	17
2.6	Data used by LCA/LCC (VERIFIY) platform	18
2.7	Data used by Flywheel system	23
2.8	Data used by INTEMA system	24
2.9	Hybrid distribution transformed data	26
2.10	Data used by the P2P market	31
2.11	Stakeholder list and newsletter subscriber list	32
2.12	Smart Energy Router monitoring data	33
2.13	IANOS Secured Enterprise Service Bus (ESB)	35

2.14	Lighthouse Island and Fellow Island telemetry, forecast and optimization		
data	39		
2.15	TidalKite system data	43	
3 Fir	ndable, Accessible, Interoperable, and Reusable (FAIR) Data	45	
3.1	Findable Data	45	
3.2	Accessible Data	46	
3.3	Interoperable Data	47	
3.4	Re-usable Data	48	
4 Da	ta Privacy and Management of Personal Data	50	
4.1	Blockchain and GDPR compliance	54	
5 Co	nclusions and next steps	57	
Refere	nces	58	

List of Tables

Table 1 Acronym's list	8
Table 2 iVPP flexibility data	12
Table 3 iVPP market data	13
Table 4 Integration between Centralized Dispatcher and P2P market	14
Table 5 ESSIM simulation data	15
Table 6 dEF-Pi system data	17
Table 7 CERTH LCA/LCC (VERIFY) platform	
Table 8 Flywheel utilization data	
Table 9 Data used by Intema system	
Table 10 Hybrid distribution transformer data	
Table 11 Data used by the P2P market	
Table 12 Stakeholder list and newsletter subscriber list	
Table 13 Smart Energy Router monitoring data	
Table 14 IANOS Secured Enterprise Service Bus	
Table 15 Lighthouse Island and Fellow Island telemetry, forecast and	
optimization data	
Table 16 TidalKite system data	
Table 17 Processing of personal data	51

Notations, abbreviations, and acronyms

Table 1 Acronym's list

AES	Advanced Encryption Standard
AMI	Advanced Metering Infrastructure
API	Application Programming interface
BMS	Building Management System
dEF-Pi	distributed Energy Flexibility Platform and interface
EMS	Energy Management System
ESB	Enterprise Service Bus
ESDL	Energy System Description Language
ESSIM	Energy System SIMulator
EV	Electric Vehicle
EVSE	Electric Vehicle Supply Equipment
FI	Fellow Island
HEMS	Home Energy Management System
laaS	Infra-structure as a Service
IoT	Internet of Things
iVPP	intelligent Virtual Power Plant
LCA	Life Cycle Assessment
LCC	Life Cycle Cost
LH	LightHouse island
RES	Renewable Energy Source
SIEM	Security Information Event Management
SOC	Security Operations Center
SoC	State of Charge
VDC	Virtual Data Centre

1 Introduction 1.1 Objectives and Scope

This deliverable presents the second update of the Data Management Plan for the IANOS project. The Data Management Plan explains how the different datasets of the IANOS project are stored and shared with third parties. The datasets are assembled and constructed in order to fulfil the project goals. Specific attention is given to the management of sensitive data in compliance with GDPR [2] in order to safeguard consumers' privacy and to increase the full societal acceptance of the IANOS solution by local energy consumers.

This document was created following the guidelines specified by the EC in "H2020 Programme Guidelines on FAIR Data Management in Horizon 2020 (V3.0- 26 July 2016) [1]" along with "ANNEX 1- Horizon 2020 FAIR DMP template". A questionnaire has been sent to all project partners to answer the questions in the Horizon 2020 FAIR DMP template.

The Data Management Plan is a living document, which means that updated versions will be created as part of the progress being made in the project. An updated and final version of this document is already planned for M42 (the end of the project). This version reflects the status based on the information currently available in the project.

1.2 Relation to other activities

TI.4 and its deliverables provide guidelines to aggregate, maintain, and further distribute collected data for external usage. This document is linked to overall activities within IANOS as it describes how the data will be managed and stored throughout the project.

1.3 Structure of the deliverable

Deliverable D1.15 is structured as follows:

- Chapter 1: Introduction reports the objectives and scope of the deliverable, its relation with other activities and the structure of the document
- Chapter 2: IANOS Datasets reports the list of identified datasets collected or generated within IANOS project. For each dataset information on purpose of data, types and formats, security and privacy considerations, origin, expected size, access policy, the reference person and other metadata information is provided.
- Chapter 3: Findable, Accessible, Interoperable, and Reusable (FAIR) data management, describes how the FAIR principles are applied to the project.
- Chapter 4: Data Privacy and Management of Personal Data summarises the most important principles applicable when processing data and explains how personal data is processed. A subsection is specifically dedicated to blockchain, a technology used within the IANOS architecture, and GDPR compliance.

2 IANOS Datasets

The datasets listed below have been identified in the IANOS project and will be described in more detail in the following subchapters. Each dataset is represented by a table containing information on purpose of data collection/generation and its relation to the objectives of the project, what types and formats of data are generated/collected, security and privacy considerations, what is the origin of the data, what is the expected size of the data, and what will be the access policies for the data. The list of datasets identified for IANOS project includes:

- 1. iVPP flexibility data
- 2. iVPP market data
- 3. Integration between Centralized Dispatcher and P2P market data
- 4. Data used by ESSIM simulation platform
- 5. Data used by dEF-PI system
- 6. Data used by LCA/LCC (VERIFY) platform
- 7. Data used by Flywheel system
- 8. Data used by INTEMA system
- 9. Hybrid distribution transformed data
- 10. Data used by the P2P market
- 11. Stakeholder list and newsletter subscriber list
- 12. Smart Energy Router monitoring data
- 13. IANOS Secured Enterprise Service Bus (ESB)
- 14. Lighthouse Island and Fellow Island telemetry, forecast and optimization data
- 15. TidalKite system data

Compared to the previous version of the Data Management Plan, each dataset is updated and enriched with more accurate information reflecting the current status of project activities.

2.1 iVPP flexibility data

Table 2 iVPP flexibility data

Dataset Name	iVPP flexibility data
Description	The iVPP requires flexibility information of all assets it has in
	its portfolio. This flexibility information is used to create an
	optimal plan for the VPP. This is real-time information,
	based on IoT devices data and state information of the asset
	that is managed.
Security & Privacy	Flexibility information is privacy sensitive and needs to be
considerations	appropriately secured for both communication and
	storage of this information. Data that has entered the
	platform will only be used by the platform itself and does
	not need to be shared with other parties.
Contact Person	Ewoud Werkman (TNO)
Datatype Name	prEN 50491-12-2 standard
Description	Until now TNO has used the S2 interface defined in EN
	50491-12-1 and preliminary standard prEN 50491-12-2 to
	connect to devices using the dEF-pi platform provided by
	NEROA. TNO has created an implementation of this
	preliminary standard.
	Outputs: Market bids towards the markets and control
	instructions towards the managed Assets (by using the S2
	interface).
	The following data is persisted in the platform per
	aggregation level (device, congestion point, cluster):
	 Planned energy (plan created by the iVPP)
	 Baseline energy (if available)
	 Measurements (measured or derived/forecasted)

Purpose	Optimize the flexibility of the available portfolio for multiple	
	energy markets/ services simultaneously.	
Relevant	ReFlex (Centralized Dispatcher implementation at	
Architectural	Ameland) connected to dEF-Pi.	
component		
Format	JSON/OpenAPI/RAML schema definitions	
Expected size	Not known	
Origin	Devices connected through dEF-Pi	
Access	iVPP users	
Recipients	TNO ReFlex	
Info about	S2 data consists of different types of information per device:	
Metadata	• System description that describes the device	
	capabilities and constraints.	
	 Measurements data from smart meters or 	
	consumption or production of devices.	
	 Information about the flexibility of the device 	
	• Forecast information of the device usage.	
	• Timestamp at which moment in time the	
	information was generated.	

2.2 iVPP market data

Table 3 iVPP market data

Dataset Name	iVPP market data	
Description	The iVPP requires market data when acting on energy	
	markets. This can be information from an aggregator or	
	data directly received from the market, e.g. GOPACS.	
Security & Privacy	Market data can be commercial sensitive information.	
considerations	Therefore, securing this data is required. Data that enters	

	the platform will only be used by the platform itself and
	does not need to be shared with other parties.
Contact Person	Ewoud Werkman (TNO)
Datatype Name	Cluster Target profile
Description	The cluster target profile describes the behaviour of the
	iVPP cluster for upcoming period. This profile is provided by
	the Aggregator.
Purpose	Exchange market information
Relevant	Centralized Dispatcher (ReFlex in Ameland use case) and
Architectural	Aggregator (Repowered in Ameland use case)
component	
Format	JSON, target profile of the iVPP
Expected size	Small
Origin	Aggregator or Market
Access	iVPP users, Aggregator
Recipients	Centralized Dispatcher (ReFlex)
Info about	-
Metadata	

2.3 Integration between Centralized Dispatcher and P2P market data

Table 4 Integration between Centralized Dispatcher and P2P market

Dataset Name	Integration between Centralized Dispatcher and P2P
	market data
Description	The integration with the P2P task requires specific data to
	be shared with the ESB. This information contains the
	device plans generated by the Centralized Dispatcher.

Security & Privacy	This data is privacy sensitive as it contains the planned
considerations	behavior of devices in the use case and is shared with
	trusted third parties (P2P platform of Engineering).
Contact Person	Ewoud Werkman (TNO)
Datatype Name	Device plan
Description	The device plan describes the planned behaviour of an
	asset. This information can be used by the P2P platform to
	calculate the administrative energy exchanges using P2P.
Purpose	Facilitate P2P market
Relevant	Centralized Dispatcher (ReFlex in Ameland use case), ESB
Architectural	and P2P market
component	
Format	Timeseries
Expected size	Not known
Origin	Centralized Dispatcher
Access	iVPP users, P2P platform
Recipients	ESB and subsequently P2P market
Info about	-
Metadata	

2.4 Data used by ESSIM simulation platform

Table 5 ESSIM simulation data

Dataset Name	Data used by ESSIM simulation platform
Description	ESSIM is an ESDL (Energy System Description Language)
	based energy system simulator used to quantify specific
	KPI's of energy systems of any size, including marginal
	pricing based optimized energy flows.
Security & Privacy	Some technical data could be restricted on the energy grid
considerations	(ie. Transport and Transformers); usage of hourly data if

	collected from real measurements should be anonymised
	and be made non traceable.
Contact Person	richard.westerga@tno.nl
Datatype Name	Simulation for energy system
Description	Energy system related data for the physical energy system:
	asset data describing its dimensioning and characteristics
	(i.e. production, storage, conversion, consumption and
	transport assets), hourly profiles, weather data (solar, wind,
	temperatures).
Purpose	Provide a simulation of grid balancing and its effects in an
	interconnected hybrid energy system over a period of time.
	It takes as inputs the energy system defined in ESDL and
	calculates optimal schedule of flexible producers and the
	effect of this schedule in terms of emissions, costs, load on
	the network, etc.
Relevant	Simulation platform
Architectural	
component	
Format	Energy system description in ESDL (XML based)
Expected size	TBD
Origin	Asset data
Access	Consortium Partners
Recipients	Project partners
Info about	Dataset contains info on all relevant assets in the energy
Metadata	system. Production and storage dates and places could
	vary per asset. Documentation on the format is available via
	ESDL Documentation - ESDL (gitbook.io)

2.5 Data used by dEF-Pi system

Table 6 dEF-Pi system data

Dataset Name	dEF-Pi system data
Description	The dEF-Pi system targets the technical aggregator role. It
	is a platform that unlocks and controls energy flexibility
	from smart devices (e.g. heat pumps, EV, PV, batteries, etc.)
	and describes that energy flexibility in a generic way using
	appropriate interfaces.
Security & Privacy	All data will flow through this system, so it has to be secure.
considerations	It can lift on the privacy statement etc. from other parts of
	the projects, as this system is usually the backend of
	someone else's interface.
Contact Person	Jeroen Jansen, jeroen.jansen@neroa.nl
Datatype Name	Generic dEF-Pi telemetry data
Description	The data that the system needs to run itself.
Purpose	Check whether connections made with pilot-sites are
	made correctly.
Relevant	The DefPi system relates to ReFlex on the one hand, and on
Architectural	the other hand to all energy assets on Ameland.
component	
Format	TBD
Expected size	Relatively small (couple of GB)
Origin	The system itself
Access	Stays within the system
Recipients	Neroa
Info about	This data will not create any metadata.
Metadata	
Datatype Name	Generic user data
Description	Smart meter data and other IoT data.

Purpose	To facilitate the measurements of the IANOS KPI's.
Relevant	The DefPi system relates to ReFlex on the one hand, and on
Architectural	the other hand to all energy assets on Ameland.
component	
Format	TBD
Expected size	Large (hundreds of GB)
Origin	User's device
Access	Project partners
Recipients	Users themselves, and IANOS project partners
Info about	-
Metadata	

2.6 Data used by LCA/LCC (VERIFIY) platform

Table 7 CERTH LCA/LCC (VERIFY) platform

Dataset Name	CERTH LCA/LCC (VERIFY) platform
Description	Output data related to Environmental and associated
	Economic KPIs using as Input i) Prosumers' smart meter, ii)
	data produced by IoT devices in relation with mainly the
	following categories:
	IANOS Electrical Systems
	IANOS Thermal Systems
	IANOS Storage (electricity, heating/cooling) Systems
Security & Privacy	Consideration of privacy for injected (input) and calculated
considerations	(output) data related to the energy
	production/consumption of specific systems on a building
	/ district level, since they may reveal the activity and the
	users' behaviour.

	Consideration of the systems location, as they may provide
	important information for the owner and his economic
	status.
	Hence, the IANOS LCA/LCC platform entitled as "VERIFY"
	will assure that owed to afore-mentioned considerations,
	encoded data transactions and firewall utilization for the
	data base protection, will be applied.
	Access to the data will be monitored and controlled. The
	data will be stored in encrypted form, under Advanced
	Encryption Standard (AES) on the CERTH's related Data
	Lake. Firewall will prevent unauthorized malicious access,
	by separating the public and internal network.
	Furthermore, only certain people will be authorized to have
	access in the platform.
Contact Person	Nikolaos Nikolopoulos (n.nikolopoulos@certh.gr)
Datatype Name	IANOS Electrical Systems
Datatype Name Description	IANOS Electrical Systems Generated data that report back the associated
Datatype Name Description	IANOS Electrical SystemsGenerated data that report back the associatedEnvironmental and associated Economic KPIs from the
Datatype Name Description	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical
Datatype Name Description	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G),
Datatype Name Description	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal
Datatype Name Description	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal Kite, Digester) of the power system along with their
Datatype Name Description	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal Kite, Digester) of the power system along with their location.
Datatype Name Description Purpose	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal Kite, Digester) of the power system along with their location. Data will be used for calculating the environmental impact
Datatype Name Description Purpose	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal Kite, Digester) of the power system along with their location. Data will be used for calculating the environmental impact (e.g. CO2 emissions) and the economic performance.
Datatype Name Description Purpose Relevant	IANOS Electrical SystemsGenerated data that report back the associatedEnvironmental and associated Economic KPIs from theenergy production/consumption of the various electricalcomponents (e.g. PV, Wind Turbines, Flywheel, EVs (V2G),geothermal plant, waste incineration plant, Fuel Cells, TidalKite, Digester) of the power system along with theirlocation.Data will be used for calculating the environmental impact(e.g. CO2 emissions) and the economic performance.VERIFY
Datatype Name Description Purpose Relevant Architectural	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal Kite, Digester) of the power system along with their location. Data will be used for calculating the environmental impact (e.g. CO2 emissions) and the economic performance. VERIFY
Datatype Name Description Purpose Relevant Architectural component	IANOS Electrical Systems Generated data that report back the associated Environmental and associated Economic KPIs from the energy production/consumption of the various electrical components (e.g. PV, Wind Turbines, Flywheel, EVs (V2G), geothermal plant, waste incineration plant, Fuel Cells, Tidal Kite, Digester) of the power system along with their location. Data will be used for calculating the environmental impact (e.g. CO2 emissions) and the economic performance. VERIFY
Datatype Name Description Purpose Relevant Architectural component Format	IANOS Electrical SystemsGenerated data that report back the associatedEnvironmental and associated Economic KPIs from theenergy production/consumption of the various electricalcomponents (e.g. PV, Wind Turbines, Flywheel, EVs (V2G),geothermal plant, waste incineration plant, Fuel Cells, TidalKite, Digester) of the power system along with theirlocation.Data will be used for calculating the environmental impact(e.g. CO2 emissions) and the economic performance.VERIFY*.json, *.xml, *.csv

Origin	i) Prosumers' smart meter, ii) IoT devices provided by the
	operators/vendors of both a) the IANOS innovative
	Electrical systems and b) own funded ones.
Access	Data will be openly available upon request, given that there
	are no restrictions/limitations (GDPR, IP) from the data
	sources side.
	Moreover, any necessary data related provision access
	rights will be respected, according to the GDPR and CA.
	Data will be made accessible through CERTH's Data Lake.
	Data streams will be formulated according to a standard
	ontology (i.e., SAREF, Bricks Schema) with custom
	extensions. After access has been granted to external users,
	a "download by dataset" option from the API would allow
	specific data version to be retrieved.
Recipients	Project partners
Recipients Info about	Project partners A plan to permit rendering the data identifiable during the
Recipients Info about Metadata	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a
Recipients Info about Metadata	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation,
Recipients Info about Metadata	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be
Recipients Info about Metadata	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied.
Recipients Info about Metadata Datatype Name	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems
Recipients Info about Metadata Datatype Name Description	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems Generated data that report back the associated
Recipients Info about Metadata Datatype Name Description	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems Generated data that report back the associated Environmental and associated Economic KPIs from the
Recipients Info about Metadata Datatype Name Description	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems Generated data that report back the associated Environmental and associated Economic KPIs from the various thermal components (e.g. PCM, Heat Pumps,
Recipients Info about Metadata Datatype Name Description	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems Generated data that report back the associated Environmental and associated Economic KPIs from the various thermal components (e.g. PCM, Heat Pumps, electric water heaters, FCs for the part of any waste heat
Recipients Info about Metadata Datatype Name Description	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems Generated data that report back the associated Environmental and associated Economic KPIs from the various thermal components (e.g. PCM, Heat Pumps, electric water heaters, FCs for the part of any waste heat produced) of the power system along with their location.
Recipients Info about Metadata Datatype Name Description	Project partners A plan to permit rendering the data identifiable during the project, will be developed. For the naming convention, a syntactically correct variable naming formulation, dependent on source code implementation needs, will be applied. IANOS Thermal Systems Generated data that report back the associated Environmental and associated Economic KPIs from the various thermal components (e.g. PCM, Heat Pumps, electric water heaters, FCs for the part of any waste heat produced) of the power system along with their location. Data will be used for calculating the environmental impact

Relevant	VERIFY
Architectural	
component	
Format	*.json, *.xml, *.csv
Expected size	multiple Mb/s (worst case scenario)
Origin	i) Prosumers' smart meter, ii) IoT devices provided by the
	operators/vendors of both a) the IANOS innovative
	Electrical systems and b) own funded ones.
Access	Data will be openly available upon request, given that there
	are no restrictions/limitations (GDPR, IP) from the data
	sources side.
	Moreover, any necessary data related provision access
	rights will be respected, according to the GDPR and CA.
	Data will be made accessible through the CERTH' s Data
	Lake.
	Data streams will be formulated according to a standard
	ontology (i.e., SAREF, Bricks Schema) with custom
	extensions. After access has been granted to external users,
	a "download by dataset" option from the API would allow
	specific data version to be retrieved.
Recipients	Project partners
Info about	A plan to permit rendering the data identifiable during the
Metadata	project, will be developed. For the naming convention, a
	syntactically correct variable naming formulation,
	dependent on source code implementation needs, will be
	applied.
Datatype Name	IANOS Storage Systems
Description	Generated data that report back the associated
	Environmental and associated Economic KPIs from the
	various thermal components (e.g. electrochemical BESS

	(centralized or distributed), Flywheel, biobased battery,
	electrolyzer) of the power system along with their
	location.
Purpose	Data will be used for calculating the environmental impact
	(e.g. CO2 emissions) and the economic performance.
Relevant	VERIFY
Architectural	
component	
Format	*.json, *.xml, *.csv
Expected size	multiple Mb/s (worst case scenario)
Origin	i) Prosumers' smart meter, ii) IoT devices provided by the
	operators/vendors of both a) the IANOS innovative
	Electrical systems and b) own funded ones.
Access	Data will be openly available upon request, given that there
	are no restrictions/limitations (GDPR, IP) from the data
	sources side.
	Moreover, any necessary data related provision access
	rights will be respected, according to the GDPR and CA.
	Data will be made accessible through the CERTH's Data
	Lake.
	Data streams will be formulated according to a standard
	ontology (i.e., SAREF, Bricks Schema) with custom
	extensions. After access has been granted to external users,
	a "download by dataset" option from the API would allow
	specific data version to be retrieved.
Recipients	Project partners
Info about	A plan to permit rendering the data identifiable during the
Metadata	project, will be developed. For the naming convention, a
	syntactically correct variable naming formulation,

dependent on source code implementation needs, will be applied.

2.7 Data used by Flywheel system

Table 8 Flywheel utilization data

Dataset Name	Flywheel utilization data
Description	Teraloop's flywheel power management load profile
Security & Privacy	To be kept confidential, disclosure to be discussed with
considerations	Teraloop and end user.
Contact Person	philippe.pepin@teraloop.com
Datatype Name	Load Profile in kW
Description	Profile of electricity consumption of end user, profile of grid
	electricity power fluctuation and activation of Teraloop
	device.
Purpose	Load profile forecast for the integration of a Teraloop device
	in the Terceira electricity grid at the end user location, to
	provide power management and fault ride through
	services.
Relevant	Used by the iVPP platform
Architectural	
component	
Format	Excel
Expected size	MB's
Origin	Teraloop's flywheel
Access	Terceira LH
Recipients	iVPP platform
Info about	NA
Metadata	

2.8 Data used by INTEMA system

Table 9 Data used by Interna system

Dataset Name	"INTEMA_res": CERTH energy analysis (INTEMA.grid)
	platform. Input data for the platform include main grid
	assets parameters and design points, their topology, and
	the corresponding loads. The platform outputs data and
	expected performance data concern grid operation (multi-
	vector power flows) and can be utilized for the calculation
	of energy-related KPIs.
Description	The calculated energy-related data can support the
	calculation/estimation of KPIs, indicatively including:
	 production of conventional generation units (steam,
	gas, diesel, etc.)
	 production of RES generation units (PV, wind
	turbines, etc.)
	• energy exchange with the grid, including the storage
	assets (batteries, heating batteries, pumped hydro
	storage, etc.)
	• aggregated values for the performance assessment
	of the grid
Security & Privacy	The INTEMA's related platform data are stored in CERTH's
considerations	specialized Data Lake, which ensures protection via a set of
	integrated measures:
	• The data are stored and retrieved under encrypted
	form, through Advanced Encryption Standard (AES)
	protocol.
	• A firewall prevents unauthorized malicious access, by
	separating the public and internal network.

	• Furthermore, only certain people will be authorized
	to have access to INTEMA.grid platform and related
	data.
	• INTEMA utilizes mainly static/historical data for its
	simulations; thus there is no need for any real-time
	connection, minimizing the risks for any security
	issues.
Contact Person	n.nikolopoulos@certh.gr
Datatype Name	Simulated data
Description	Post-processed data that include the main outcomes of
	the simulated scenario.
Purpose	Data will be utilized for the evaluation of energy KPIs.
Format	*.json
Expected size	several MB
Origin/ Source	Simulated data
(e.g. which type of	
device)	
Relevant	INTEMA.grid
Architectural	
component	
Access	Data will be made accessible through CERTH's Data Lake.
	Data streams will be formulated according to a standard
	ontology (i.e., SAREF, Bricks Schema) with custom
	extensions. After access has been granted to external users,
	the data can be queried based on specific input field
	selection.
Recipients	Project partners
Info about	Metadata will include the case information (name, location,
Metadata	date), the timestamp of the simulation.

2.9 Hybrid distribution transformed data

Table 10 Hybrid distribution transformer data

Dataset Name	Hybrid distribution transformer data
Description	Data from the monitoring system installed in the hybrid
	transformer.
Security & Privacy	Data is owned by the customer, then used by Efacec to
considerations	assess the condition of the asset.
Contact Person	Andrea Soto <andrea.soto@efacec.com></andrea.soto@efacec.com>
Datatype Name	Temperatures RTD PT100
Description	Ambient, top, and bottom oil temperatures.
Purpose	Measure temperatures indicating transformer failure
	modes.
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Float
Expected size	12 bytes (3x 4 bytes)
Origin	PTIOO
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Float with two decimal places.
Metadata	Temperature expressed in °C (Celsius degree).
Datatype Name	Low Voltage side currents
Description	Low Voltage side currents.
Purpose	Measure transformer currents for load indicator currents.
Relevant	Hybrid distribution transformer.
Architectural	
component	

Format	Float
Expected size	12 bytes (3x 4 bytes)
Origin	Rogowski coil sensor
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Float with two decimal places.
Metadata	Current expressed in A (Ampere).
Datatype Name	Moisture in oil
Description	Moisture in oil
Purpose	Measure the moisture dissolved in the transformer oil.
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Float
Expected size	4 bytes
Origin	Moisture in oil sensor
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Float with one decimal place.
Metadata	Moisture in oil expressed in ppm (parts per million).
Datatype Name	Accelerometer
Description	Vibration in transformer
Purpose	Measure transformer vibration to detect patterns
	associated with known failure modes.
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Integer
Expected size	4 bytest

Origin	Vibration sensor
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Integer with one decimal place.
Metadata	Transformer vibration amplitude expressed as acceleration
	(mG).
Datatype Name	Noise
Description	Noise in transformer
Purpose	Measure the noise in the transformer surroundings to
	detect patterns associated with known failure modes.
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Integer
Expected size	4 bytes
Origin	Vibration sensor
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Integer with one decimal place.
Metadata	Noise expressed in dB (decibels).
Datatype Name	Pressure in-tank
Description	in-tank pressure measured in three spots.
Purpose	Measure in-tank pressure indicating failure modes.
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Float
Expected size	12 bytes (3x 4 bytes)
Origin	Pressure sensor

Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Float with one decimal place.
Metadata	In-tank pressure expressed in mBAR.
Datatype Name	Communication
Description	Communication medium
Purpose	Identify the communication medium connection
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	String
Expected size	15 bytes
Origin	Transformer Monitor
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	String.
Metadata	Communication medium expressed without units.
Datatype Name	Oil Level
Description	Oil level
Purpose	Measure transformer tank oil level
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Float
Expected size	4 bytes
Origin	Oil level sensor
Access	Transformer Monitor
Recipients	Asset Management Platform

Info about	Float without decimal place.
Metadata	Oil level expressed in mm (millimetres).
Datatype Name	Oil moisture
Description	Oil moisture
Purpose	Measure transformer oil moisture
Relevant	Hybrid distribution transformer.
Architectural	
component	
Format	Float
Expected size	4 bytes
Origin	Oil moisture sensor
Access	Transformer Monitor
Recipients	Asset Management Platform
Info about	Float without decimal place.
Metadata	Oil moisture expressed in ppm (parts per million).
Datatype Name	Transformer alarms and trips
Datatype Name Description	Transformer alarms and trips General, temperature, pressure and level alarms and trips.
Datatype Name Description Purpose	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or trip
Datatype Name Description Purpose	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;
Datatype Name Description Purpose	Transformer alarms and trips General, temperature, pressure and level alarms and trips. Indicate if the transformer reaches the alarm or trip thresholds setup for: general settings; temperature; pressure; and oil level.
Datatype Name Description Purpose Relevant	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.
Datatype Name Description Purpose Relevant Architectural	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.
Datatype Name Description Purpose Relevant Architectural component	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.
Datatype Name Description Purpose Relevant Architectural component Format	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.Boolean
Datatype Name Description Purpose Relevant Architectural component Format	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.Boolean
Datatype Name Description Purpose Relevant Architectural component Format	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.Boolean
Datatype Name Description Purpose Relevant Architectural component Format Expected size	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.Boolean16 bytes (8x 2 bytes)
Datatype Name Description Purpose Relevant Architectural component Format Expected size Origin	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.Boolean16 bytes (8x 2 bytes)Transformer Monitor
Datatype Name Description Purpose Relevant Architectural component Format Expected size Origin Access	Transformer alarms and tripsGeneral, temperature, pressure and level alarms and trips.Indicate if the transformer reaches the alarm or tripthresholds setup for: general settings; temperature;pressure; and oil level.Hybrid distribution transformer.Boolean16 bytes (8x 2 bytes)Transformer MonitorTransformer Monitor

Info about	Boolean.
Metadata	Each alarm and trip is expressed as true or false.

2.10 Data used by the P2P market

Table 11 Data used by the P2P market

Dataset Name	Data used by the P2P market
Description	The P2P market enables prosumers in a local network to
	directly trade energy with each other, by avoiding RES
	curtailment and future grid transport costs. The P2P
	trading system is based on blockchain technology that
	guarantees the transparency and security of the
	transaction, which remains permanently recorded in the
	platform, allowing all parties to audit the results.
Security & Privacy	The dataset contains information about the energy
considerations	behaviour of users who are connected to the grid. Data is
	anonymised before being saved in blockchain. Moreover,
	the system is based on a private blockchain, and only
	authorised users can access it.
Contact Person	Pierluigi Linardi (pierluigi.linardi@eng.it)
Datatype Name	Sales and purchase requests
Description	At market closing, after the clearing price is performed, all
	the sales and purchase requests are saved in blockchain
	to ensure the transparency and security of transactions.
Purpose	Data is used as reference levels to validate market
	agreements and verify that every participant acts as
	expected.
Relevant	DLT-based transactive logic
Architectural	
component	

Format	Json
Expected size	TBD
Origin	Data will be based on user behaviour in Terceira and
	Ameland pilot sites
Access	Consortium Partners
Recipients	Project partners
Info about	-
metadata	

2.11 Stakeholder list and newsletter subscriber list

Dataset Name	Stakeholder list and newsletter subscriber list
Description	A database of stakeholder and subscribers to the
	newsletter will be created to keep track of the
	contacted/interested subjects.
Security & Privacy	Minimum amount of data will be retained (name, email
considerations	address, affiliation) and no profiling will be performed.
	Sendinblue will be used (EU servers, GDPR compliant),
	which takes all necessary precautions to preserve the
	security of personal data and, in particular, to prevent it
	from being accessed by unauthorized third parties,
	distorted, or damaged.
	These measures include the following:
	Multi-level firewall.
	• Proven solutions for anti-virus protection and
	detection of intrusion attempts.
	• Encrypted data transmission using SSL/https/VPN
	technology.

Table 12 Stakeholder list and newsletter subscriber list

	• Tier 3 and PCI DSS certified data centres.
Contact person	Nora Ganzinelli (nora.ganzinelli@rina.org)
Datatype Name	Stakeholder contact
Description	Name, email, (affiliation) of the person subscribed.
Purpose	Disseminate the project.
Relevant	Not associated with IANOS Architecture
Architectural	
component	
Format	Excel
Expected size	<100MB
Origin	Stakeholders who subscribe to the newsletter and/or
	people who express their interest in the project (privacy
	statement to be accepted).
Access	Project partners
Recipients	Stakeholders
Info about	NA
Metadata	

2.12 Smart Energy Router monitoring data

Table 13 Smart Energy Router monitoring data

Dataset Name	Smart Energy Router monitoring data
Description	This dataset comprises i) information about the PV system
	connected to the Smart Energy Router, including the
	respective 15-min resolution generation profile; and ii)
	information about the battery storage system of the Smart
	Energy Router, including the respective 15-min resolution
	State of Charge (SoC) profile.

Security & Privacy	Smart Energy Router complies with IEC 61850 standard, as
considerations	well as existing European (e.g., GDPR) and national
	regulations.
Contact Person	Nuno Vilhena (UNINOVA)
Datatype Name	Smart Energy Router – PV generation
Description	Information about the PV system connected to the Smart
	Energy Router, including the respective 15-min resolution
	generation profile.
Purpose	Provide iVPP real time information about the generation of
	the PV system connected to the Smart Energy Router.
Relevant	API to communicate between the Smart Energy Router
Architectural	(Physical layer) and the other layers.
component	
Format	TBD
Expected size	TBD
Origin	Smart Energy Router
Access	IANOS consortium members
Recipients	iVPP platform
Info about	Measurement data (acquired inside the Smart Energy
Metadata	Router) regarding the connected PV system: power,
Metadata	Router) regarding the connected PV system: power, voltage and injected current.
Metadata Datatype Name	Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC
Metadata Datatype Name Description	Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart
Metadata Datatype Name Description	 Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart Energy Router, including the respective 15-min resolution
Metadata Datatype Name Description	Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart Energy Router, including the respective 15-min resolution State of Charge (SoC) profile.
Metadata Datatype Name Description Purpose	 Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart Energy Router, including the respective 15-min resolution State of Charge (SoC) profile. Provide iVPP real time information about the battery
Metadata Datatype Name Description Purpose	Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart Energy Router, including the respective 15-min resolution State of Charge (SoC) profile. Provide iVPP real time information about the battery storage system of the Smart Energy Router.
Metadata Datatype Name Description Purpose Relevant	Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart Energy Router, including the respective 15-min resolution State of Charge (SoC) profile. Provide iVPP real time information about the battery storage system of the Smart Energy Router. API to communicate between the Smart Energy Router
Metadata Datatype Name Description Purpose Relevant Architectural	Router) regarding the connected PV system: power, voltage and injected current. Smart Energy Router – Battery SoC Information about the battery storage system of the Smart Energy Router, including the respective 15-min resolution State of Charge (SoC) profile. Provide iVPP real time information about the battery storage system of the Smart Energy Router. API to communicate between the Smart Energy Router (Physical layer) and the other layers.

Format	TBD
Expected size	TBD
Origin	Smart Energy Router
Access	IANOS consortium members
Recipients	iVPP platform
Info about	Measurement data (acquired through the Smart Energy
Metadata	Router) regarding the connected battery storage system:
	power, voltage, current and State of Charge.

2.13 IANOS Secured Enterprise Service Bus (ESB)

Table 14 IANOS Secured Enterprise Service Bus

Dataset Name	IANOS Secured Enterprise Service Bus (ESB)
Description	IANOS Secured Enterprise Service Bus (ESB) would
	communicate with several scattered units across the pilot
	units. For this purpose, communication from dispersed
	field-level infrastructure such as AMI/EMS and BMS is
	established.
Security & Privacy	The Enterprise Service Bus concerns architectural software
considerations	that solves the communication issues between different
	fields and external devices eliminating the differences
	between the protocols considered. Additionally, ESB
	establishes routes between messages protecting the
	location or identity between the partners in the
	communication process. The Secured Enterprise Service
	Bus in IANOS will securely monitor energy-related and
	exchange contextual data from field components.
	IANOS ESB during its developing phase, will take care of
	security concerns, establishing the appropriate network

	configuration so that data traffic through the ESB could be
	separated if necessary, to add extra security measures.
Contact Person	Lucas Bayarrí Pons (<u>lpons.etraid@grupoetra.com</u>)
Datatype Name	Smart Load Agent
Description	Energy data coming from the demand side regarding the
	Smart Loads, Hybrid Heat Pumps in the system.
Purpose	Serve to further engines in the iVPP Operative
	Orchestration Toolkit and the IEPT Toolkit.
Relevant	FEID-Plus (Terceira) & dEF-Pi (Ameland)
Architecture	
component	
Format	To be determined.
Expected size	To be determined.
Origin	Smart Loads
Access	ESB
Recipients	iVPP platform/IEPT Toolkit
Info about	-
Metadata	
Datatype Name	HEMS/BMS Agent
Description	Energy data coming from the demand side regarding
	Home Energy Management Systems and Building
	Management Systems within the Buildings in the Islands.
Purpose	Serve to Virtual Integration Layer: IEPT Toolkit and iVPP
	platform.
Relevant	FEID-Plus (Terceira) & dEF-Pi (Ameland)
Architecture	
component	
Format	To be agreed.
Expected size	Not determined yet
Origin	Advanced Metering Infrastructure (AMI)

Access	ESB
Recipients	iVVP Platform /IEPT Toolkit
Info about	-
Metadata	
Datatype Name	EV Agent
Description	Energy data coming from the demand side regarding EV
	access points.
Purpose	Serve to Virtual Integration Layer: IEPT Toolkit and iVPP
	platform.
Relevant	FEID-Plus (Terceira) & dEF-Pi (Ameland)
Architecture	
component	
Format	To be agreed.
Expected size	Not determined yet
Origin	Electric Vehicle Supply Equipment (EVSE), Electric Vehicle
	Charging Infrastructure (V2G)
Access	ESB
Recipients	iVPP Platform /IEPT Toolkit
Info about	-
Metadata	
Datatype Name	SCADA / EMS Agent
Description	Energy data coming from SCADA and Energy
	Management System.
Purpose	Serve to Virtual Integration Layer: IEPT Toolkit and iVPP
	platform.
Relevant	FEID-Plus (Terceira) & dEF-Pi (Ameland)
Architecture	
component	
Format	To be agreed.
Expected size	Not determined yet

Origin	SCADA System
Access	ESB
Recipients	iVPP Platform /IEPT Toolkit
Info about	-
Metadata	
Datatype Name	BESS Agent
Description	Energy Data coming from Battery Energy Storage Systems.
Purpose	Serve to Virtual Integration Layer: IEPT Toolkit and iVVP
	platform.
Relevant	FEID-Plus (Terceira) & dEF-Pi (Ameland)
Architecture	
component	
Format	To be agreed.
Expected size	Not determined yet
Origin	Flywheel in its relevant pilot, Biobased Battery
Access	ESB
Recipients	iVPP Platform /IEPT Toolkit
Info about	-
Metadata	
Datatype Name	Storage Vectors Agent
Description	Energy Data coming from Storage Vectors in the system.
Purpose	Serve to Virtual Integration Layer: IEPT Toolkit and iVPP
	platform.
Relevant	FEID-Plus (Terceira) & dEF-Pi (Ameland)
Architecture	
component	
Format	To be agreed.
Expected size	Not determined yet
Origin	Thermal Storage Units, Hydrogen Storage.

Access	ESB
Recipients	iVPP Platform /IEPT Toolkit
Info about	-
Metadata	

2.14 Lighthouse Island and Fellow Island telemetry,

forecast and optimization data

Table 15 Lighthouse Island and Fellow Island telemetry, forecast and optimization data

Lighthouse Island and Fellow Island telemetry, forecast and
optimization data
Data acquired and stored locally or remotely from IoT
devices, energy and other data assets (i.e.: weather
stations), regarding energy production and consumption,
asset status (i.e.: on/off), forecasting and optimization
calculations.
The data collected will be stored on a cloud-based platform
deployed on a Virtual Data Centre (VDC) of an IaaS (Infra-
structure as a Service) provider. The IaaS provider is Altice
Portugal Data Center SA, formerly known as Portugal
Telecom. They have advanced security protocols for data
protection to mitigate any malicious actions. Their Data
Centre has several certifications including the:
- ISO/IEC 20000, acknowledging the use of best practices
in IT Services Management Systems, according to the
Cloud Computing services provision, IT Management
Services, Security Management Services and Data Center
Infrastructure Services, within the "Data Center as a
Service".

	- ISO/IEC 27001, acknowledging the use of best practices in
	Information Security Management Systems, according to
	the Cloud Computing services provision, IT Management
	Services, Security Management Services and Data Center
	Infrastructure Services, within the "Data Center as a
	Service".
	- ISO 9001, Quality Management System.
	The Data Center has a SOC (Security Operations Center)
	team in place 24 x 7 with training in security and that uses
	state of the art SIEM (Security Information Event
	Management) technology to assure high availability.
	The cloud virtual Data Center is also protected by several
	security systems:
	• Firewall, DMZ & VPN to further secure remote access;
	• Biometric controls (palm vein system for reading the
	veins of the hands of each person registered in the
	system), Alarms, CCTV surveillance, Automatic
	detection / fire extinguishing system and local
	support team – protect physical access to servers.
	Regarding the data storage, the database is encrypted,
	assuring Client data privacy. Also, weekly backups of the
	databases are executed to an off-site that are also stored on
	an encrypted data drive.
	The software platform uses HTTPS to assure that the
	information travelling on the web is properly secured.
Contact Person	Jorge Landeck
Datatype Name	Energy generation and consumption data
Description	Metering and status data acquired and stored locally or
	remotely from smart meters, IoT devices, energy assets, and

	operational platforms regarding energy generation,
	consumption, and storage.
Purpose	Data to be processed, using computational algorithms, for
	forecasting and optimization purposes according to the
	different use cases. Data visualization and analysis through
	the iVPP platform UI.
Relevant	Kiplo Core Platform / Database
Architectural	
component	
Format	Relational SQL database also accessible via API.
Expected size	Several dozen GBs.
Origin	IoT devices, RES assets, EV chargers, operational platforms.
Access	Authorized iVPP users.
Recipients	Confidential, within consortium members and iVPP
	managers and users of the Ameland and Terceira LH.
Info about	Data ID
Metadata	day/month/year
	hour/minutes/seconds
	Energy asset data variables
Datatype Name	Forecast and optimization data LH
Description	RES generation forecasts, energy assets consumption
	forecasts, energy storage forecast, usage profiles, EV
	charging profiles, optimization calculations and results
Purpose	Forecast of energy production and consumption for
	optimization purposes according to the use cases to be
	explored with the project
Relevant	Kiplo Core Platform / Database
Architectural	
component	
Format	Relational SQL database also accessible via API.

Expected size	Several dozen MBs.
Origin	Calculations performed by computer algorithms on the
	iVPP optimization module.
Access	Authorized iVPP users.
Recipients	Confidential, within consortium members and iVPP
	managers and users of the Ameland and Terceira LH
Info about	Data ID
Metadata	day/month/year
	hour/minutes/seconds
	Energy asset data variables
Datatype Name	Forecast RES generation data FI
Description	RES generation forecasts, energy assets consumption
	forecasts, energy storage forecast, usage profiles.
Purpose	Forecast of energy production and consumption according
	to the use cases to be explored with the project replicability
	Actions in the fellow Islands
Relevant	Kiplo Core Platform / Database
Architectural	
component	
Format	.CSV
Expected size	>100 MB
Origin	User's device
Access	CNR IIA Users (Lampedusa)
Recipients	Confidential within users themselves and IANOS
	consortium members
Info about	Data ID
Metadata	day/month/year
	hour/minutes/seconds
	Energy asset data variables
Datatype Name	Control actions and DR scheduling

Description	List of timestamped commands for Demand Response
	control of energy assets.
Purpose	Store scheduled and past control actions of energy assets.
Relevant	Kiplo Core Platform / Database
Architectural	
component	
Format	Relational SQL database also accessible via API.
Expected size	Several dozen MBs.
Origin	Output of the Demand response module of iVPP
Access	Authorized iVPP users.
Recipients	Confidential, within consortium members and iVPP
	managers and users of the Ameland and Terceira LH.
Info about	Data ID
Metadata	day/month/year
	hour/minutes/seconds
	Energy asset data variables

2.15 TidalKite system data

Table 16 TidalKite system data

Dataset Name	TidalKite system data
Description	TidalKite use case electricity production.
Security & Privacy	To be kept confidential, disclosure (of totals) to be discussed
considerations	with SeaQurrent (developer of the technology).
Contact Person	Maarten Berkhout (maarten.berkhout@seaqurrent.com)
Datatype Name	Production profile forecast in kW
Description	Profile of electricity production from a TidalKite unit.
Purpose	Production profile forecast for the integration in the
	Ameland electricity grid, to service electricity demand and

	determine reduction of / contribution to electricity storage
	capacity required.
Relevant	-
Architecture	
component	
Format	To be discussed and to be adapted so that it can be
	integrated in the Ameland electricity grid balancing
	optimisation.
Expected size	In the range of MB
Origin	SeaQurrent
Access	Ameland LH
Recipients	Ameland LH project manager
Info about	Data consists of predicted kW per time unit.
Metadata	Data ID
	 actualPower/forecastPower
	• timestamp

3 Findable, Accessible, Interoperable, and Reusable (FAIR) Data

3.1 Findable Data

To make data generated/collected by the project findable, it is important to have a naming and versioning convention. IANOS will use a naming convention with the following information:

- o Project name/acronym (IANOS)
- o Name or abbreviation of Dataset
- o Source provider
- Date file created/generated (in YYYY-MM-DD format)
- o Version number

For example: IANOS_VERIFY_CERTH_2021-04-01_v1.0

Data is adopting the Semantic Versioning 2.0 scheme to assign a unique version to each release of the data.

In addition to naming convention, the "Guidelines on FAIR Data Management in Horizon 2020" also propose to have Digital Object Identifiers (DOIs) for the data generated during the project. For this reason, the project will use the Zenodo platform [3] to fulfil the DOI requirement. Zenodo is an open-access repository developed under the European OpenAIRE program and operated by CERN. The platform can handle single datasets with up to 50GB size. To help research projects to share data all over the world, the platform also helps by defining and storing some additional metadata provided by the uploader. It is possible to grant access to the data only to a specific group of users or the public. The platform also gives the user the possibility to restrict or open access to data for a fixed period of time.

Concerning the metadata provision, IANOS will not use any formal standard for their creation. Instead, security and privacy guidelines will be followed to ensure

that only the necessary details are stored, especially when dealing with sensitive personal information. Possible metadata may include: location, grid node identification, energy contract details, descriptors of the pilot setup, energy component descriptors, sensor descriptors, measurement values descriptors etc. Each dataset will include its own list of meaningful metadata.

3.2 Accessible Data

An important part of the FAIR concept is to make data accessible to project partners and when possible, to other researchers and the public. The IANOS project will use the Zenodo platform for the data that the consortium decides to make public.

Given the nature of the data acquired during the pilot implementations, not all data collected will be made openly available. Some of the acquired information is private data subject to GDPR and national regulations and therefore cannot be open without reservations. The data is acquired in real-time and comprises of (but not limited to): individual users' personal data, equipment list including characteristics and usage patterns, energy consumption and energy production profiles.

All sensitive data gathered during the project lifetime will be kept confidential by the consortium partners, namely research participants data from pilot sites. Particular attention will be paid to personal data, which will be codified and destroyed after the project ends. All other collected data, such as real-time energy consumption and renewable energy production, will be anonymized or aggregated and will not be used with any identifying information within the project or in external publications.

The software adopted to access data will use HTTPS (encrypted communications over the web) to assure that the information travelling on the web is properly secured. Data can be accessed using the iVPP or the implemented RESTful API for which an open documentation will be made available.

3.3 Interoperable Data

Making data interoperable mainly relies on using suitable standards and protocols for data and metadata creation along with appropriate vocabularies (e.g., for providing search keywords).

To facilitate interoperability, a list of standards, protocols and data models that are going to be reviewed, to be used in IANOS project are the following:

- Secure TCP/IP and MQTT protocols to communicate with the IoT devices and energy assets.
- Advanced Message Queuing Protocol (AMQP), an application-level open standardization protocol for messaging-oriented intermediate software, based on TCP/IP. It enables the communication between different message-oriented middleware, providing business processes with the required data and transmitting instructions to achieve objectives.
- Open Automated Demand Response (OpenADR), an open-source information exchange model and global Smart Grid standard used in DR applications.
- Universal Smart Energy Framework (USEF), a framework that can deliver the market model for the buying and selling of energy flexibility, and the architecture, tools, and rules to assure its efficient work. The framework is created to provide all parties involved internationally with fair access to energy market and benefits by introducing a new market-based coordinator mechanism, which optimizes the value of flexibility across all roles in the system.
- Standard ontology like the Smart Applications REFerence ontology (SAREF) or Bricks Schema to define data and metadata vocabularies.
- RESTful API services to communicate among the different platform components.
- S2 standard interface used by dEF-Pi system.

- IEC 61850 communication standard used by the Smart Energy Router to provide real time information about the battery storage system and PV system to the iVPP.
- Energy System Description Language (ESDL, see https://energytransition.gitbook.io/esdl/) used by ESSIM simulation platform.
- Energy Fflexibility Interface (EFI), an open-source standard that allows communication between smart grids and smart devices, allowing the allocation of flexible energy which helps the transition to affordable and sustainable energy supply. EFI will be implemented into IANOS architecture for the Ameland-related UCs through the dEF-Pi open platform, for exchanging information regarding energy flexibility to the decision-making layer of the iVPP (ReFlex component).
- CHAdeMO V2X protocol, it provides the only available protocol detailing V2X extension for EVs and certified V2X chargers and vehicles.

3.4 Re-usable Data

Data will be stored in servers, either on site of the pilots or on locations indicated by the technology provider.

Public data will be published after the release of the respective deliverable or after the end of the project. The availability of data that contain key information on the end customer's commercial operations should be discussed with pilot sites partners following the terms of the consortium agreement and with the consent of the end user. However, sensitive data will be anonymized and processed/analysed as a part of a larger body of data. No information, from which an individual participant can be identified, will be published. Only anonymized results will be summarized as a part of a research publication.

The availability of data after the end of the project depends highly on the type and content of the data. Therefore, storing data on a public platform needs to be discussed with the contributor of the data.

The licensing of data and deliverables is not yet specified but data that can compromise commercialization prospects or have inadequate protection of (e.g. personal information), shall not be published. The rest of the data will be openly accessible. If there is an open-source license applicable, some partners are in favour of the Apache License, Version 2.0.

4 Data Privacy and Management of Personal Data

Raw data used by the IANOS platform components will be stored in secure and reliable databases. A backup plan defining local and remote backup policies will be defined.

Data collection procedures within the project will comply with the European legislation (such as GDPR) as well as national regulations. The project partners involved in the pilots will provide detailed information on the procedures that will be implemented for data collection, storage, protection, retention, and destruction, including confirmation that they comply with national and EU legislation.

It is therefore worth briefly summarizing some of the most important principles applicable in case of data processing. First of all, personal data shall be processed lawfully, fairly and in a transparent manner in relation to the data subject. To this extent, each project partner commits to process personal data in a way that ensures compliance with the principle of purpose limitation, data minimization, accuracy, storage limitation, integrity, confidentiality, and accountability. In any case of processing of personal data, the interested partner will remain accountable and responsible for the data collected during the project and shall be liable to identify the most appropriate lawful basis before starting any processing operations.

Personal data shall be processed in a manner that ensures appropriate security, including protection against unauthorized or unlawful processing and against accidental loss, destruction, or damage, using appropriate technical or organizational measures.

Technical or organizational measures shall permit identification of data subjects for no longer than is necessary for the purposes for which the personal data are

processed. At the end of the project, all processed personal data shall be destroyed in accordance with the specific law requirements.

Within this context, in order to understand if (i) Partners are going to process, jointly or severally, personal data for the purposes of the project and (ii) which is the flow and management of the said personal data, ENG submitted to all partners a data protection questionnaire ("Data Protection Questionnaire"). The questionnaire has been sent in reference to activities of deliverable D 1.10 "Ethics and Cyber Security Management report", already submitted in M12. According to the answers directly provided by the partners it is possible that for certain activities partners will process personal data.

In the light of the previous considerations the table below identifies the set of activities involving the processing of personal data of individuals belonging to IANOS Consortium.

Scenario	Solution
IANOS mailing lists	To achieve IANOS results and to manage the
	workflow among all the partners involved, it has
	been created a series of mailing lists, namely (i) a
	general one, where have been indicated at least one
	contact person per partner, and (ii) one mailing list
	for each of the work packages. In particular, the
	scope of the lists is to keep updated the relevant
	partners upon tasks, events, and the progress of the
	Project in general. The created mailing lists are
	restricted only to IANOS partners, and the end of the
	project will be erased.

Table 17 Processing of personal data

	As part of the management of such mailing lists, i.e.
	the additions and/removals, are responsibility of the
	Coordinator (EDP). In any case, each person
	included in a mailing has the right to opt-out by
	contacting the project Coordinator.
Meetings and related	During IANOS meetings it is possible that
material	documents will be created and used, such as
	agendas, presentations, minutes, and signature lists
	etc. These documents will be created and managed
	only inside the Consortium and its partners and will
	be used only for the purposes of the relevant
	meeting. Moreover, each partner might have access
	to the document, which to this extent will be stored
	in project's shared environment. The storage of
	these documents will be limited to 5 years after the
	end of the project. To the extent permissible by law,
	any person whose personal data will be included
	therein shall have the right to request at any time to
	the Coordinator to opt-out.
Workshops/Conferences,	Events such as workshops, conferences, and plenary
training, and	meetings might be attended by one or more
dissemination sessions	individuals belonging to the Consortium. In this
	scenario, personal data such as name, surname,
	company affiliation, emails, and pictures/video
	recording might be collected. Such data might be
	recording might be collected. Such data might be collected and processed not only for the purposes of
	recording might be collected. Such data might be collected and processed not only for the purposes of organising the said event, but also for dissemination.
	recording might be collected. Such data might be collected and processed not only for the purposes of organising the said event, but also for dissemination. In the latter case, before the publication, the
	recording might be collected. Such data might be collected and processed not only for the purposes of organising the said event, but also for dissemination. In the latter case, before the publication, the relevant individual might request to opt-out from

	data will be stored in the IANOS shared environment
	repository, and the data will be kept for 5 years after
	the project.
Reporting	Reports providing for updates on the Project
	progress, as well as on financial data, might contain
	personal data. These reports might be shared either
	within and outside the Consortium for compliance
	purposes with national financial law, and in
	particular with the EC.
Deliverables, internal	During the lifetime of the project, a large series of
documents, and other	documents and reports will be produced, like
IANOS reports	deliverables and/or internal documents etc. These
	files will be used to fulfil project contractual
	obligations and shared to: IANOS partners, EC, and,
	depending on the nature of the document, shared
	with external individuals (as this might be the case
	for those deliverables that are classified as public
	and that might be published on the project's
	website). In these documents, the name and/or
	email of authors may be included. As far as the said
	documents are going to be shared inside the
	Consortium and distributed to the EC, they will be
	used only for the purposes of reporting and stored
	in the IANOS cloud server under the deliverables
	section. Reports that will be shared publicly (public
	deliverables) will mention only the Partner name
	and not any other personal information, unless
	agreed otherwise with the relevant author. All
	documents will be kept for 5 more years after the
	project ends.

Other scenarios	As a general principle, in any case according to
	which kind personal data needs to be added in any
	kind of document for the purposes of the project,
	the controller (i.e. the document creator) shall have
	to notify the data subject that his/her personal data
	will be included into the related document,
	specifying purposes, retention period, storage
	requirements etc.

4.1 Blockchain and GDPR compliance

In IANOS the blockchain technology is applied in the context of Use case 1 "Community demand-side driven self-consumption maximization", specifically in relation to scenario 2 entitled Self-consumption maximization through P2P energy trading based on DLT. To this end, Engineering implemented a P2P market platform that enables prosumers in a local network to directly trade energy with each other, by avoiding RES curtailment and future grid transport costs.

This study [4] has discussed the application of the European Union's EU General Data Protection Regulation to blockchain technologies. It has been observed that many points of tension between blockchains and the GDPR can be identified. First of all, it is necessary to assess whether it is 'personal data' that is being passed on blockchain technology. According to the GDPR, 'personal data' is defined as 'any information relating to an identified or identifiable natural person. The data that make a person identifiable, directly or indirectly, may be a name, an identification number, location data, an online identifier or one or more features of his physical, physiological, genetic, mental, economic, cultural or social identity' (Art 4 para. 1 [5]). Data protection principles therefore do not apply to:

• anonymous information, i.e. information that does not relate to an identified or identifiable natural person;

• personal data rendered sufficiently anonymous that the data subject cannot or can no longer be identified.

In IANOS each prosumer in the P2P market tool has an Ethereum account associated. An account is made up of a cryptographic pair of keys: public and private. They help prove that a transaction was actually signed by the sender and prevent forgeries. An account is presented as a 42 character hexadecimal address (for example: 0x06012c8cf97bead5deae237070f9587f8e7a266d) and identifies the prosumer inside the blockchain. It is not possible to link the user directly with the given address.

Another point of tension between GDPR regulation and blockchain is the Data Controller. If we assume that personal data are processed on the Blockchain, it is therefore necessary, according to the GDPR, to identify the Data Controller and to define whether this role is held by a single entity or jointly by several entities. The correct identification of this role is an important exercise as it enables the identification of the person or entity to whom the data subject must turn to assert his or her rights under the GDPR. On the other hand, by nature the blockchain is decentralized and it is designed to be managed by different parties, many actors can potentially influence the determination of the purposes and means of data processing. In IANOS the infrastructure provides the use of a private network based on Ethereum blockchain, where only authorized users can access to the platform.

The application of the GDPR may also prove challenging with regard to the right to erasure or the so-called 'right to be forgotten', particularly when reference is made to a Permissionless Blockchain (platform in which anyone can take part, freely carrying out any kind of activity, where the content of the register is public and available to all). Once a public key and associated transactions have been identified, even if the user requests it, there would be no way to delete the information, which would then be part of the blockchain. The particular design of the technology to maintain the history of all transactions that have taken place makes the right to be forgotten very complicated to exercise. In IANOS it is used

a private blockchain and personal data is managed outside the platform itself, publishing on it only references to information held through a traditional database.

5 Conclusions and next steps

In this deliverable we reported the third version of the Data Management Plan. The purpose of this Data Management Plan is to provide guidelines to aggregate, maintain, and further distribute collected data for external usage. This document specifies the datasets that are collected from IANOS partners. In each specification, the content of the data is described as well as the format.

This document was created following the guidelines specified by the EC in "H2020 Programme Guidelines on FAIR Data Management in Horizon 2020 (V3.0- 26 July 2016)" along with "ANNEX 1- Horizon 2020 FAIR DMP template".

The final version of the document is planned at M42 with deliverable D1.16. It will provide the last update on how the data are managed and stored throughout the IANOS project.

References

 [1] E. Commission, "Guidelines on FAIR Data Management H2020," 26 July 2016.
 [Online]. Available: https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/

oa_pilot/h2020-hi-oa-data-mgt_en.pdf.

- [2] "Complete guide to GDPR compliance," [Online]. Available: https://gdpr.eu/.
- [3] "Zenodo," [Online]. Available: https://www.zenodo.org/.
- [4] "Blockchain and the General Data Protection Regulation," [Online]. Available: https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_S TU(2019)634445_EN.pdf.
- [5] "GDPR Art 4 para. 1," [Online]. Available: https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e2793-1-1.

